Fintifocos : "Y MG

Price-2 ${ }^{2}$ Cents.

PREFACE.

In accordance with the requent of the Facalty of the College of Pbyaicians and Burgeons, Profentor Agassiz delivered, in the Hall of that institation, daring the monthe of October and November of the present year, a serien of twelve Lectures on the various orders of animala. The celebrity of the Lecturer and the intrinaic interent and importance of the arbject, attracted very large and attentive auditorien. Indeed, the degree of attention excited thy thene admirable disconrsen manifested, in a very atriking manner, the greatly incressing interent with which the popalar mind is now directing itaelf to the inventigation of acientific subjects.
Fall reports of these Lectures were given in the columns of the "New York Tribane," and abandant evidence w an afforded of the bigh appreciation with which they were received by the public. They are now collected together ; and haring been carefally prepared for this pablication in a permanent form, it in believed that they will prove moceptable to all who take an interest in the atudy of a department of Mcience which is daily becoming invented with freah attractions. The young beginuer and the more advanced atadent of Nataral Bistory will both derive ensential aid from the atody of these discoarnem; an, while teaching firnt principlen in an eminently lacid and comprehenaive atyle, the Lectarer commanicaten also the remults of the mont recent and elaborate inventigations in the lateat discovered fielda of philonophical inquiry.

The Lectares, with the exception of one or two, were reported by Dr. Houston, Stenographer to the Benate of the United States, and he han ancceeded in giving them with literal accaracy, wo as to premerve the characteristic atyle of the Lecturer. The few Lectaren not reported by that gentlemen, were) mubjected to a careful reviaion. Of the engravinge it in only necensary to say that they were rapidly kketched from the black-board during the delivery of the Lecturen, by Mr. Brydgen, with perfect accaracy, and will be found to contribute essentially to the elacidation of the sabjects diacuased in the Lectares. Fery many of the illumtrations are altogether original, and cannot be met with in any of the treatises on Eataral History heretofore pablished.

Nrw.Yore, December 10, 1847.

BIOGRAPHICAL NOTICE OF PROF. AGASSIZ.

Louis Agassiz wa: born on the 28th of May, 1807, in a village of the Canton of Fribourg, Bwit zerland, called Mottier. His father was a clergyman, a profession to which his progenitors for five generations had been devoted. He received the first radimenta of scholastic education at the Gymina--inm of Bienue, where be passed aeveral yeara, principally in stadying the ancient languagea. His - pansion for Natural History appeared doring this period, and his vacationa at home were employed in making collections. $广$ His father having removed to a pariah on the Lake of Neafchatel, he made fishem an object of especial atady. / He went with the fishermen on their excursions, and often, with a line in his hand, passed whole days on the Lake. He soon discovered how defective Nataral History wan in this department, and realved to make good the deficiency.
Having completed his studies at achool, hia father wished him to become a clergyman, bat hia natural bent way too strong to be resiated. He accordingly commenced the stady of Mediciae, an being mowt nearly connected with his favorite parsuits. At the Academy of Zorich he received great amaistance in hin Zoölogical inventigations from the well-known Profesmor Schinz. Afterward he atadied Anatomy at Heidelberg, under the celebrated Tiedemann, until, attracted by the remarkable body of savans collected at Munich, he resorted thither to continue his studien. Here he passed four yeara, rather as an associate in the private atudies of the Profenaors of the University than as a atadent under their instruction. He also collected around him a knot of young men of kindred apirit with himaelf, for the discassion of scientific subjects, and into this assembly, which was called the "Little Academy,' even the Profesiors were drawn.
At this time Agassiz made his first appearance as an author, and in the most honorable manner. Martius, one of the Professors at Manich, was occupied in preparing his great work on the Natural Hiatory of Brazil. To Agassiz be confided the department of lehthyology; this portion formed a folio volome, in Latin, with platen, and at once eatablished the repatation of the young Nataralist.
Hia parents, who had long been dianatisfied with the devotion of their son to Natoral History, which withdrew him almost wholly from his medical studies, now cat off the allowance on which he had depended for a living. In this emergency be fell back apon his own resoorces. He exhibited to the bookseller Cotta the material he bad collected for a work apon Fresh-water Fishea, and obtained from him the means of completing that work. At the eame time he reterned to Medicine, in order to regain the favor of his parents, and with mo mach anccese that he shortly after obtained the degree of Doctor. Sabsequent to this he passed another examination, and received the degree of Doctor of Philosophy.
Having been restored to his former relations with his parents, he received from them permisaion to visit Vienna in order to complete his medical atadies. He did not, hovever, neglect his favorite parsaits, but, an before, occupied a great part of his time with Iehthyology, and especially with the department of Fomsils. On his retarn bome, he obtained from a neighboring clergyman the neane of viniting Paris. There be became intimate with Cuvier, who even resigned to him a work on Fishea which be had long debigned, and for which be had made extensive preparatione-no high wan his estimate of the gifta and learning of the young man. He remained with Cavier until his death in 1832, when he retarned to Switzerland and became Profennor of Nataral Hiatory in the College of Neufohatel.

Before he had paneed the age of thirty-four, Aganaiz bad been made a member of every acientific academy in Europe. Many univeraities invited him to become one among their Profesara; and the cities of Tidinburgh and Dublin, in both of which he received the degree of LL.D. enrolled him in the number of their citizens. His personal inflaence induced several persons of diatinction to engage in the study of Natural History; among others, Sir. Philip Egerton and Lord Einniskillen, whone collection are known to all paleontologists.

The repatation and influence of M. Agassiz hive rendered the little town of Neufchatel a nuriery of Bcience, resorted to from all partm of Eorope; and on his recommendation a young papil of his, Dr.

Tachadi, who han aince become known by his work on Pera, wat diapatched om a voyage roand the world, to collect objecti of Nataral History.

In order to confirm the Glacial Tneory which hat made bia name no famona, M. Aganis, after having vinited in anccesaion most of the glaciers, fixed hia headquartern at the glacier of the Aarn, whither he went with hia friends to paas hin sammer vacation for eight years comsecutively; at first with no shelter except a large boulder lying on the middle of the glacier, which soon became famon ander the namo of the Hotel des Neufchatelois. Here he prosecated the long series of researches which have since obtained so mach celebrity in the scientitic world.
Occapied with theae investigationa and with his regalar duties. Prof. Agasnix remained at Neufchatel until his viait to this country. This visit was undertaken at the donble inatance of the King of Prasaia, who charged him with a acientific exploration of America, and of the Lowell Institate in Boaton, before which he was invited to deliver a Course of Lectares Since his arrivel he han been offered a Profesmorahip of Zoollogy and Geology in Harvard College which he han accepted on condition of being released from his engagement with the King of Prosaia.

Profeanor Agasaiz is personally a man of very atriking and prepossesaing appearance. He is tall, and formed with as mach strength an elegauce, with a rather f orid complexion and dark hair. In his manner and bearing there is a singular grace and beuignity.
His principal work is on Fossil Fishes, in fire folio volomes, with an atlas of plates. It is dedicated to Alexander von Humboldt, and han a very high and extensive repatation. He bas also written on the Fonsil Echinodemata of Switzerland, on Fonil Mollancn, on the Freah-water Fishon of Central Europe, on the Glaciers, and on other anbjectu.

The rapidity with which theae works have apperred, and the reaearch and learning which they all display, would be inexplicable had no other hand than that of their distioguished author been concerned in their prodaction In 1837, M. Agassiz essucirved with himelf a goang Nataralist, M. Desor, with whose valuable assistance bis lahora have since been prosecated. By this means mach more bas been accompliahed for Ecieace and the world than could have been done by any aingle individual, however bighly endowed.

THE ANIMAL KINGDOM.

INTRODUCTORY LECTURE.

Natural Higtory-Ita Study and the Lights in which it may and should be viowed.... Man may expect fully to understand Nature....Man's Body similar to the Bodies of Animals-The Cause....The Varied Types of Nature-Astonishing Variety of Animals \rightarrow difficulty of at first perceiving any order in them....The Star-Fibh....The Coraln.....The Jelly-fish.....Clams, Worms, Spiders, Crocodiles, Bats-Their great apparent Dissimilarity and yet many of them of the same type-The Lobster, the Spider and the Butterfiy-The Cuttle-fish, the Snail and the Clam all alliedThe Coral and the Jelly-fish....Soft Animals and their Power of Contraction....The respective Nervoua Systems of the different Types of Animals.... Origin of the applied terms, Articulata, Vertebrata, Radiata and Mollusca.... The different Setaof Organs in these difforent Animals.

Dr. A. H. Stevens introduced the lecturer to the ansemblage in a few complimentary remarks.

Prof. Agassiz then presented himself to the andience, and, in a singularly agreeable voice and marked foreign accent, delivered the following Lecture:

Ladies and Gentlemen: Having to address you in a foreign tongue, I must first apologize for the deficiency of my language. Happily, however, Nataral History has an interest entirely apart from the form in which the subject is presented to the stadent. The investigation of objects of Natural History does not need the aid of rhetoric to invest it with attractive charms; and the mind may trace these phenomena even without patting them into a definite form, and, therefore, the mode of expression employed in conveying the resalts of such inquiries is not so important as it would be in a literary work. I shall do all in my power to make up for the deficiency of my power of language, by the interest directly derived from the subject itself.(Applanse.)

Natural History may be studied in very different points of view. Some may consider it as a source of information for uneful parposen. The wealth of Etates depends frequently on the knowledge acquired by individuals of the structure of the soil. The working of mines has become an sctaal basiness since Geology as a acience has given us the key to the investigation of the deeper regions under the arface of the groand. Many trades depend on the knowledge of certain phenomena of Nature. Even Navigation is the result of scientific investigation and discovery; and, at this time particalarly, the vastly increased facilities of frequent intercourse between nations have been the resalt of the recent progress of natural science-of physical ucience especially. Thus, though viewed in this atrictly atilitarian aspect a sufficient inducement may be furnished for the atody of Nature and of the objectm of Natural History in particalar, the subject in yet to be regarded from a more eleFated point of view. It is not enough for a philomophical mind to know the natural phenomena. It may be enough to know some isolated phenomena in order to derive important aid in the arts, but to the philosopher such saperficial acquaintance with Nature is not sufficient. He wants to anderstand Natare. He is not satisfied with the knowledge of isolated phenomena.

When I say that the philosopher desires to understand Natare, I will perhaps better explain my meaning by an example. When we enter on the
atudy of an anthor we may begin at a very low stage. With one of the clasaic Poets of antiquity, for example, we may begin by tramslating senteace by sentence, with great difficulty, and in this way we may go through the most beautiful langaage of ancient poetry. Bat would it by any means follow because we have thus spelled over the pages of Homer, that we understand him? Another and a higher sort of mental process is requisite to enable us to know, to anderstand, that sublime author. It is only when we have become acquainted with the condition of haman society in that age-the rivalry which existed between the nations of Asia and Greece-and the mythology of that remote time, that our sympathies approach the level of the poet's work and our hearts own the influence of the poet's spirit.
So it is with the stady of Natare. We may know by their name a great many animals. We may be able to indicate with accuracy the characteristic differenoes between the various tribes of animals. We may be able to diatinguish the trees in our foreats and the plants caltivated in our gardens; nay, we may know any isolated plant that flouriahes upon the surface of our globe, and yet we may after all know nothing of the plan of creation. There is a higher point of view from which weattain a deeper inaight into that plan.-We must understand the connection between the various parts of Creation, and, rising higher atill, direct our contemplations to the Author of all, who has formed the whole and subjected it to all those modifications extending through long ages which Geology has revealed, from the remotent epoch up to the period when Man was created and introduced upon the surface of the globe with the animals and plants which we now behold.

Understand, then, that the atudy and knowledge of Nature consist in something more than acquaintance with the isolated beings which exist upon the surface of our globe. We must underatand the connections existing between these beings, and the relations which they sustain to the Creator of them all.

But the question may be asked, is it possible for Man to acquire more than a saperficial innight into natural phenomena? This queation has been answered in many different ways. Some have maintained that all we can expect to come at is an artificial classification, agreeing in a greater or less degree with the natural phenomena; that a real insight into all the varied departments of Nature by man is unattainable. But if we view the progress of natural science, and observe the investigations made in every succeeding generation in the
matter of isolated phenomena-if we bear in mind how many things which appear isolated have been combined into one and the same point of view, we are furnished with a strong ground of hope that it will be given unto Man to attain that insight into Nature.

There is another reason why Man may expect fally to understand Nature. We feel in ourselves that we are not mere matter. We have a soul. We have an intelligence. We have feelings by which we are in connection with each other. These feelings-that intelligence-carry us beyond the limits of our globe. We thas rise to the notion of a God. We bave that within ourselves which assates of of a participation in the Divine Natare; and it in a peculiar characteristic of Man to be able to rise in that way above material Natare, and to anderstand intellectaal existences. The possibility of obtaining an insight into Nature is thus strengthened by the analogy between the Human and Divine Natures. On that principle, Man being made in the image of God, it is possible for his intelligence to comprehend the doings of God in Nature. Hence by a constant intercourae with these works-by a Natural Religion-by a constant study of thene works of Creation, we may come to understand the views, the objects of the Creator in doing these works-in introducing these phenomena as realities into existence. We mey, in one word, coms to a full anderstanding of Nature from the very reason that we have an immortal soul.

Again, our body is so similar to the bodien of animals. The organization of our body discovers intimate relations with their physical condition. We pans from the lower type of animals so gradually to the higher, until we find Man, with his superior organization. Thus on one hand we see that owing to the intellectal natare of Man be has pecaliar relation with the Author of all things, while on the other hand, from his physical nature he has a root in the soil-a material fonndation, and hence both the intellectaal and the material world in laid open to his contemplation, affording substantial grounds for the belief that he is competent to attain a full understanding of the works of creation and the plan of God when bringing the world into existence.

That all this creation has not been the reault of one creative act, we know from geological obone creative This globe-the animala which exist upon it now-have not been brought into existence at one moment. We have learned from geological observation that a long series of epochs have succeeded each other, and that during every epoch animals and plants, organic beings of various typea, were saccessively living and died away, to make room for others, till the surface of the globe was occapied by the animals and plants which now exist with Man as their head.
The most muperficial knowledge of those phenomena soon gave rise to the notion that the introduction of Man has been the objeet of the creation of this globe, and the position which Man now occupies upon the surface of this globe is such that this notion appeari to us quite nataral. I think it may be ahown by actual demonstration, as far as phytical phenomena can be demonstrated, that the view of the Creator in forming the globe-in allowing it to undergo these successive changes which Geology has discovered, and in introducing gradually all these different ty pes of animals which have paseed away, was, after all, to introduce Man upon the surface of oar globe, and to bring him into connection with the other organized being and with the oil in connection with which he does now exiat.

There is one reason to believe that this is so. That
reason is this: ${ }^{*}$ We see from every point of view in which we may regard the Animal Kingdom-and I ball from this moment limit all my remarks to the Animal Kingdom, in order not to trespass beyond the bounds properly set to this discourse-we see that Man possesses the mont complex and most perfect structure. Even his position is remarkable and significant. Man'e erect position in standing or walking shows that he is placed at the head of creation. All the lower animala have a horizontal position. The fishes move horizontally: Gradually as we ascend in the scale of animated beings we behold them raising their heads a little. Snakea bave no feet, but they are able to elevate the head; and if we proceed farther we find saccessive types in which the position becomen an oblique one, antil the head is raised more perpendicalarly. Bat to Man alone is given the most important position-the vertical position, which allows him to make use of his hand and fingers and to raise his eye directly toward the heavens. In this very position-in this material construction of his body, We have an evidence of the superiority of man. Bat in every respect, if we consider his atructare; we see that Man atands at the summit of animal being -and that itis jast so to regard Man as at the head of Creation, will be one object of these Lectares.

Again, if we consider the construction of animals upon the sarface of our globe, we will find that the lower typea have been first created-that they belong to the most ancient rocks-that the deepest rocks contain none of the higher animals, and that gradually some more perfect types were introduced till at last Man was created, and it may be ehown geologically, by actual inveatigation and without the slightest reference to any historical or atacred tradition, that Man has been created the lant.

Again, if it cannot be shown from this point of view that the introduction of man was actaally the object of the Creator, it may be at least shown that Man was the last and most perfect work that proceeded from His almighty hand. But that it was actually the object of the Creator to introduce Man at the head of the Animal Kingdom can, I hope, be shown by combining the knowledge we have acquired with regard to his phytical atracture, and his relation with the different other classes of anjmals and with the murface of the globe at large. At no time do we find in geological epocha a species spread all over the surface of our globe. Every type of animal-every variety of animal, occupies in the geological epochs only a emall portion of the surface of the globe. This fact holds true in all geological timen. Before the animals now living were created-when races entirely different from them existed, every specien was circumscribed within narrow limita, and in no case occupied the whole sarface of the globe. No one of the species of former epochs was superior to the whole type of its time. At no geological epoch do we find one species standing preeminent above others. Bnt at thia present epoch, we find not only that Man stands preeminent above all other apeciea, bat that he occupies the whole aurface of our globe; and in this respect he appears to be of a superior organization and endowed with privileges which no type ever enjoyed before him.

But I will not dwell on those general questions Without mome more precise foundation. I fall at once proceed to call your attention to the varied types which exist in Nature, so as to have actual facta upon which to reanon. I deaire that the atatements with which I aet out may be regarded as the remalts of investigation and not as matter of mere speculative opinion.

There is an astonimhing variety of animale upon the surface of our globe. This variety is auch that
it is very difficalt for the student who for the first time directs his attention to the sabject, to perceive any order. It is impoasible at first to perceive the intimate affinities and the near relations which subsist between all thene varied formations.

I have here some diagrams giving outlines of a few of these formations. Ijust name the subjects before passing to their characteristics. Here we have the common atar-fish ofthe Mediterranean Sea. Here we have one of those jelly-fish wo com mon in temperate and warm latitudes. This is a species common in the Atlantic-one of the specie whose substance is more or less phos. phorescent. Here is a coral of the Red Sea-a very com mon species. Here is a cut tle-fish, common on the west ern shores of France. Here
 are different species of anakes, some trom the East Indies and one from Central America. Here is a clam very common on the south-west shores of Africanot the common species. Here is the common lobster. Here is a worm, of that species having colored blood. Here is a apider. Here are several skeletons of vertebrated animals-an hyens-an ostrich -a crocodile-an enlarged skeleton of the bat. I do notmention two of these animals, because although represented 00 perfectly, they are not now in existence. They are nowhere to be found on the surface of the globe ; but these representations have been made from preparations most skillfully completed by attaching together isolated bones collected in the neighborhood of Paris, and arranged into a complete animal by the wonderfal attainments of Cavier in comparative anatomy. Thus these long extinct species of animals are an well known to us as if we had perfect specimens of them in our maseums.

Now, on looking at these diagrams the beginner in Nataral History will be strack by the great apparent dissimilarity between animals which yet belong to the same family. Thus, how little apparent resemblance between the atar-fiah and the coral! Then again, the cuttle-fish, the snail and the clam appear to have little in common, and yet the affinity between them is so close that they appear to the naturalist as members of one and the same family. And again, the worm, the lobster. the spider and the batterfly belong to one and the same tribe.
 The common earth-worm is more intimately allied to the crab or the butterfly than to a snail or slug. One might think that the leech and the slug were of a very similar class. Not so. Mere external appearance alone conveys an idea of identity. There is by no means any actual relation between them. The animals represented in the other diagrams constitute a fourth great division all altimately allied. The fish and the bat-the crocodile and the ostrich, belong to one great type; and the characters by which they may be defined are not artificial characters. They are not distinctions introduced by Man in order to facilitate his understanding of those subjects and to make his classification eany. This intimate relation between them is a nataral one, derived from their internal character.

It is very obvious that here in this star-fish, the atar-like raye constitute the prominent characteristic. The rays proceed from the centre.The mame character is perceived in the coral and
jelly-fisb. Here you perceive a similar radiated arrangement of the parts. The common characteristic of this order of animals is this radiated arrangement from the common centre, the mouth. The star-fish has at the lower surface an opening through which the food is introduced : precisely the same arrangement is seen in the jelly fish, which has a quadrangular mouth; so, also, in the case of the polyp, sorroanded by these fringes or tentacu$l \boxplus$. In consequence of this peculiar ity these animals have been denomnated Radiated animals.
The next type contains animals which have very soft bodies anc have the power of contractinthemselves very mach. If you se, a snail contract itselfand entirel, disappear at the bottom of its sheli and again, if you see it grow out enlarging and expanding itself s as to have apparently twice the size of the shell itself, you will consider that this is a facalty which no other type of animals porsesses in such a degree. No bird can swell its body to twice or three times its natural size. No quadruped can do that; no insect can do it. It is only in these animals that we see so considerable expansion and contraction. Again, the movements of this type are very sluggish. No one of them can jump or run; they can only creep upon the soil by successive contractions of the body. A few can swim, but when swimming they are moved in a peculiar mode by means of those appendages roand the head. Even these have the power of contraction in a degree which no other type of animal possesses, and even here [pointing to the cuttle-fish] the locomotion is owing to this contraction.

The whole body of this class is covered by a dense mucosity, and this mucosity makes these animala very unpleasant to the touch; and it is a peculiarity of this subatance to contain a greatdeal of macus, which, to some, has a very agreeable taste, so that a great many of this type are among the eatable animala. Nevertheless, a great majority of them please only in consequence of the beanty and value of their covering. For instance, shells, for many centuries, have been one of the subjects of greatest attention among naturalists, and extensive collections of these coverings have been made everywhere, while the animals themselves have been much neglected; and we do not possess in our collections the soft parts of these animals, which would enable us to know them perhaps better than we do by their shells. In fact, when we attempt to classify them from the shell, it is not more reasonable than if we should attempt to form a correct notion of the character of a people by looking at their coats! Laughter.)

The softness of this class of animals is one of their main characteristics, and they are all symmetrical. They have a right and left hand aide, an anterior and a posterior extremity, an apper and a lower side. From the softness of their bodies these animals have been called Mollusca.
[Here the learned Professor demonstrated the nervons system of this type by several diagrams on the board which he explained to his andience.]

In the next type, we find together the lobster and the butterfly! Nothing seem more dissimilar than the worm and lobster, and yet the structure is the asme. The body of each is formed of rings, each moving on the anterior and posterior ring. The rings may vary in hardness. All do not possess rings so hard as those of the lobster. Some lobsters even have soft shells. Some animals of this clans have coverings as soft as the coveringe of the batterfly. If we examine the body of any insect, the
pider, the butterfly or the gramhopper, we fiad that it is divided into such a series of rings, each movable on those anterior and posterior to it. Even in the worm-the loech-we have auch rings, only in them they are very soft. Thas we have already one character by which we can combine the worm with the crab or with the spider. Between the spider and the insect with wings there is scarcely any difference but that constituted by the existence of wings. The wings are nppeadages of no great importance when considered with reference to the general organization of these animals.

But the more striking and important difference between these two types is again to be seen in the nervous system : and it is a matter of no little importance that the greatest difference betweon animals sbouth be perceived in the nervous syatem -in the system which presides over the most important functiona of animale, and by which their facalties are exbibited. That again bas the most striking character; and always the same arrangement of it, and the same relations to the other organs are menifested whatever may be the external form of the animal.

Now the nervous systems of the worm, spider and crab are so similar that no difference will be percaived except by those who have paid nome attention to these sabjects. [Here the learned gentleman illastrated the nervous system of this type by diagrams on the board.] In the worm it will be meen there is one nervous ganglion above the intes. tine, and all the others belowas many active centres of nervoun influence as there are rings. 'I'nis atiurds an explanation of the well-known fact that many of these animals may be cat into pieces and yetretain the power of regenerating the portion removed from the diffusion of the nervoas influence through these different parts of the animal.
These details may appear very anatomical, and have little reference to the knowledge of animals in general, but I hope it will be seen that without sach a foundation it is impossible to come to an understanding of the Animal Kingdom-without Which we cannot arrive at a knowledge of our own nature. The material, physical condition of our own existence can by no means be understood without a distinct and accurate idea of the stractare of the inferior animals. There is really no in-
herent difficalty in theme subjects. Children might jast an easily be instracted in this department of natural soience as in those abjecte which usually occupy the first years of tuition. (Applause)

The type of autimals to which I have just directed your attention is called, from the pecaliarity pointed oat, the Articulata.

The foarth type contains those animals which have this bony frame in their interior. Though only the hard portions are represented in the diagramif, yet all bave recognized the oatrich and the crocodile. Theas auimels poness what in called a back-bone'-a continuans column of bones from the head to the tail. Under this column is a large cavity in which the orgase of respiration and the intestines ere contained. On the anterior part of the body is the moath-the opening of the inteatinal tobe; and the nose, the beginning of the respiratory organs. Yet this is not the only cavity in the body of this order of animala. We have in them the hesd, the cavity in which she brain is contained. We have beside all along the bony colamn a cavity in which is contained a sabstance called the spinal marrow. forming another nervous centre. We have in fact two cavities of the body-one above and the other below.

This type of animals her received the name of the Vertebrata.

So we have four great triben of animals charscterized by pecaliar external appearances as well as by internal differences, of which the nervoun mystem presents as distinctcharacteristics an any other. Thua, the location and arrangement of the nervour system in the rertebrated animals present an esmential difference from the other typen. In the Radiata and Mollusca and Arliculata there is bat one cavity in which the nervous syatem as well as the organs of respiration, of circulation and of digestion are contained; while in the vertebrated saimals the two sets of orgens, these which preside over the functions of the will and those which preside over the function which maintain the body in ite nataral system, are distribated in two different cavities; the more important being in the upper and the other in the lower.

In the next Lecture I shall proceed to ahow that notwithstanding this great variety of form in the Animal Kingdom-notwithetanding the great difference in external appearances-these animals-all of them in their types-are constracted on one and the rame identical plan. (Applause.)

LECTURE II.

Infinite Wiadom displayed in the Animsl Creation....The Structure of Radiated Animals....General Divinion of thus Type...The Polyps....Their Mode of Subsistence and Digestion.... Mode of Reproduction.... Have the Polypas Nervous Syatem?....Coral Reefs.
classification of the radiata.

I. Polypi........	(Meny tentaclen.)
1. Actinoida.	(Ray.)
2. Hydroida..	(Hydra-like.)
II. Acalephe....	(Nettle skin.)
1. Siphonipherea	(Siphon-bearing.)
2. Discophera.	(Disc-beariag.)
3. Ctenophera.	(Heving the tins of a crab.)
III. Echinodermater	.(Skin with spines.)
1. Asteroida..	. (Star-like.)
2. Echinida	(Sea egga.)
3. Holothuride.	. (Worm-like.)

Ladies and Gentlemen: In beginning these Lectures I endeavored to show that the student of Natural Hiatory mhould aim al a higher object than
the mere knowledge of isolated phenomena-that even the study of an accurate clannification is not the highest point to which our effort can arrive. There is a more elevated view of the stady of $\mathbf{N a}$ ture than that, which we should always keep in sight when we enter on such a field of investigestion. It is to consider Natare as a development of the thoughts of the Creator. Regarded in that aspect every object at once assomes a greater innportance, and become invested with new and auperior value in our ayes.

There was another point which I touched, bat on it I shall not now dwell, as I shall repestedly have occasion to show that it is the trae view in which we bhould prosecute thene atadies-and that vas,
that there is a plan, a general plan, in the works of Creation. We will be able to show that even isolated classes are made according to one precise plan ; yea, that we must refer at once the creation of these things to the understanding of a higher Power, a greater Wisdom, than man's power or man'm wisdom

After these preliminary remarks, I proceed to show that the Animal Kingdom is constructed according to four different modifications of the arrangement of the parts.

What nataralists intend when they speak of what they call "types" of the Animal Kingdom may be easily understood by comparison. We all know that architects construct our dwellings according to plans conceived by them before the erection of the edifice; and if we take a general view of the works of domestic architecture we shall see that they all agree in one respect. They are spaces circumscribed by walls, covered by a roof, and are designed to afford shelter, comfort, and even all the laxaries of life. All these structures, from the humblest hut to the proudest palace, agree in this general object, and we may say that they are all constructed according to one plan, though it may be subjected to endless variety of modification.

Again, those who have atadied and practiced music know very well that they can, from a fundamental harmony, produce a great many variations, and yet among these variations they will very readily recognize the principal tane. Well, in Natare we will readily discover one fandamental harmony throughout the works of Creation, and we will soon perceive that the variations of the different types can all be reduced to that general principle. Nay, we can go farther and recogaize in these foar types a fondamental idea which is common to all. The fundamental tune in the Animal Kingriom is life, while the endless varieties are the thoughta of the Creator dipersified in an infinite degree, and all in such a way as altogether transcends the intelligence or even the fancy of Man. Thus, in whatever way we regard this subject, uur contemplations must always at last fix on the great Architect of the Universe.

These four plans are, as I mentioned; first, the Vertebrata, to which Man belongs, and the higher animals as we call them, the mammalia, birds, reptiles and fishes. They all agree in one respect that they have an internal frame of bones surrounded by flesh, and that under this covering of hard and sott parts there are cavities containing the viacera-the different organs by which we digest our food, and breathe, and by which the blood is circulated; and another cavity above that containing the organs of the higher fanctions of animal life, the brain and spinal marrow, the organs of sense, the nerves. This type has an arrangement of parts which may be expressed by a very simple formala; and as chemists have adopted formula to express the composition of inorganic bodies, we may adopt formalm to express the general structure of organized beings. A figare, then, like the numeral 8 would express the general arrangement of parts in all vertebrated animals. The centre of the two bodies being the body of the vertebral columan; the opper arch, or cavity, representing the cavity containing the brain, and forming the apper region of the animal, and this lower cavity containing the viscera-all surrounded by fleshy parts from which some append ages in the higher animala proceed to form the limbs. I shall have occasion to show how the arms and legs all conform to the different arrangements of the Vertebrata. We can trace these modifications from the lower type of fishen, where the arms continue attached in continuous form-or anakes, where there are no external
legs, nevertheless there are some woch organs of locomotion connected with the walls of the body. All these analogies may be traced and be actaally shown by direct demonstration.

The next type is that of the Articulata: then there is the MIollusca, the third; and the Radiata, the fourth type. All these three types agree in one respect, that their orgens are contained in one and the same cavity. There is but one cavity. But the nervous system, as I showed, differs in its general arrangement, and ali differ in another essential point-in the mode in wbich they are formed.When speaking of the formation of animals within the egg, I sball have occasion to show how fundamental are these differences. They are sach that the germ of an articulated animal is formed just reversely to that of the Mollusca. These differences in the formation of the animal have been traced in so many animaln from the egg up to the period of full growth, that there can be no doubt on the subject, and there can be no doubt that the peculiarity in the location of the nervous centre in the lower portion of the body of the Arliculata has reference to the mode of formation of the germ and development of the raw individual.

These facts may be very readily observed in the eggs of the crab and the spider. It is more difficult to investigate this in the eggs of insects, becanse they are not $s 0$ transparent. In them the delicate process of the formation of the new individual is not easily traced. But in the crab it in very easy to observe it. I need hardly say that this is one of the most interesting and wonderful things in the stody of the Animal Kingdom.

In the first type, all the parts ${ }^{\text {b }}$ branch as it were in all directions and form a radiated animal; and in these different rays we see sacs of the alimentary canal, so there is no anterior and posterior region, owing to the general adaptation of the parts to the general arrangement. Perhaps the differences which are notorious between the form of types may not be easily comprehended now, but I hope when entering into more details with reference to the atructure of the various types to make this part of the subject better anderstood.

My object in this recapitulation was to show that this division of the Aumal Kingdom was really based on this intimate structure-on the very foundation of the plan according to which they have been constructed; and that this division has not been adopted merely for external differences perceived between the variousltypes of the Animal Kingdom.

I shall now proceed to demonstrate the stracture of the radiated animals.

My object in beginuing with the lowest type of animals is to show how wonderfully organized are those beings even which occupy the most inferior condition of existence. Their organization is indeed so simple that for a long time they were considered aswanting in internal structare. Butmore minute investigation has shown that even the lowest of the radiated animals have a structure inffnitely more complicated than was at firat supposed. They all agree in one respect-they have all a radi. ated form.

I have here before me one of those animals which show this radiated appearance most distinctly. It is a star fish, of the common species, foand living on the American shores of the Atlantic. All radiated animala have not this radiated appearance so distinctly marked; bat in most of them it can be readily perceived when they are subjected to sufficient observation. In some it is traced with difflculty, owing to the very minate size of the animal. There are a great many of the radiated animals whose entire length is scarcely a line or even les.
than that; bat there are cther again, such as the star-firh, whose size is so considerable as to amount to one or two feet diameter.

The whole type of radiated animals may be divided into three classes : the polyps, containing the coral; the jelly-fishes, and the star-fiahes.

In their external appearance these clanses do not differ very mach. [Here the lecturer directed the attention of his auditors to several illastrations of the various classes of radiated animals.] But in their internal tructare they differ widely. All polyps have one single cavity in which all the organs are contained; and all these organe consist only of a large stomach and some groups of eggs arranged around the stomach. By means of their tentacles they seize on their prey. In the centre is the mouth. Here is the general substance of the body, formed offleshy material, its walls being vertical lines. This animal is very soft in its substance. It is fleshy, and when touched contracte suddenly. It closes its tentacles entirely when tonched; its mouth is also contracted in that case, and asmanes a spherical form, showing no trace Whatever of the beantifal external appearance which you see represented in the drawing. The vertical folds which are here scarcely perceived become marked and distinct.

If euch an animal be cut vertically, you will see that it contains one large cavity, with a wide opening below. Through that opening you enter another cavity. The walle of these cavities are folds which are the partitions ranning to the periphery. Bome of these folds will not run to the stomach, and form only subdivisions of the principal partitions. Between the two cavities there is, as I have said, \& wide opening. This mactare is common to all polyps. The organization of this class is now pretty well
 known, though it has not been long studied with minute attention. This angmented knowledge of polyps is owing to the efforts of the naturalists of the Exploring Expedition of this country under Captain Wilkes. (Applause.) Valuable contributions to this department of Natural History have also been made by Mr. Dana. His work must alway be a standard authority. (Applause.)

On entering into some more minute details of these animals, it will be seen that this organization is very interesting. We can here trace the animal functions in their lowent condition. How do these animale live? The food is seized by these tentacles. The whole surface of the tentacles is covered with microscopic vibratory cilia-little, moft, projecting hairs, so minute as to be discernible only under a micromcope of very considerable power. Unless you apply two handred and fifty diameters-which is a very considerable poweryou can scarcely perceive these little cilia. But under such a magnifying power you see the entire surface of these tentacles covered, as it were, with hairs, and these hairs are in constant, incessant motion in different directions. A continuous current of water is thus maintained by these minate appendages. Here again, in the open. ing, these vibratory cilia are constantly in motion; and in the internal cavity there are also seen vibra. tory cilia moving constantly. They are not under the control of the nerves-not under the control of the will. They move incessantly. From the moment the animal escapes from the egg, and even when within the egg, they are in motion. Daring the whole period of life these cilia do not cease to move. They act by day and night. Daring the rest of the animal, as well as during the more ac-
tive periods of its existence, these unwearied organs are at work.

Now, it is owing to the action of these cilia that minute portions of organic matter are introduced into the animal's month. A considerable space of several inches in diameter is swept by these tentaculæ. All the little particles-imperceptible to the eye-of animal matter, of decomposed vegetable matter, shells, and so on, are thus brought into the mouth, and thus food is supplied to the animal incepable of moving or running after other prey.This is the mode in which Nature has provided for the sustenance of these animala.

But beside this mode of alimentation, these animals can contract their tentacles and seize upon large prey. Polype of a few inches in diameter will seize a fish, surrounding it with their tentaclen and introducing it into their mouth, after which it is digested very rapidly. Now this mode of alimentation is performed in a very interesting way. The tentacle of auch a polyp is a very complicated structure. I had an opportunity lately to stady its microscopic structure, and I have found that each tentacle, examined ander considerable microscopic power, is a tube whone walls are formed of longitudinal muscular fibres-fibres similar in structure to the muscles of the higher animals. By their contraction these fibres can shorten the tentacle in all directions ; or if excited only on one vide they will curve it on that side. Then, again, there are other circular fibres around the whole tube, and these pull the tentacle in succession, so as to elongate it to them in four times its usual length. Thus the animal is enabled to seize upon larger prey.

Buchis the manner in which the food in introduced into the internal cavity. This cavity is a simple sac, and even a sac which is open at both ends. But then the ends may be contracted and shut at the animal's pleasure. When the whole animal is contracted, both these openings of the stomach are shat, and when the animal has filled its stomach with food the lower opening of the stomach is closed. But as soon as the food is within that cavity it comes in contact with some secretion, probably similar to the bile or the salivary flaid of higher animals. At all events, it is subjected to the influence of some agent the character of which has not yet been ascertained, but should be ascertained, as the animal is very common on the shores of this Continent. Digestion is rapid in these animals. Eiven shell are speedily astimilated, the hard parts being rejected by the mouth, and the juices produced under the influence of the walle of the stomach are diffused into the lower cavity. The food is introduced into the stomach with a certain quantity of water, so that the food is from the beginning mixed with a quantity of wa ter, but the moment the food has been digested in the stomach, it passes into this lower cavity, and is there mixed with a greater quantity of water.Now this digested food begins to move in the whole cavity, and to move between all these partitions ; and the motion is produced in a way similar to that of the tentacles. These partitions have the whole of their sarface covered with vibratory cilia, so that the water containing the alimentary subatance is constantly moving between them. The refase of the water escapea through the tentacles. We have here the digestive function, as it were, combined or mixed with a kind of circulation. There is indeed no blood in these animals-no vessels-no respiration proper. There is only one large cavity divided into two sacs, the upper one digesting the food, and then we have this digested food mixed with water, and this flaid again diffused throughout a great many maller cavities in contact with the walls of the animal. These walls aboorb the fluid like a
sponge, and the alimentary portions remain within the body of the animal, while the superfluous water escapes through the tentacles. Of course the contact of the water produces a kind of respiration. There is undoubtedly a change of substance conetantly produced between the external water and the internal flaid.

The eggs, which are very numerous in thess animals, are hung in bunches as numerous as the partitions. There are polyps in which there are twenty and in some a greater number of bunches of eggs hang around the lower opening of the atomach or on the internal wall of these partitions. When the eggs are ripe they escape either through che momach and mouth, or between the partitions through the tentacles. In the course of this Summer I have witnessed repeatedly this operation in one of thome polyps which are common on these whores. They may very often be found on the piles of the wharves all along the shores of the Atlantic. Insome of them I have witnessed the process from the earliest stage. When the young animals escape from the egg, they have the same shape as the old one, but with this difference, that they have only five or ten tentacles arranged in such a way (making a diagram on the board) ; afterward they have five additional tentacles, and so go on increasing till these appendages beoome almost innumerable. I have found that these tentacles are uniformly multiples of five.

The mouth appear to be circular, but when carefully examined it is found to have an elongated appearance. In fact, the mouth is rather oblong, and in the young animal that form is quite apparent.You will perceive that in the young animal one of the tentacles is just parallel with the straight line of the mouth, and the four others are arranged in two pairs laterally. This point is important, as I shall show that there we have the first indication of bilateral symmetry with the anterior region well defined.

No nerves have been observed in these animals. Nevertheless, we cannot doubt that they feel.Light acts upon them. They contract under strong light. They also contract under the influence of darkness. In mild light they expand completely. Some, indeed, can expand in the strongest light.This shows certainly that the sensation of light is perceptible to them.

In some of the polyps I have observed dark specks, corresponding in number with the tentacles. We may be allowed to conjecture that the specke are eyes, and if no there can be no doubt that there are nerves. In fact, in the star-fish the nerves have been seen. They have been traced up to these colored specks.

This is about all that can be said of the structure of the polyps. Their external form is very various. I will mention some of them in order to show the variety of types among them. All those which have numerous tentacles, and the internal cavities with bunches of eggs hanging from the walls of the lower cavity, have been named sea-anemones.Some are entirely soft. Others have, inside, a hard framework formed of limestone-of carbonate of lime-and in this framework one can see the same radiated appearance which we can see in the type, which is entirely soft.

You see in this specimen an illustration of the remarks just now made. It is not correct to regard these corals as the shells in which these animals cover themselves. The hard parts are found within the animal and form a portion of their internal tructure. There are a great many of them in which the hard parts are deposited within like network. [Here the lecturer pointed to specimens in illastration.]

The polyps do not all multiply only by egge,
though all will lay egge and maltiply in that manner. Some produce buds on their sarface. and these buds will grow and re main attached to the main body, and in that manner the bads will become branched. Perbaps a little polyp attached to a rock assumes such a form. After a certain time we see a small bud, which enlarge
 in the same form. and grows and pushes out its tentacles in the same manner as the first individual. Thas from this branch a new individual will be formed and remain connected with the parent stem. In that manner we have compound animals, and that is the case with moat of corals where a great may individuals are united in one and the same stem, while others remain single.

The importance of these animals is very great, from the well-known coral reefa. Beside, these animals act in a very extensive manner in modifying the shades of the ocean's depth. They contribute in the formation of island and in enlarging continents, by increasing the amount of hard substances deposited on the surface of the earth. We know from geological researches that whole mountain ranges have been formed by the agency of this minute animal. But this is not the place in which to speak of this geological phenomenon. I allude to it at present only for the parpose of showing the importance of the fanctions performed by this little animal in Nature. There are some polyps which produce eggs and buds, but it is only some of the latter which can in their tarn produce eggs. A great many of the animal classified in the Infusoria are only eggs of polyps and other lower animals awimming freely by the agency of their vibratory cilia, which cover the surface of the egg-shell. The seeds of plants are in the same way covered by cilia, and, moving freely in the water, are also often classed with the infusoria. There are plants called Conferva, divided by partitions in the manner which I have described, and the seeds are covered with vibratory cilia, moving so freely in the water that they cannot be distinguished from the lower animals. They are so minute that an examination of theirinternal structare is a matter of very great difficulty. If we could only ascertain whether they have a stomach, their position among organized beings would be very eamily fixed. But as they are so minate that the highest microscopic power discloses only these vibratory cilia, and as there are animals which have been discovered to possess a stomach very closely resembling them in external appearance, it is very difficult indeed to determine whether they belong to the animal or vegetable kingdoms.

Locomotion, as such, is not a distinctive character of animal life. It is only the wilful motion under the action of nerves which is characteristic of the Animal Kingdom. But vibratory motion, prodaced by these minute hairs covering the surface of minute animals and plants, is common to organized beings in general, and is found as well in the vegetable as in the animal kingdom.

Polyps are divided into two great families: the Actinia, in which the eggs are arranged in bunchesinternally, and Hydroida, which have tentacles in the same manner as the others, but in which the eggs hang in bunches externally from the lower end of the upper cavity, in graceful forms and sometimes beautifally colored.

The hour is now sofar advanced that I cannot enter into the consideration of otherclasses of radiated animals. I shall take them up in my next Lecture.

LECTURE III.

Additional Facts Relative to the Structure of the Polyps., ..The Grand Distinctions between Animals and Plants.... Organization of the Egg....The Acalephw....Structure of the Jelly-Fish.... Phosphorescence of the Ocean in part produced by the Medusm....Diffierence between the Polypa and Meduse..... Mode of Growth of this Species.... Discovaries of Sars, Krohn and Chamesso....The Echinodermata....Intereating Field of Investigation Open..... Structure of this Species....Mode of Locomotion.... Digestive and Circulatory Apparatus.....Evidence of Desiga in this Department of the Work of Creation.

Ladies and Gentlemen: The last Lecture was occupied in tracing the characteriatic feataren of the polyps-the lowest of the radiated animals. I ahowed now aimple, and nevertheless how beantiful and well adapted the stractare of these animals in. We find in them only one organ, and yet we find almost all the functions of animal life. That oneorgan is the stomach-an ample cavity with two openings, a mouth and a hole at the bottom of the sac emptying inte the general cavity of the body; thus the food when digested is mixed with water which constantly fills the general cavity of the body. This mixture of sea-water is constantly set in motion by capillary cilia or hair-like append agea covering the whole surface of the internal cavity as well as the internal cavity of the tentacles, and by the partitions which ran from the external wall of the animal toward the centre of that cavity thus filled with water, which is then kept in motion in different currenta, some ascending, others descending, so that there is constantly kept up a circulation of the digested food. The walis of the animal are permeable to this liquid-that portion which is nutritive remains in the walls of the animal, while the water which has been the vehicle for this food is pashed out by the contraction of the animal.
There are two exits for the food, either throagh the moath again, or by the small openings in the tentacles. The water whicb tills the general cavity enters also through the tentacles and the mouth -alternately through one or the other. But as there are muscular fibres similar to the flesh of higher animals which can be elongated by gradual contraction or expansion, this cavity can be alternately ahat, so that by the contraction of the mouth the introduction of water may be allowed or prevented. The contents of the atomach may be kept within the cavity by the contraction of the lower opening of the intestinal cavity, and again the tentacles can contract at their end and so prevent the water from escaping; and while the digested food is moviug with the water within the cavity, with the tentacles thas contracted, nothing escapes -but after the nutritive portion of the food has been absorbed by the walls of the animal, then the water is allowed to escape through its month, as well as the other opening. An agency or influence is undonbtedly exerted upon the surface of the animal by the surrounding water which may be compared to the respiration of animals that live in the water. There is something similar to bronchial respiration in some; of the lower animals, enpecially the Mollusca, where the action of the water acta on the floids in the animals and produces upon them 2 ohange which enables the flaid to become a portion of the living creature. These changes are very complicated and not all fully anderitood.There in mach room for inveatigation with reference to the chaages which the food undergoes in order that it may become a portion of the living animal. What is more wonderfol than what we see every day-a cow grazing and turning the grass into brain, muscles, bone! That is constantly going on; and differest animale prodace the same changes upon common food, with different organs, but in all the same renult. Thas the a ame food is transformed
in one case into the body of the bare; in another into that of the deer; and in another into the body of the elephant. With the ame food these animals not only reproduce, but create, an it were, their bodies, under the influence of the primitive material principle which ia the cause of their existence.

Another system of organs existing in the polypi are the ovarien, hanging in bunches either in the internal cavity or outside on the tentacles. These two forms have been the foundation of the two great divisions of the polypi, namely, the Actinoi de, the name derived from the Greek word for " ray," and the Hydroida, becanae these animala resemble that one which has been called the hydra -a name reminding you of a fearfal animal. Thus these harmless, minate, almost microtcopic animals have received that formidable name.

You seehere (pointing to a diagram) egge forming on theouter side. Some are not isolated as in this case. In many instances the eggs hang in banchea -as you have them here, for inatance, in another diagram.
I then alluded to other differences in polypi, where some were isolated individaals and others combined; the latter badding on one and the same stem, thus forming three large groups of individuals united by their base. It is a pecaliarity of polypi to be fixed on the soil. There are no free swimming animals among them. Some are attached to other bodies at the bottom of the sea. Some are fixed at willor move at will from their location; bat there are none among them who swim freely in the water. In thia respect many of them have sonee likeness to plants, and were indeed long mistaken for plants. Even so late an the middle of the eighteenth century, naturalists quarreled about the vegetable or animal natare of polyps. But it is now fully underatood that they belong to the Animal Kingdom; while, on the other hand, many organizations which belong traly to the vegetable kingdom have been introduced among the polypi, and must of coarse be rejected from that clam and be again classed among the plants. There in, indeed, some difficulty in distinguishing some of the lower types of plants and animala. I have already alluded to one grand distinction between them. The existence of a stomach in a chief characteristic of an animal, and no being shoald be introduced into the Animal Kingdom in which a stomach does not exist. But as there is great difficalty in ascertaining in some of the lower animals whether there is an alimentary cavity or not, we mant take other cbaracteristica by which they can be distinguished; and we have now a very remarka. ble tent by which we can determine whether an organized being is a plant or an animal. In the mode of respirstion we may, by chemical analysis, discover whether an animal or a plant in before as. All animals in respiration assimilate oxygen and reject carbon, while plants assimilate carbon and reject oxygen. There is thus a constant antagonism between the animal and vegetable kingdomar, All animals would die were it not for the breathing of plants, and all plants woald perish did animale cease to rempire. The antagonism is sach that the whole amount of animals living, now consume pre-
cisely the amount of oxygen which plants expel during the night, and by this antagonism between the animal and vegetable kingdoms, the constant and unvarying equilibrium of the atmospheric air is maintained. Now when we want to know whether we have before us a microscopic animal or a microscopic plant.all we have to do is to examine the nature of the gas absorbed or expelled in res. piration.

Another test may be as certain. That test consists in the examination of the egg. The eggs of all animals, without any exception, from the polypi up to the mammalia, are identical. There is not the slightent difference in their structare-in the internal and minute atructure of the eggs of all classes of the Animal Kingdom. There are differences in size bat not in stracture. The egg of a fish is full of granules. In the class represented in this diagram they are about the size of a pin's head. In some fishes the granule. are still more minute. Inside of this yolk there is another little vesicle which is called the ger-
 minative vesicle; and in that we have elther another or aeveral cells of a maller size which are called germinative dots. These cells in a cell, containing granulen of yolk, constitute a characteristic which you will find without exception in all eggs. In a bird's egg, the ahell and white of egg are accessories, bat not necessary to the actual formation of the chick, which is formed from the yolk, and not from the white or any other portion of the
 egg. Now this yolk, or vitellus as it is called, fills the essential portion of the egg, and within that is another vesicle filled with a transparent liquid in which several other similar vesicles swim. This constant and uniform structure of the egg affords a test whereby we can ascertain whether the organized being before us is an animal. The egge may be as easily perceived in the lower animala as in the highest, as they are so transparent that they are readily examined under the microscope. Now these eggs differ entirely from the meeds of plants. Even in the conferva these seeds are filled only with uniform granules and have no intricate minor cells; and now, when these eggs become movable by having the whole surface covered with vibratory cilia, we have only to put them nnder the microscope in order to decide whether we have before us the seed of a plant or the mov. able egg of an animal. (Applavse.)
I will now proceed to demonatrate another class of these animals-the Acalepha, or "nettleakinned."
The name of this class is derived from peculiarition in these animals which I shall immediately explain. Yon have examples of Medusce in these diagrams. They have many relations to the polypi, bat there is one general characteristic which will mtrike you when it is mentioned. The medusm are all free-independent of the soil. They have no point of attachment. They cannot fix themselves upon the soil. They have no means by which they can become attached ; and all have the mouth downward, while all polyps have the mouth upward. In the very position of the animal in the arrounding element wo have one great difference, which is as constant as the most intricate peculiarity of their stracture. There are a few moving animals in which the difference of internal structare between them and the polypi is by no means very apparent; they have not one organ more than wo
have seen among the polypi, only a little complication of the same organs.

In the jelly-fish we have a broad disc, and in that a wide cavity, with a moath in the centre, from which several, sometimes numerous, appendages hang down. This is the simplest structure of the medusm. There the mass of the animal is constantly gelatinous. The bodies of this class are exceedingly soft, so much so that when taken out of the water they almost wholly decompose and disappear. They contain so very little substance that a cart-load of them would not, if dried by evaporation, leave an ounce of hard substauce-of dried membrane. A single leaf of paper would contain as much solid matter as a full cart-load of these animals when dried. They are soliquid that they are transparent-so much so that they are frequently not seen in the water, and would not be perceived at all if it were not for their beautifal colors. They have, indeed, the most beautifal, delicate colors of all the lower animals. Again, a great number of them are phosphorescent. In the night they appear like brilliant lights, and to some of them is owing the phosphorescence of the sea; not to them solely, for the phosphoresceace of the sea is produced by a great number of animals. Very numerous and different species of animals prodace that peculiar, beautiful light that illumes the sea during the night. Some of these animals belong to the articulated typer, others to the medusæ; some are polyps; and perhaps the light is in part owing to physical causes-the decomposition of animal and vegetable matter; and perhaps also to electricity. There is some doubt as to the relative agency of these various causen in producing the phosphorescence of the ocean.

The great difference between the meduser and the polyps is that the alimentary cavity is no longer a simple sac with simple openings. The cavity has branches penetrating into the substance of the animal, so that we have no longer a simple sac opening into the general cavity, but a sac with ramifications. You perceive in this diagram some of these ramifications. They are so delicate that they can hardly be shown without exaggerating the colors. Let meillustrate this peculiarity of the structure of this class of the radiated animals. Let that (diagram) represent the central opening, sometimes anga lar, sometimes pentangalar from that, light appendages extend toward the periphery.
 but soon divide like blood-ves. sels; and thesesacs will sometime divide with namerous tubes, and form as many canals as the most complicated blood-vessel in its divisions. In that way the food, after it has been digested, is carried into the parts. It is no longer in contact with one surface only. It is now carried into the different parts of the animal. It is as if the atomach were at the same time a heart, forcing the digested food into the cavities, an the heart propela the blood into all portions of the body. But here this food, after it has arrived at the periphery, escapes. There are as many ontlets as there are tubes. And again, there arefrom the periphery numerous minute appendages, like tentacles, with an opening at the end, which absorb, pump the water and introdace it into a canal which runs all round the animal. So we have no longer the food introduced into a cavity containing water, bat we have the alimentary canal branching in all directions; and in the extremity of these branchea we have small tubes absorbing water and mixing it with the food. These tentaclen form beartiful appendages in a great many of these animale. They vary very much in different
animals. In some the appendages are longer than the body of the animal itself. In others they are quite ahort. In some they meet regularly and form triangles. In some they are few in number, bat of large size. Bat in all they are hollow, and they absorb water, and also admit the digested food, which ir circulated through these tubes and introduced into this circular caal. The motion of the flaids in not in a uniform direction. Sometimes it is one way, sometimes another. It is an irregolar circulation, which changes ita direction. In some of the higher animala, the heart canses the blood to rush in one direction, and, after it retarns, propels it in another direction, so that in one and the anme animal we have the heart acting in different directions, and we have that singular phenomens in some of the medums. In this respect we have a complication which exists in very few of the polypi. It is round these appendages that the oraries usually hang in large banches. These colored banches are bunches of egga hanging outaide the tentacles which arround the mouth.
In some of these animals, colored specks have been aeen between the tentacles, ugually red, and they have been conjectared, not without probability, to be eyen.
This is about all that is known of the structare of these animals. There are several varieties of them. Some have large gelatinous disce; they are the common jelly-fiah. Others have a large veaicip above the tentacles and compact portion of the animal, which allows them to swim on the surface of the water. Othere have a great many of these vesicles. Others again have vertical series of singalar appendages acting like oars, by which they move very rapidly in the water The locomotion of the firat class, those having a disc, is owing to the expansion and contraction of the disc. The locomotion of the second class is owing to the motion of the tentacles and the contraction of the air vessels ; while that of the third class is owing to those series of vertical appendages.
In their mode of grow th they present most extraordinary phenomena. Not all of them have been stadied, but those which have been examined present these phenomens. The Swedish naturalist, Sars, bas discovered that the egge of the common medusa of the Baltic Sea were movable. Thia might appear almoat incredible, had not repeated subsequent observation eatablished the fact. I shall endesvor to illustrate-the formation of the egg. In an egg of this form the enlerged apper portion begins to grow with four appendagesthese appendages forming a star-like animal. It gradually changes itm form, and ansumes the appearance of the polyp, for which it has sometimes been mistaken. The namber of tentacles increases; as many as sixteen and twenty tentaclea are now seen, with mach change in the general form. Then a considerable change commences. This animal, with all its tentacles at the apper end, begins to contract, transversely, just as it it were premsed in different places; and these contractions increase, so as to form, very noon, several stages one above the other, like a meries of independent caps, only from the contraction of the primitive trank of this polyp-like animal. This internal column, resembling the back-bone, which keeps them together, atill continues to contract so far that the cups soon divide into as many individuals, and become free, movable from that time, and tarn in opposite directions. Before they separate, the margin is fringed-divided in such a manner as to be fringed; and the moment theso divisions are separated here, then the animal tarns the opposite way and we have here a disc with fringes round it, torned in opponite direction. We see a cavity forming here.

We see appendages here formed, and we have very soon a regular medusa! (Applase.) Thas after a series of various formations we have several distinct individuals produced from the single egg.The number of animals thas produced from one egg is sometimes as great as a dozen, and even more.
Bat what is very singular in this process is thisthat the upper portion of the animal does not undergo these changes. The moment the animal divides into there numerous young medusm, this dies off. The apper portion of the stem dies away, and it is only the lower divisions, formed in the manner I have described, which constitate new individuals.

More extraordinary phenomena are observed in another type of the medusm similar to these. In a species little known and not obwerved that I know of on the American shores of the Atlantic, we find a compoand animal-several individaals being attached to one another and swimming freely in the water. They have all the general arrangementa of the meduse. They have been described by numerous naturalists, and two varieties of them have been noticed. Chamismo, the Prussian naturalist, remarked that one variety of these combined animals had alway isolated egga, while the other had eggs in bunches. He was indaced to admit that these tan types were of the same species, being only different utages of the same being. This was regarded an rather inadmissible, until lately a German nataralist named Krohn, in the course of investigations on the coast of Sicily, ancertained distinctly that it was the fact, and that in one and the same species there is a set of isolated individuals having eggs which never separate and form individual groaps of animals, while each individual of these banches lays iaolated eggs, which form free, unconnected individuals. So then we have successive generations which do not resemble each other, and in which the grand-parents are similar to the grandchildren, but the intermediate generation never like that which precedes or follows it! We have in mankind something to remind as of this carions phenomena. We find family likeneases, as they are called, go through two generations, omitting the intermediate. Certainly that is a corresponding fact to this.

These phenomena it is somewhat difficalt to trace, as it is necessary to follow for a long while the same individaal, bat they have been ancertained beyond a doabt, and especially through the care of the Swedish nataralist, Bars. It is aingular, I-may here remark, that a geatleman should be found in a country so poor in interesting natural phenomena ready to devote himself to the minate investigation of these phenomena, and succeed in so eminent a degrae. In some other portions of Europe, on the contrary, where the facilitien of prosecuting such investigations are very remarkable, comparatively little advance has been made in nataral soience.

The naxt class of which I shall mpeak is the Echinodermata.
The internal structare of this class is more complicated than that of the preceding, though it follows the same plan. We have bere alac the orgras arranged as raye round the central cavity. This central cavity contains numerous independent organa. While we had in polyps and medusas the function of digestion and respiration prodaced by one and the same cavity branching within the receas of the body, in this class we have an alimentary cavity forming a stomach and extending sometimes in several circumvolations through the body; and the respiratory function performed by independent appendages. The fluid is set in motion by organs always independent of the alimentary canal as well as respiratory organs, though all in connec-
tion, and in connection similar to what obtains among the medusw.
Many of the facts which I shall add now were not fally ascertained until lately. But recently I had an opportanity of studying the internal stractare of this class while on board a vessel employed in the Coast Survey. I have thus been enabled to observe more attentively the star-fishen, and discover how intimately allied they are to the medusm and polyps. I may here be permitted to remark that, notwithstanding the material which is at hand on the shores of the Atlantic for the study of the whole of the types of radiated animals, there is no work existing on the polypi of the American coast; there is no work in which you can find even a dry catalogue of this species. Though so many beantiful works on the Nataral History of this country, and aspecially of this State, have been produced, it is somewhat surprising that there is no record whatever of the radiated animals. There is no work on the medusm. These three classes of Radiata afford an ample field of investigation, and one which will fully compensate the labor bestowed upon it. It is due to the carme of Trath and Science that the pablic teacher should not only ascertain what is known, but also what is to be done; and here a great deal is to be done, this group having been much more neglected than others of the Animal Kingdom. (Applause.)

The most admirable arrangement is seen in the external covering of the Echinodermata. It will scarcely appear credible that these two specimens are formed of the same hard plates, arranged in the same manner, only of different proportions, so that one presents a sphere-like and the other a starlike appearance. Bat if in the one case the plates were a little elastic, it would be eany to change the form of the star-figh into that of the echinos, and vice versa. After I have shown the stracture of one of these animals, I trust that this statement will not be regarded as at all exaggerated.

You see two openings in such an animal-an upper and a lower-not always opposite each other. I shall begin with the simplest class, before approaching the other. Around this simple opening five large plates are placed so as to leave a space between them, and five smaller plates occupy the interstices. In each of these large platex there is a hole. Through these five holes five tubes open. Through these the eggs escape. The plates of the body are arranged in a meries of very different kindu. Alternately we have a series of plates perforated and a series of plates imperforated. Upon thone plates withont holes we bave large tuberclen, upon which the tentacles or spines are movable. Theme form, as it were, ten vertical ribs from each of the openings to the other. Throngh the holes of one of the seriea little tentacles protrade, having an opening in the end, and which can be retracted and pushed out so as to dilappear or extend even beyond the points of the spines; and by these tentacles the animal can move as well as by the motion of the apines. These platea, which are imperforated, are just opposite to the large plates. Those which are perforated, are intermediate. They all meet at the lower end, where there is another large opening, and this lower opening is the mouth.

The spines are movable, and it is their motion which enables the animal to walk from place to place. In some, the power of locomotion resides in the minate tentacles in the plates.

The food is introduced through the moath, and is crushed between very powerful plates. You find the jaw very complicated. The complication is so great that it woald require a full hour to explain
merely the atructure of this part of the animal.There is scarcely any portion of the organization of the animal creation more complex than the jaw of these animsls. It is formed of almost innumerable hard platen, furnished with teeth, moved by very diatinct mascles, and put in action by a complicated nervous bystem. I will mention merely that these jaws are five in number, and are arranged in such a manner as to correspond with these ten series of plater. One jaw is always before an imperforated plate. These jaws are so powerful that they can crash shellfishes and the hardest bodies. The intentinal tube is a wide tube provided with several appendagen, so as to make it more complicated than in any of the other radiated animals.
But what is more aingular in these animals is the existence of a heart and actoal respiratory organs. These tubes, which can be protruded through these small holes, terminate by a hole, and inside of the shell there is in each of these tabes a considerable vesicle which is filled with water, upon which there is a number of blood-vessels. But here these tubes can be shat, and there is another apparatus for injecting these vesicles in the tabe. I should have mentioned that one of these plates is larger than the others; and there is then a sieve of little holes by which the water can enter into the body; and by another tabe which comes down in that way and reaches to the lower opening, all these minate vesicles can be filled; so that there is an alternate movement of the water from outside and through these tentacles and shell to maintain a current upon the organs which are covered with blood-vessels. Respiration is nothing bot an interchange of air and liquid moved in vessels. Here we have all these conditions in the interior of the echinos, the heart being placed near the intestinal tube.

Still more, we have a complete nervous ring aroond the jaws and from five points of the ring threada arising and proceeding along the imperforated plates so as to reach the apper ridge where they terminate on the five smaller plates which are perforated. In each of these boles we have an eye, so that we have five eyes at the termination of those nerves arising from the ring around the mouth.
There are two principal forms of the echinos. The star-fishes are one of these principal formations, and are by no means so simple in stracture as the polyps. They have a peculiarity not easily explained. The whole body is full of water. We have a similar general cavity as that found in the polyp and jelly-fiab, bat no bole by which the body could be filled. This hole forms the moath, bat the mouth and the intestinal tube do not commanicate with the general cavity of the animal. Again: these perforations through the ahella, by which the tentacles come oat, have no commonication with the internal shell. The question, then, was-How does the shell fill with water 1 No opening was seen. But there are really openings, so minate an to be meen only under a high microscopic power ; and I have been fortanate enough to ascertain that these holes exist. I have even seen the membraneoas tabes which pamp the water and fill the whose cavity of the animal. These are so extremely minute that they cannot be seen by the naked eye until it becomes accustomed to the investigation of them. Then they are just as plaln as any other part of the animai. But they are extremely contractile, and the moment the animal is touched they become retracted and will not be seen for a long time. I have injected these tubes with colored matter; and by keeping the animal in colored flaid, I have demonstrated that there can be no doubt of the fact of
their being the apparatas by which the water entere the animal.

- Notwithstanding all these complications, there is only one plan in these animals. All bave one central cavity, an alimentary canal. This canal is either a singlesac, or it is an alimentary tube complete of itself but with an independent system for respiration and circulation. But the arrangement of the blood-vessels is such that there is the atrongest likeness between it and the arrangements of the circular canal in the medusa. One and the same plan are apparent in all these complicated stractares. The question is, what does such a plan indicate? Have we here only material phenomena, evincing the influence of physical causes in the combination of various organs, so as to form a system more or less complicated? No; we have more than that. We have a saccession of forms which show a progress. We begin with a lower type We pass through more complicated types. We come to tha very complicated form of the echinos. And, though these forms are so complex, we find them in the same type of animals, in the same climate and in the same conditions of life. In all parts of the world-in the most different conditions and in
the most nimilar conditions-in the arctic, the temperate and the tropical regions-we meet these varied classes of the same type, so that the whole amount of external circumetances in which any organized being can exist, are acting on these animals. It wonld be very unreasonable, then, to admit that all these varietios were produced by these external conditions.

Again: Havewe a mere complication of organm in these animals? No. We do not trace only material phenomens. It is not we, who by our inveatigations have mada these creatures to agree on one and the same plan. They exist on one plan; and instead of tracing material phenomens, we actually trace thoughts, and thoughte not ours-but the thoughts of that Mind which created them. I think in this way it can be shown by safficient evidence that there is an Intelligence which planned theas things, and formed and created them on a premeditated plan-a gradnated scheme of atructures from the simplest to the most complicated; \cdot and that each animal was endowed with the power of so resisting the influences to which it is subjected as to retain ite original conformation under the most diverse conditions of climate and circumstance.

LECTURE IV.

The Calcareous Deposits of the Polyps.... Why the Polyps cannot be considered higher than the Acalepha.... The Mollusca-their great number....Recspitulation of the Stractural Characteriatica of the Radiata.... Entirely different arrangement of Organs in the Mollusca.... Softness of the Mollusca....Contractibility.... Nervour Syftam....Alimentary Cavity becomes complicated....The Respiratory Organa....Structure and Ponition of the "Gills".... Organa of Circulation.... Extrhordinery Structure of the Blood-vessele....Tbeory of the Formstion of the Blood and Circulatory Apparatus....Subdivision of the Mollusca,...The Acephala.....Characteristica of this Clasa.....Mode of ascertaining the Type to which Fossil Shells belong.

Ladies and Gfntlemen : Since the delivery of my last Lecture I have received several letters asking questiona relative to theatructure of the Radiata, which I shall be happy to answer as far as in my power:
"Is the carbonate of lime, which forms the coral formstion, eecreted by the polyps from the food upon which they subsist, in a way similar to the bones of other animals?"
"Are not the Polyps a grade higher than the Acalephee, Inasmuch as we have in them the first exhibition of bony etructure, which appearl more perfectly in the Echinodermate, the next higher grade?"

These questions relate to one point-What is the proper value of the hard calcareous matter which is secreted in the polypi? This calcareons matter has not been long investigated. In fact, the first correct work on this subject is to be found in the volume alluded to, forming a part of the Narrative of the Exploring Expedition. In that beantiful work of Mr. Dane, we have for the first time the remult of accarate and patient investigation of this subject. He showed what was not known before, or what at all events was not underatood, that the limestone portions of the polypi form a portion of the animal, and not mere excretory matter, similar to shell. They belong to the body of the animal, and are not a deponit of the exterual parts of it; and in this respect they are really altogether different from the shells of the Mollonca, which are secreted within the skin.

To explain fully this difference, let me enter into mome details relative to the atructare of the skin. The skin in animals is composed of three layers. If we cut through the akin into the body of any animal, we find first a superficial layer composed of cella, very readily seen. Under that is a network of vesmels and nerves, the latter giving to the skin
its sensitiveness-the aensitive portion of the skin. Then we have a third layer: a tissae of threads intricately interwoven in all directions, forming the protective layer. These three different portions have different functions.
The external layer is constantly reproduced by blood-vestels, which deposit a liquid in the vessels already formed and from which the new veanols are constantly formed. When the skin is cat we sometimes see a transparent flaid encape from the cells and accumalate on the surface: and this lymphatic fluid, as it is called, is the medium of the reproduction which in alwaya going on. Now, in the Mollasca, the shell is formed in this layer by anc cessive deposits of limestone, into which I shall not now enter as I shall have occasion to go farther into these details by and by. Bat let me now mention that between the upper or external coat of skin, which is called epidermis, there are layers of limeatone in that way by the eecreting portions of the skin formed of a network of blood-vesseli, 10 that the shell is formed of calcareous matter formed within the skin itself. Not so in the polypa, where the mass of the animal-the walls of the body-secrete within the substance the calcareane portiona. I make here the outline of a polyp, with its tentacles: here is the mouth, here the walle. Now, within the walls, in the mass of the body itself there are little fragments of limestone deposited in an irregalar way, entirely anconnected with each other, which sep arate in several, but in others unite to
 form a porons masa ; and these calcareous particles are sometime formed in such quantite as to form an internal framework: covered w
eof parts of the animal. So you perceive that there is not only in the position, bat also in the mode of deposition of the limestone, a great difference between the polyps and the shells.
Again, this skeleton, or this frame of solid parts within the animal, cannot be considered an identical in different types. The skeleton of the vertebrated animals is not only carbonate oflime, batit is, even chemically speaking, somewhat different. It is a carbonate and a phomphate of lime; and in this respect thereis already a difference; but the difference is still greater when we consider the general arrangement and relative position of the internal skeleton of these animals, and the external skeleton of the hells, or the internal skeleton of the polyps. In the polyps thene soid parts do not protect any essential organ. They are within the walls of the animal, bat the soft surfaces of the se walle are the parts which protect the intentine and form the internal cavity; while the bones themselven protect the large cavitiea of the higher animala, circumacribed to spaces in which the brain and spinal marrow are on one side, and the alimentary canal, the beart and the lungs on the other side, are contained. So that these two systems are by no means to be regarded as identical. They are identical only in one respect. It in true that these bard parts protect the body in general ; but in an essential peint they are different, inammuch as they are formed in a different way, formed by different portions of the animal, and astain different relations to the various internal systems of organs.

Mach remains to be done in the investigation of the corals themselves. The proper organs of secretion of those hard parts in them are not known. It has not yet been ascertained in what way the calcareous matter is secreted from the moft parts.There is, then, here also an ample field for investigation. Unhappily, this investigation will scarcely be attempted on these shores, as there is only, as far an I know, a single apecies of calcareous polypi on the weatern shores of the Atlantic, north of the Galf of Mexico.
The other question-Whether the polyps are not higher than the acalephse?-is answered by itgelf. If the calcareons parts of the polyps have not the same meaning as the analogous parta of other typen, the existence of auch a hard skeleton will of coarse not be a test for the degree of their organization. And again: we have among polyps themselves, some with, and others withoot hard parta, and even the great amount of calcareous mattor which is deposited in many of them will never be a aufficient reason to consider the polyps in any way higher than the acalephas, as the alimentary cavity is a simple asc in polyps, While it is a branched cavity in acalepha, performing at the same time the functions of a digestive tube and circalatory organa.
-We now enter into another field of the Animal Kingdom-into the stady of the Mollusca.

There animals are very numeroun. The namber of species which have been collected at this timeincluding thone only which are provided with ahells, -is perhaps mix thousand, perhaps even as high as seven thonsand; and we may appose that the Whole number existing now,will not fall shert of ten or twelve thousand, if we inclade the soft, naked species as well an those protected by a hard calcareous shell. The number of species which have exinted in former ages-ingeological timen-whose remains we find in a fossil state in the successive metrata which constitute the crust of our globe, is atill greater. It is astonishing what a quantity of fossil shells are found in the different atrata of the crant of our globe- There is scarcely any locality which has been well examined that does not exhibit
almost as many fossil species as we find on any extensive cosst of any nea. Compare, for inntance, thome ahores which have been most inventigatedthe shores of France for instance-where the shelle from the time of Lamarc ap to this period have been so assidnously collected. There the number of species known to exist, when compared with the namber of species, found in one and the same stratam of the tertiary deponits in the neighborhood of Paris, is much smaller. There are scarcely eight handred living shells found in the Mediterra. nean or French shores of the Atlantic Ocean, bat more than twelve hondred fossil shells have been found in that single stratam-in that limentone on which the City of Paris is bailt, and of which such extensive deposits exist in the neighborhood. In that single stratam is found at thia day one-third more fossil shells than live on the whole extent of the French abores! This will show how large the number of fonsil shells mast be, and how large it will turn ont to be, as soon as we have made more extensive researches in the field of fossil shella.

To understand properly the charscter of the Mollasca, it is well perhaps torec apitulate briefly what I have said of the Radiata; as the differences between the two large types is less in the detailg of their organization, than in the mode of the arrangement of their organs. The Radiata have their organs distributed araund the centre. This centre is the mouth, and the moath is tarned either apward. We have the mouth apward in the polypi, downward in the echinodermata. Nowhere have we the mouth on the anterior portion of the body. Among the Radiata there is no anterior extremity which prevails over the sides or posterior extremity. All the raya diverge from the centre and are of equal value, and when we can trace some indicationsof a bi-lateralsymmery it is owing only to slight differences between these rays, and not owing to any general arrangement on the two sides of a longitudinal axis. There is no longitudinal axis proper in the Radiata.

In the Mollasca we have an entirely different arrangement. The month moves toward one end of the animal, and now we have an anterior extremity, though we have not yet a head-not organs of sense placed always round the head. Bat there is at least an anterior extremity,on which the month is situated, and round it there are tentacles by which the food is introduced into the alimentary canal. Thas the anterior extremity is given by the position of the moath, and the two sides by the general arrangement of the viscera. We have not only an anterior extremity but we have a doral region, a right and a left-hand sidea lower and an upper region-and in all the Mollusca those regions can be readily distinguished, though the animal does not always mtard on the lower extremity. There are nome who for their whole lives rest on one side. For instance, the oyster lives constantly lying on the left-hand side; others are attached by the apper extremity and atand the lower extremity upward, and it is only by means of comparison that we can ascertain which is the right and left hand, and by finding where the moath is placed and by examining the relative position of the different internal organn.

The body of the Mollusce is always very soft. Hence theirfame Mol. lasca, which signifies "soft animals." The body is exce tdingly contractile. It can be con tracted so mach that large animals will occu py a very small space
 When contracted. For instance, the animal which

.

forms this shell, which in, ss you perceive, of large size, and ont of which it pushes a large foot on which it walks, when contracted is entirely concealed in the bottom of the cavity. In others there are two shells which cover the sof parts. Sometimes there is bat one shell very much carved on itself; and in other cases forming only a flatdisc, covering only the apper part of the body.

The softness of these animals is very characteristic, and in no other type do we find tissues ao soft as in this class and mo capable of containing a great quantity of water. They continually absorb a certain quantity of water, which penetrates the mass of the body and maintains it in astate of expansion. But when contracting this water, is ex. pressed in a way quite mimilar to the water contained in the sponge when it is squeezed.

The organization of the Mollasca is, in some cases, highly complicated. In others it is as simple almost as in the polypi. The diffarence is the latter case is only in the symmetry. The mouth being in the anterior region, and the nervous system surrounding the anterior extremity of the intestinal canal in a vertical position, while in the Radiata the nervou: syatem is placed horizontally. The nervons system is placed above the intestinal canal,forming a ring around the tabe; with some other ganglia below, from which the nervous threads run into the different organs. From the upper ganglion we have nervoas threads going into the tentacles. Here are threads going to the other organs placed in the cavity of the animal; and here are threads ranning into the mascular fibres which move the animal. A similar structure is found in thome having two valves, only the symmetry is momewhat different. Always the nervous system is composed only of a swelling above and a swelling below the alimentary canal from which the threada are sent to the different organs. That is the general arrangement of the nervons system in all the ollusca; the Malimentary tube passing through the nervous ring, bat the ring having a vertical porition, while in the Radiata it has a horizontal position.

We see the difference here is rather in the position of the organ-in the relation with other parts -than in the structure. This nervous system is ecarcely, any more complicated than the nervons mystem of the star-fish, or echina. Perhaps these ganglia ase somewhat larger and less nomerous; and in the smaller namber is evinced a degree of superiority. We see in the higher animals that certain organs not unique but in pairs, in the lower animals exist in great numbers. In the star-fishes and echina, where we have the firat evidence of eyes, we have an eyo at the end of each ray-as many eyes as there are rays, and as many ganglia au there are rays, and from each a nervous filament running through each ray. Here we have a smallor number of nervous ganglia and they are placed sothat one stand above the other and on the anterior region of the animal ; in that way this ganglia or nervons centre has a greater inflaence upon the whole animal; and it is only owing to the position of that nervoas mass that the anterior region of the animal has become more important and possesses greater vitality; while other organs round the mouth have a higher importance to the functions of life. Wherever the nervous system becomes larger and acquires a preponderance over the other organs, then we see that life acquires greater intensity and that all the important organa are accumulated. It is so with the head of vertebrated snimals which contains all the organs of any high importance,The organs in other parts of the body are justas im. portant to the maintenance of life and the soand condition of the animal, neverthelens they do not
posseas the high value which the organs in the herd of these animals exhibit.

The alimentary cavity is complicated in the Mollusca. It is 1 o longer a simple or branched sac, an it is in the Radiata. But we have in them, behind the mouth, which is usaally surrounded by tentacles, to introduce the food, sometimes two in number, and sometimes four, arranged in pairs, two above. two below, or only two on the sides-behind-the mouth, I was about to say, there is a narrow tube, the cesophagus, and usually a large bag which is the stomach, and the intestine behind. Now this stomach is complicated, inasmach as there is a liver, a glandular organ united with it ; and this liver is sometimes very large, surrounding the whole stomach, and secreting a greeniah dark liquid, known under the name of "bile", which is introduced into the stomach and helps digestion. This bile, the secretion of the liver, is very considerablein all the Mollusce. The liver is sometimes so large as to exceed in size the whole of the animal. It is more than half the weight of the body. Sometimes there are several livers, two three or four, arranged around the stemach and opening directly into it.

The organ of respiration are alwaym distinct, and uniformly present the form of gills. Their position varies very much in the Mollasca, and I will not now enter into the detailr of the arrangement of these respiratory organs, as I shall have occasion to explain the differences which they exhibit in different ty pes of the great group of mollusca. But every where thene gills are present; and When I eay everywhere, I do not exclude that claes which breathe the atmospheric air, which have no langs, notwithstanding they respire by air, bat have gills like other Mollasca, only they are kept in contact with atmonperic air, and not with water. Their gills, then, are not at all aimilar to the langs of higher animals, and are entirely similar to the gilla of other mollasa. What are gilla ? Everywhere a blood-vessel dividen into parallel branches which are brought into contact with the air contained either in the atmosphere or in the surrounding water; thene organn are called "gills." Sometimen these blood vessels are united by a membrane which forms them into appendages of very varied forms. Bometimes they are loose, and then they form tree-like branches apon the back or into the cavity of the animal. The gille may be external, as in many Mollusca-internal as in others.Sometimes they are placed in much a way as to be used at the same time as organs of respiration and of locomotion, acting on the sides of the animal and performing the functions of feet. Sometimes they are entirely concealed in the interior, and the water and air are introdaced by external openings. We see all these differences among the Mollusca, and it is more important to know these differences, as they have been made by mome nataralists the bajis of the classification of this department of tha Animal Kingdom. Cavier'm classification of this great gromp of animals in almost entirely based upon the arrangement of the reapiratory organs.

The organs of circulation are very singular in their arrangement. There is uniformly a heart in the Mollusca. But this heart is placed in a very. singular manner. In some it is placed in the centre of the body. In others it sarrounds the alimentary tabe, wo that the intestine passea right through the heart. In others there are meveral hearta placed in different position in the enimal. Bometimes there is a heart at the bane of the reapiratory organs, and sometimes a central heart to sapply the body. In nome cases the henrt is very near the month, and opens into wide cavitien containing other organe. Nowhere in the circalation more
anequal in different animals than among the mollusca. There are not two families in which the blood in circulated by similar apparatus, and moreover there is no class among the Moliusca where the circulation is continuous. I will give an example: Here is one of the Mollasca, resembling a slug. It has a large foot on which it walks and a flat sbell on ite back, in which the viscera are contained. From the heart in this animal there originates a large blood-vessel running downwards toward the head, and the blood no longer contained in this vessel is diffused into a cavity, so that the tongue and posterior apparatus of the digestive or gans are actually swimming in the cavity full of blood. From the walls of this cavity new tabes arise, which anite into other vessels, and thus form an artery or a vessel running backward and dividing into the body.
In others of these animals we have the bloodvessels opening into the cavity which contains the viscera and surrounding the stomach-surrounding the intestines-and surrounding the liver, and then again absorbed by vessels to be diffused into the lower parts of the animal. So that there are everywhere blood-cavities into which the blood-vensels open, and from which other vessela arise and diffase again the blood into the organs.

The extraordinary structure of the blood-vessels, and of the circulation in the Mollusce. has not been long known. It is the discovery of one of aur most eminent naturalists-the prosent Professor of Natural History in the Jardin des Plantes in Paris. It throws most important light on the mode of circulation and of the organs of circulation in the animal.

How are the blood-vensela and blood formed in animals, and how does circulation begin? In examining the egg of a finh, for example, we first obmerve an accumalation of red corpusclen, which begin to move in different directions, bat without venzela, till, after a certain time, there is a regular movement of some of these blood-corpuscles in a atraight direction ; and then they will extend over the surface of the yolk and form regular atreams, but alwaya without vessels till the vessels are formed around the blood, when regular channels for the circulation arise from the fact that vessels begin to form around the corpuscles, similar to what we see occur after a heavy rain. When the water rans over the street, there is at first no channel for the water ; but after it has ron for aome time in different directions, channels begin to present themselvea, which gradually become deeper and deeper in the softer perts, till the water remains bounded by them. So in a living animal, the cells, being excited by the current of the blood, are gradually formed into chanaels. The young animalis formed entirely of cells. Some of these cella become movable and are moved in different direction and form little streams-little current is different ways, and then after these streams have become regalar the vessels are formed around them. In this way you have a full explanation of those large blood cavitien in the Mollusca; and those unconnected blood-vessela opening into the larger cavities and a heart which is central, bat which does not commanicate with the most distant portions of the body. I think the only way to understand the circulation is to consider it and the blood as arising from the liquefaction, as it were, of the cells which form the animal, which then become movable, andergo a motion in precise and uniform directions, and then are surrounded by cellis which form the voasela, and which form the heart. It is only when tracing all these phenomena in the young animal within the egg that these details can be underntood. But I could not help adverting to the formation of the blood-vessels when mpeaking of a clans in
which the circulation in so unique as it is in the Mollusoa.

Let us now torn our attention to the Mollanca themselves, and aee what form they show in the whole range of the class. All the diagrams on the wall belong to that class, but you will perceive that they present many different forms. Here is an animal resting on a stem. There is one very like a coral. Hera is one which for a long time han anited with the coral, and by many naturalists is ranked as auch. You perceive that it has cells similar to those of the common coral. Here you have animals with two unequal valves. Here, others with two equal valves. Hers one with one central valve earved. Others without any protective valve. All these diversities exist in one and the same class.
The Mollusca have beendivided into three classes. The first class is the Acephala-animals without a head. They really have no head. The anterior and posterior extremities hardly differ. This class of acephalm have the bivalve shells. You have here examples of them; two shells united in the superior margin and movable along the back. But many of them unite to form compound masses.Yet the organization of the individuals thus connected has been ascertained to show the amae structure as that of the bivalveclass. I shall noon enter apon the detaila after I have explained the characteristics of the acephala.

The characteristic of this class is to have two symmetrical regions; a right and a left side, over which hang the rempiratory organs. If I cat across an oyster, I find that the vertical line in longer than the longitudinal diameter. Here is the anterior region of the oyster-here the posterior region : and you perceive that the vertical or perpendicular di-h ameter is greater than the longitudinal diameter.Here we have the interior mass of viscera, the stomach; and here are both aides, the membranem covered with blood-vensels, which are the gills, two on each side. That in the general character of the acephales, to have the gills surrounding the alimentary canal, the liver and other organs which are in the centre of the animal; and over these sometimes only one pair of gills ; over that, again, a skin, which lines the shell all over its internal surface, which has been called "the mantle." This arrangement of parta is the general atructure of bivalves or acephalous molluscs. This "mantle" is sometimes open the whole length of the animal. So it is in the oyster. Perhapa there is no animal among the Mollasca so interesting in its structare as the oyster. [Here the learned Profesnor explained a diagram illastrative of the atracture of the oyster, which, with the other diagrama, will be given hereafter.

Allow me a few minutes beyond the hour, which I see has now expired, in order to finish the deacription of the acephelm. (Applause.)

The shells are not always symmetrical. Sometimes that of the right-hand side is larger than that of the left-hand side, and vice versa. Sometimen the anterior and posterior extremitien are equal, while the two sides are unequal. Sometimes, on the other hand, the two sides are equal and the extremities unequal, and in these differences we have characteristics by which a great namber of these bivalves may be divided into families. It is important in the beginning to give them the same position when we desire to compare-them. For inatance, in nome of them we have one valve convex and the other flat. Many natoralists have conaidersd thene cases to present instances of a dorsal valve and a ventral valve. But when we examine the formation properly, it in easy to perceive that thin is an error, and that what wan called the dornal
valve is nothing more than an exaggeration of this form which we see in the oyster, where one of the valves is deeper than the other and is flat. The only difference between the terrebrachela is that in them the anterior and posterior margins are entirely symmetrical, and only the right-hand and left-hand sides are unequal. It is not so in the oyster. It is important to understand this point.

Let us take a aymmetrical bivalve shell and begin with that. In that the right and left sides are easily known by the positions of botb, by the appendages round the mouth and the symmetry of the valves. There are two equal valves-one on the right, the other on the left. Here is the mouth. Here is the back. Here is the foot by which the animal walks, protrading between the two valven. Here are the tubes by which the water enters.You see that the anterior end of the animal is broader than the posterior, and in every respect it is eaay to see the proper position of auch a shell. In the oyster these anterior and posterior ends are so irregular that we have no means to ascertain which is the anterior and which tho posterior until we open the animal and discover the position of the mouth. There we see that the moath is between the two shell here; that the long diameter is the vertical diameter; that this is the right valve and that the left valve, the valves being anequal, one convex n nd the other flat. But in the terrebrachela we have the right-hand valve convex and the left-hand valve flat, but the auterior and posterior edge cut precisely in the same way-and thua the extremities are so precisely aymmetrical that the blood-vensels which you nee in the anterior and
posterior half are distributed in the same manner, and that thare are two hearts, anterior and posterior, so that if it was not for the position of the mouth and the direction of the alimentary canal, it would be impossible to ascertain that this was the anterior extremity and this the posterior extremity of the animal; this the back and this the foot.

Another important pecaliarity is this: that the mantle lobe which covered the internal portion of the shell leaves a deep impression on the shell, from the action of the muscular fibres by which it is attached to the sholl; and as there ia a long tabe by which the water is introduced between the valves in some of these animals, and which is retracted and introduced between the valves, a large sinus is formed. Thas, on opening a shell, you can ascertain whether the animal to which it belonged had this tube or not, by the absence or appearance of this sinus- the impression of the tube. When the tabe, or "siphon" as it is called, has been long, the impression is considerable; when short, the sinus is not so marked. This difference is important, because in the examination of fossil shells, these impressions constitute the great test by which we ascertain the character of the animal which occapied them. It is in this way that an idea has been formed of the animals which occapied the fossil shells, almost as precise as if the animals themselves were before as. The only difficulty is to compare a sufficient number of types in order to become completely acquainted with all the variationa and relations of those parts, and to trace the zalogy with accuracy and anccess.

LECTURE V.

The Anatomy of the Oyster....Ths Ligament....The Mouth...The Gills....The Stomach, Liver, Ovary and Heart-Position of the Oyster....The Foasil Bivalven....Important considerationa relative to the Symmetry of the Bivalves.... Order of Succesaion....The various Groups of the Acephala....The Shells of comparatively little Importance.... Changes in the Classification of the Mollasca and other Animais.....Tribute to the Labors of Cuvier.
classification of the mollusca.

I..Acephelat............. (Without head.)	
1. Bryozoa Moss animala.) $^{\text {a }}$
2. Tunicata	(Having a coat.)
3. Brachiopoda.	(With foet like arms.)
4. Monomyaria.	(With one muacle.)
5. Dimyaria..	(With two muscles.)
II..GASTEROPODA.	(Feat below the abdomen.)
1. Phlebentera	(With branched intestine.)
2. Trochoidea.	(Trochus-like.)
3, Buccinoidea	(Buccininm-lika.)
I. Pulmonata.	(With aekrial gills.)
. .Cephalopoda.	. (Feet round the head.)
1. Sipiodea	(Squids.)
2. Nautiloidea	(Nautilus-1ike.)
3. Amntonitidea	. (Ammonites-like.)

Ladies and Gentlemen : After havinggiven a general outline of the characteristics of Mollasca in the last Lectare, I proceeded to illastrate the peculi. arities of the first class of that group called acepha189. Then having entered into as many details as possible with regard to their atracture, I alladed to the different groups which belong to that class, but as perhaps many or some of this audience mav wish to know how these facts are ascertained, I have brought here some of these animals in order to demonstrate in them the pecaliarities of their organization. For, let me remind you that the objects in Nature are not seen as you see them delineated in the dingrams. Io the diagrams the objects mast be represented of larger size than nataral,
and in strong outlines. Things are not so easily geen in Nature, and therefore I wish to show you in what manner we must proceed in order to see for ourselves the objects in natare, and how we are able to proceed in making new observations and comparing the types not yet understood.

I have thus taken for example the oyster, an it is the most common of this order of animals. I have been told that there was some misunderstanding in the minds of some of my auditors, when I explained the difference between the oynter and the common bivalve shells. The misunderstanding was with reapect to the ahell which is concave, and arose from not attending to the manner in which the shells were held in the hand when demonstrating them. The two valves are united at one end by what is called the ligament. It is an elastic substance, which contracta when the muncular power of the animal which closes the valve is relaxed. In order to open an eyster, particalarly for anatomical investigation, it is only necessary to pass a knife between the valves on the back, mear the projecting portion, where the two valves are united, so that the strong muscular portion of the animal, and which passes across the whole body and fixes itself to the valve. be divided. You see this dark spot in the centre of the valve. Here is the muscular portion, tough like meat; and the fibres of this part of the animal are transverse, running from one valve to the other. Now after the valve is re-
moved in ach a manner-it is not much matter what valve is removed, only perhaps it is more convenient to allow the animal to remain in the deep valve, which retains the water-you see at once the animal in its natural position. Here you have this muscular portion, which is the toughest part of the animal, and then askin which runs all around the shell. This skin which lines the whole inside of the valve, and which can be upheld very easily, is attached to the muscle, and runs all round the shell to the margin. If it appears now not to Cover entirely the surfice of the shell, it is owing to the contraction of the fibres which are in this membrane. The margin of the membrane itselt has a very complicated structure. There are fringes, sometimes most beautifal and of very elegant color, in the different species of clams and bivalve ohells and when you remove this portion of the shell, which is called the "mantle," you have another membrane quite similar to that, which is situated transversely. This is the gill. There is another inside-a second one, so that there are two lobes of the gill on one side; and above that two long tentacles, which are placed here above the mouth. On the other gide we have the same stracture. Now the mouth is here on this upper portion of the shell. All that may be more easily seen when you keep the whole animal in water, as then, with a brush or pencil, you can elevate the one above the other, and examine their beautifal structure.
In this upper portion of the animal is the stomach, a large cavity surrounded by a dark brown colored liver, which forms the softest part of the oy解er. Aroand the liver is the ovary. The eggs are so minute as not to be perceptible to the naked eye, but are readily seen under the microscope. The inteatinal tube, which beging here between the tentacles, at the anterior portion of the body, turns twice between the liver and the ovary, and then passes through the upper region, in which we wee the heart of the oyster. The intestinal canal does not pass through the beart of the oyster as in other animals, which I shall demonstrate immediately. What is peculiar to the oyster is that the "mantle" is open all round. There is no siphon, but the water, as often as the shell openis, can reach immediately the whole surface of the gill-the food can immediately reach the mouth, so that the animal has no need of a tube which could be elongated and protruded between the valves in order to ab norb the murrounding water.

You see that the position of the mouth indicates, without any doubt, that this is the anterior edge of the oyster; and this the superior; this the interior mide; and this the posterior. As I have remarked the animal reste forever on the deep valve; so that when examining an oyster anatomically, in order to compare it with other shells, we must put it in a position different from that it used to have in nature. But this is the case with many other animals. Among the water-insects, for instance, there are many which constantly swim with the feet upward, but nobody when comparing them with others would think it proper to compare them in that reversed position. We must in these cases bring the animal into the natural position of the greatest number of animals in order to come to a right understanding of the correspondence between the parts. So it is with the common hard clam. Thus the two valves are precisely identical in shape But after having removed ons of them you see a great difference in the stracture of the animal. There are two muscular bundles uniting the two valves; one on the anterior and the other in the posterior portion of the animal, so that the two valves are shut by two sets of muscular fibres, and not by a central set as in the oyster. And these
two sets of muscles are placed one on the anterior and the other on the posterior end of the animal. Those two muscles act, however, in the same manner as the single muscle in the oyster. The mantle here surrounds the shell precisely in the same way as in the oyster, but it is notopen all around. Here, about two-thirds backward, the mantle unitgs from the two sides. It is open only on the anterior ridge, s that the water can enter either between the mantle lohes or through the hole which is formed by the junction of the two portions of the mantle.

If, as I have done here, you remove the mantie, you see similar flat membranes, which are the gills. They are so collapsed in this animal that I cannot show them. They should becovered with water, and those who wish to aee their structure may remain after the Lecture, and I shall pat the auimal in water and demonstrate these membranes. There is a considerable muscular mass, underneath which is the mascle or foot by which the animal walks. This foot they protrade between the valves, and by means of it fix themselves on the sand or stones and creep along by guccessive contractions and expansions of their body. In the same way as in the oyster, we have here the mouth surrounded by tentacles. The liver is above, and of a brownish color, as in the oyster. Then we bave the heart here, between the gills, and the intestinal cavity, and the alimentary canal which passes through the centre of the heart. The beating of the heart can be seen for a long time after you open the valves of the oyster. It beats seven or eight times during a minute. In the hard clams the pulsations are almost the same in frequency. When contracted, the beart is of very small size-when expanded, it is three times as large. This operation of the heart may be very easily seen if you put the animal after you open it in the water, so that all the parts expand. Here the two valves are symmetrical, and the anterior extremity differs from the posterior. I bave already alluded to this fact, but I want to show one thing more about them, as it is important in order to understand the gradations among the bivalves; and to understand the reason why so much importance is put upon the question how the animal stands or lies in its natural position?

We have seen that some of the distinguishing characteristics of the Mollusca are, to be symmetrical, to bave a longitudinal axis and an anterior extremity at which the mouth is situated. But what is singular, these animals in their organization do not yet stand so high as to assame a constant position of the sides of the body.

The anterior extremity is constantly marked as the anterior, the prevailing portion of the animal; but the sides of the animal, the posterior extremities are sometimes lying on the right or on the left, and sometimes even aplifted in s very irregular way:

Now, here wa have utivulve whis to symmetrical shells. Here is the ligament uniting the two valves, and here some tubercles on the edge of the valve which are usually but incorrectly called teeth. They are by no means teeth. They are merely serratures or dentations. Here is the margin of the shell by which the two valves unite more strongly ; this portion of the shell has been called the hinge.

Now this being the anterior extremity where the moath is placed, this will be the posterior extremity, and we will have an animal walking with the aid of its feet in an upright position, the mouth forward, the feet downward, the right and left hand in an equilibriam on the right and left hand side and the back upward-the posterior being backward. But in the oyster, when the two parts are compared with one another, in such an animal we will find that no longer is this ponition maintained, but the animal through life liem flat on one side, from the beginning. The young oyster lies on one aide of the egg; beging to grow in that position and never comes to have the anterior oxtremity forward and the aides in equal position. One side, the left, remains below, and the right in the form of a cover upward, resting apon the lower ide.
Now, in the oyster, the anterior and posterior margins of the animal are not equal; nor are the right and the left valves equal. Here we have inequalities between the two valves, and these inequalitios are very great-not only are the two valves very unequal, bat you see the anterior edge carried forward-the posterior edge is emarginate. Now, we have other bivalves where one valve in very deep and the other flat; but where the extremitios are identical. They are called the Brachiopode. It is very important to ascertain these facts, because they point to a most extraordinary circumatance-it is this : that in shells found in whata forming the crust of our earth, we have none which have the two valves unequal. There is not one bivalve shell with equal valves in any of the ancient atrata. There was not one of the ancient bivalves which had this bilateral symmetry in its sbells. All belonged to that class where the two sides could not yet be equalized and stand upright, and of course we must consider them as of a lower grade than those where the nymmetry is entirely perfect.

There is even something more. We have not only the valves unequal, but the anterior and posterior extremities unequal. Though these valves are still unequal, there is still an approach to a dif. ference between the anterior and poaterior extremities. The anterior extremaity carves forward, though the posterior does not yet extend backward. But the fact that there begins to be an equality shows that these stand above those where the anterior and posterior extremities are precisely identical.Now again, those which are terrebrachela, which have the anterior and posterior ends precisely identical and the ralves anequal, are the oldest. They fill the strata below the coal, and in the coal. We have not yet any of those which have unequal valves, with unequal anterior and posterior ends before we have passed the epoch of the coal. So we see a gradation of the animals in each seriea, corresponding precisely with the order of succesrion of animals in time. Thus the great importance of understanding these facts, which at first appear to be rather insignificant. But, you see, when I attempted to show that there was a difference in the actaal position of the animal in water, how it stood, or lay, I expressed the law of succession of types, the law of gradation of organization from the earliest appearance of organic life up to the present time. Of coarne, theoldest types once introduced have not been allowed to die out. We have in a living state several brachiopoda, but very few, perhaps onefiftieth of the whole number, of the acephalm. We have of these bivalves a great number, but they begin about the middle age of the bistory of our earth, and the namber is about equal to the number of types now living. Now the symmetrical bivalves are the mont numerous living in our dayn, and those which
occur only in the upper atrata of the crant of our globe, which begin in the last time, as it were, the last historical and geological periods. Of course there are some fow species which ran through a greater range of geolugical time. I give oaly a general outline of this succession, in order to show the importance of this thing.
Perhapa it would be more attractive to enter into details of the mode of living of these animale, their uses. habita and so forth; bat these things may bo found in almost every text-book, while anatomical details and these more general bearings of the structure, with geological phenomena, are scattered in isolated papers, and some of these views have only been known for a short time, so that perhaps it in more advisable to atick to this point of view rather than what is usually called the history of theare animal. (Applause.) It will of course be perceived that this difference between the bivalves in less important than has generally been considered. Whether the mantle be united with the whole length of the animal, and whether it be opened for a greater portion is of less importance than mang conchologists have thought.

And again, whether such an animal has a hard shell or not is of trifling importance. We have, in fact, a great number of animals, quite similar in their structure with the bivalve shells, which have no shells at all-and bave only a membraneous covering, and it is according to this difference that the class of acephelm has been divided into the following groups:

First, the bryosoa. These resemble the polypi in size. In these the anterior end of the animal is surrounded by a circle of tentacles, and these have cilia all round, by which they can introdace the water. Within this membraneous covering of the animal, is a structare quite similar to the shell of the oyster. Sometimes members of this groap have calcareons stems like the coral.
Next we have the Tunicata. They have merely the opening for the introduction of the water to the gills and the mouth. It is like an oyster without shells, where the skin is entirely united the whole length of the animal :

Then there is the Brachiopoda, with the valves unequal, bat the anterior and ponterior extremities symmetrical. Here is the hole through which these animals protrude a ligament which is used as the means of attachment. These animals constantly lie upon the flat valve attached by thim ligament which passes through a hole in the larger valve. It is this type which is the most common, and in fact the only one, found in ancient atrate. All the limeatone and coal strata in the United States contains
great number of these bivalves which are very well known to conchologirta:

Here we have the type of the oyater-the Monomyaria. These have unequal valves and are alao unequal in the anterior and ponterior sides, and have, as their name imports, a single muacle running between the valves.
The last group is the Dimyaria.
I heve taken up this view of the subject in order to impresan the audience with the importance of anatomical investigation with reference to ancceanive types during geological epochs. It shows that there is a plan successively realized in Nature; and that the types now in existence were in view at the beginning. Such a aeries cannot be realized, unleas at the beginning, the termination of the plan wal already sketched out. If it were otherwise, then it would be precisely like one sitting down to write a book without having formed his plan. If he does not know where he is to go, how can he ever come to an end? (Applasue.)

We next come to the class of Gasteropoda, the name being derived from the large muscular disc by which the animala creep. Here it is a flat disc of muscular fibres which contract successively and so move the animal. What is very singular is that some of these animals are able to walk against the air when swimming at the surface of the water.It is necessary to explain that in order to make it anderstood:

Let this bo a waier-basiu, aud tuo sevel of the water above. We have here the premsure of the atmosphere upon the water. Let now a fresh-water mollasc of this class be placed at the bottom of the vemsel in this position. It will rise to the surface by expansion. It will diminish its. own weight somuch that the animal will rise to the surface. How is that possible? The animel ainks because it is heavier than water. Butits weight is sonearly equal to that of the water that the moment it assumes a larger size, by dilation, it displaces a greater quantity of water and becomes therefore comparatively lighter than the fluid, and by this process it slowly comes to the surface of the water. The moment it contracts it of course again ainks. When at the surface of the water the feet will be apward, and by the contraction of the feet the pressure of the air upon the water is a anfficient resistance for this animal to walk along on the aurface of the water, and any one may have the pleasure of seeing this by observing the motions of any of this species so common in all eut fresh-water ponds. Nor is the motion of this animal very slow. Ihave seen aome not more than half an jnch in length walk a foot in this way in a minute. This shows that the renistance must be considerable.

All the ganteropods have that muscular diec at the lower portion of the animal, and have been no called because the disc is below the visceral cavity or abdomen.
Here I take occasion to remark that many improper names have beengive to animals of these lower groups, because the animals themselves have not been sufficiently understood. Still it is perhaps advisable to retain the names, as if the mode of classification were to be changed to meet every fresh accession to our knowledge, the memory would be embarrassed and endless confusion be produced.

Most of the gasteropoda have the body covered with shells; but a great number of tham are naked. Here are some very beautiful from the variety of their colors. The aize and thicknens of the shell vary very much. In some the shell is so minate that it covers only a small portion of the animal. In others the shell is entirely concealed in the skin, and is seen only when the alin is cut open. The shell cannot be considered am a very important part of the amimal. There are almont as many of the Mollusca destitute of ahella as there are ponsensed of them. Again: all those without shells had them when young. If the ahell were of as great importance as it is generally deemed by conchologists we would not see so many of these animals naked. Though very beautiful and diversified, the shells, then, are of comparatively little importance.

Yet the shelle after all are not without their value in the stady of Natural History, for it is by means of them that we can stady the Mollasca of ancient geological timen. In a fossil atate there have been found a great many of these univalve shells. Buts we do not know how many or what sort of naked shells existed in those epochs aimultaneously with the others. It is only from those which had a hard coat that we can form an idea of the gasteropoda of ancient times.
The shell of this class is often a single flat disc without any circumvolations. In that case it is formed of saccessive layers, growing larger and larger, and forming concentric lines as you weo here. The mode of deposition of this shell is in this way:

First above the animal there is a small calcareous disc. Then, as it grows larger, the mantle secretes another layer, a larger lay or, and another, and another, each still larger, and so the shell grows in proportion as the animal grows. Now in several this disc is flat. In others it is more or less conical. Here is the beginning of a cavity into which the animal can retreat. In some it is even a deep cone. In some the cone is so high as to be like a cylindricaltube. But usually this tube is rolled up, and that in a very pecaliar manner. Sometimes in rolling it will form a few circamvolutions, and you have an apex.

In some the circamvolations are very numerous, and sacceed each other in such a way as to form a high spire, and you easily understand that that is a mere tube rolled in a mire. Bumetimes the tabe thas rolled turns to the right-sometimes to the left. But what is remarkable, all the individuals of a species which is designed to be rolled up to the right are turned the same way, and perhaps of thousands and tens of thousanda you will not find more than one reversed. Thene reversed individuals are highly prized by collectors of shellin. They are extremely rare. Among the common unails we find perhaps more of these reversed shells than in any other class. What may be the cause of this constant rolling in one and the same direction is not known. It beging in the egg.
The opening in the shell is generally circular.In some cases it is oblong. In some it has a notch, and through that there pasmes a membrancous tube, through which the water is introduced and reaches the respiratory organs. Here is a case in which this prolongation forma a kind of siphon, protecting the membraneous tube. An animal with such a tube can breathe without moving its body. Those which have a circular opening are obliged to come ont when they breathe. Sometimes the membraneous tabe coming out of this notch is very long, as lung as the shell itself, and forma a kind of horn, rising above the animal. Many of this clase become blind when they are fall grown.

The mouth is uazally surrounded by the tentacles and ia at the anterior part of the head. But sometimea there is a proboscis, a long tube, at the ead of which we have the mouth.
In some, on the contrary, the mouth is very short, and in such the proboncis protrades. In this respect there is a great variety, as there is also in the form and shape of the foot and mantle. In some the foot is much bruader than the shell, so that when you look on the animal from above, the whell does not seem to be more than half the size of the foot. In other cases the foot is so large that the shell and head of the animal constitate the malleat portion. In this reapect great diversity exiats.

Again, in some the mantle is so broad that it will cover a portion of the shell by folding itself back. ward, that concealing the greatest portion of the
shell, and we have cases where the foot is of an amazing size when compared with the size of the animal. All these differencen are imporsant, as it is owing to some of them that concholog sts heve divided the gasteropoda into several classen.

One is thut class called Phlebentera, entirely naked, and peculiar for the atructure of the intestinal canal. Their name indicates that peculiarity. The alimentary canal forms a kind of circulation, and in this respect this family does not stand much higher than some of the medusæ, but they differ in the respect that the alimentary canal ham a longitudinal axia. They have, all of them, external gills, nometimes most beantifal, forming banches of bloodvessels hanging outside, which are used as oars and constitate the means of locomotion. The modes of locomotion are either by the feet creeping along or by the gilla in a wimming.

There is another group rather interesting, which containg animals of so greatly varied appearance, that to one accustomed to combine animala according to their general appearance, it seems unnatural to clasaify them in one family; but they have been no clasaified by so high an arthority in Nataral History that no one has dared to alter the classification. A Swedish Naturalist has proposed a modification of the classification of Cavier, and indeed it is quite reasonable to sappose that as the investigation of Natural History proceeds, and fresh discoveries are made, modifications of clasaification will become necensary.Nor does it in the leant reflect upon the exalted character of the great Naturalist I have named, to whom the science owes so much, that these changes should be deemed necesaary. It has perhaps been owing to bis immortal work that ecientific men of our day have been able to improve the methods of our earlier naturalista.

LECTURE VI.

Remarks Explanatory of the Lecturers Views with regard to the Saccession of Animals in Geological Timea.... Bis Views entirely different from those advanced in the "Vestiges of Creation".... Character of that Work.... Classification of the Gaste ropoda not Natural....The Trochoidæ...The Pulmonata.....The "Cuttle-Fish"....Intereating Peculiarities in the Organization of thesẹ Animals.....Fossil Shells.

Ladies and Gentlemen:-Several questions having been put to me with respect to the views which I entertain in regard to the development of organic life, and some observations having been made with respect to the tendencien of the facts presented in my Lectures, I deem it necesaary to explain what I understand, in reference to the acacession and development of organic life.

These words are constantly used and sometimes in very different senses, so that there is infinite misunderstanding among those who use the bame words and mean very different things by them.

When we speak of what comea later we of course have reference ${ }^{r}$ what comes before. We will take for illustratica ine chick. From the time when the egg is laid to the period when the ma-
ture chick ia hatched, a succession of changen take place. This epoch between the formation of the chick and its fall growth is called its development, and the changes which such an animal undergoes during this time are its metamorphoses. We have often limited the meaning of metamorphoses to the changes which we perceive in the butterflyin the caterpillar, where these changes are interrapted and are very striking. Every body knows that a batterfly is formed from a caterpillar out of an egg. The caterpillar, or worm-like animal, after it has grown to a certain size undergoes a change-it assumes a new form, that of the chrysalis. It is motionless and so remairs for a certain time, till out of this comes a living butterfy with all its brightness and vivacity of life. Now
these changes have uscally been oulled metamorphosen, although not so atriking, nor interrupted in mach a manner an to form diatinct ages in the life of the animal. They pass from one to another, and the early atate of the chick, for inatance, in so disaimilar to the fall-grown chicken that noone recognizes them if they have a chance to compare them. Bat if we can trace all the intermediate atages wo find that they are coanected in sach a manner that there in no interraption to the succession of these ohangea-and thua we do not in that case usually apent of metamorphosir bat of development, and mach a development is almo called the progrens of an animal during the different atages of the egg. In a metaphoric manner we are alao accustomed to speak of metamorphoses in the Animal Kingdom through different agen of geologioal time. Bverybody knows that the earliest Geology han been made wo clear that I apppose all know that the strata which form the crust of our globe contain a great numbor of fonsil remains-remains of fosnil beinga in all clanes of the Animal Kingdom-and when tracing the whole nacceanion of thens animala we find that the moat ancient atrata-thoas which form the lower beds of this crust of the earth-are different from those which are found in the intermediate bedn, and which differ again from thone found in the uppermoat beds.

Now in this anccession of strate and of animala through the whole range of geological epochn, we have what in considered a progress. Wo find that the types in all the lower beds resemble the lower typea of the now living animale. For inatance, I have mentioned that the Brachiopoda among the Mollurea are the most ancient acephala. We find among the vertebrated animala that fizhes only are found in the lower bed. There are no reptiles, no birds, no mammalia, nor any of the higher clamen of the Animal Kingdom. And here, again, we may speak of a progrens in the succession of types. We can mpeak, almo, of a metamorphosis in the Animal Kingdom, but not in the aamesense in which we - peak of the metamorphosis of an animal ; because, when we have a butterfly arising from a caterpillar, then we have one and the same animal continually living withoat interraption, and passing through successive changes ; while, when we speak of the metamorphosen of the Animal Kingdom of the different clanses-when we apeak, for instance, of the metamorphosis of the clans of Acslepbs, and conaider the Brachiopoda, Monomy aria and Dimyaria as different stages of this metamorphonis, of course we would have here a nucceasion of differont typen, different animals, unconnected mate-rielly-not the same living beings undergoing these changea, but 2 number of distinct individuals unconnected with each other, not derived from each other. Neverthelean, there is in their ancceasion a great analogy-a atriking analogy, with the changes, the progreme, the development observed in one and the same individual while growing from the egg to the fall nize; therefore, what we call metamorphoain, progreas, development, in one senme, ia entirely different from that which we call by the ame name in another case. In the succession of the changes of an individual, we have really a progreas in one thing ; but we have in the other caue a progresm of the plan-and a progress on a plan arising in a succession of species which do not descend from each other-which have never been derived from each other, as two different individual of one and the same species are derived from each other through succensive generations.

Therefore we should never mistake these two things. In the one cane we have individual sac. centions of changes-in the other cale we have a plan which is auccessively modifed and where the
progress is introduced by a series of mpecien undergoing change: independent from each other ; and in that view, in such a progress, such a gradation only, in the plan, we recognize the mode in which this succesmion so introduced proceeds in different apoch.
I make these observations in reference to some remarks made and queations which agree with certain philomophical views entertained in some quarters. Now, I have not to teach Natural Philosophy, but to give a aketch of Natural History-of the Animal Kingdom; but an a knowledge of the Animal Kingdom has constantly a bearing on philosophical questions, of course you cannot evoid reference to them. But I would only make this distinction, that in the case of the metamorphosen of individuals we have a series of phenomena ariaing from the fact, that the apecies han been called into exiatence with the properties of undergoing successively thene changen. But with the progreas of apeciea, as we find them in different geological atrata, the question in : can we find in Natare external canses which will produce theas changes? and, again, can we refer these succensive appearances of different typen to the infiaencen of external canses 1 I say no; because, since Man han stadied Nature he has never seen any specien modified under external influences. The mostancient monament whone mummies have been atudied, showr animals quite identical with those who live in the aame country now; therefore we see, that an far as we can reach, the species which exist now have had the same characteristics which they have at this present day; and, therefore, it would be illogical to soppose that what does not occar for so long an amount of time has been the cause of all the virietios which we see in Natare. And again, the fact to which I alluded in the last Lecture, that mach a vast variety of animals, living in the same circumatancen, in the same locelity, and again animala of the very ame types as we have in the different geological epochs, nhown evidently that these external circumstances are not the product-have not been made by exteraal influences-but have been arranged with the plan which was formed at the beginning, when the world and the organic beingm were called into existence with the end of introducing Man. (Applanse.)
Theae views-to which Ishall recur when I come to speak of the position of Man in Natare, and of bis relations to the Animal Kingdom-disagree ontirely with the views, and have not the slightent alliance with the views of a work which ia very mach apoken of, but which I consider ontirely was. worthy of notice by any serious aceientific man-becarse it is made up of old-fashioned views which bave been brought before the notice of the pablic for half a century, by the French school, and are sapported only by antiquated easertions, and by no means by facts acientifically ancertained. It must be owing to some particular circumstance that thin work has been so much noticed, because really it is not worthy a critical examination by a serions acientific man.

Now, after this too tedions explanation, let mo come back to my proper anbject, and I beg to be allowed to go on regularly with the abject, an queations are frequently submitted in reference to Lectures already delivered, which really are not relevant or pertinent to the present object of our investigations. In the proper place I should heve been led to speak of the point which have been the sabject of this explanation, and the remark just now made would with more propriety have been introdaced at the close of the Course, had I not been asked so often to give my views in rels tion to there questions. (Applause.)

I remarked that the gasteropoda are not properly classified. Their stracture is generally well known, but the details of the different groups have not been sufficiently ascertained for the purposes of a strictly natural classification. The gills, which have been made the principle of clansification, vary so mach, and the variations are of so little importance that I do not suppose a natural classification
 can be educed on that principle. You rememher I mentioned the Phlebentera as the first group. The alimentary canal is distributed in them in a manner similar ro blood-vessels, and difuses the product of diestion throagh the body, aud even in the gills. You have here this canal, which is a ramification of the alimentary tube, and you see here how a vessel, as it were, runs in the branchi, which is nothing more than a duct arising from the alimentary canal, and performs fanctiong nimilar to a blood-vesael.
The next gronp is the Trochoida, according to Cavier. This group contains the only species provided with shells. There is a circular opening in the shell, without the notch, and the animal is quite similar to thone which have a notch; and again, quite similar also to nome of the naked animals. To thone familiar with the structure of Mollasca it will be obvious that there is acarcely any difference between this group and several of the other classes. The only difference appears to be that a portion of the animal is in one case covered with shell, and in the other it is naked. I am astisfied, then, that the distinction is not natural, but that this group should contain all the naked mollosca, which have the same structare. The difference between those which have and those which have not the notch is of no value at all. I will quote an example: The common limpet has no notch, bat there is an opening on the side, for the introdaction of the water, as large as on any of thome which have a notch, and the animal can breathe without coming out of its whell jast as well as those which have this long membraneous tabe coming out of their notch. It forms a group entirely different from all these. The classification of the gasteropoda, then. is not at all natural. Perhaps this may offer an inducement to some young naturalist to begin the stady of this class of animale, which are so namerous along these chores, and some ty pes of them so large that an opportunity is afforded for their examination such as is not to be met with on any of the Ruropean coasts.
I have yet to speak of two additional groups of the gasteropoda; and first of the Pulmonata, or those provided with mo-called lunga. The alugsthe nails, belong to that group. They form undoabtedly a natural group. Though they have an organ of breathing similar to the gills of the other Mollusca, it is peculiar in thia respect that the air which is broaght in contact with the blood-vessel is not mixed up with water. Theme animals breathe the atmonpheric air and not the small quantity of air contained in all water. They are well-known under the name of land and fresh-water shells.

I would here mention - peculiarity in the rempi'atory stracture of these mimale which is worthy of notice. In this proective portion of the thell we have a large avity opening outside if an oblong hole. The whole of this cavity is
covered with blood-vesseln, parallel to each other but connected by transverse vessels, and forming a kind of net work all over the cavity, so that the air which is introduced into this cavity at once is brought in contact with a great many blood veasels. The beart is near the base of this cavity, so that from there the blood is carried directly to the respiratory organs. The only difference, then, between this organ and the gills of the common Nollusca is that the blood-vessels are united with the vessels of the cavity, and do not form a tube-like free appendage hanging in the water.

The number of species in this group is very conaiderable. There are as many living in the freah water as there are upon the dry land; but usually they seek moist corners when they conceal themselves, along fences, or between the roota of trees in wet localities. They are very voracious and conaume a great quantity of carrion, and are thus uaefulin many reapecte, though in otherrespects they are quite the reverse, being often very dostructive in our gardens.

Another group is that of the Terrepade, not mentioned in my diagram, because 1 consider the classification as little natural as the others. It has, indeed, been shown by a Russian nataraliat that they bave such an affinity with so many other groups that they should be divided and placed among the different families. What was considered the common characteristic was a kind of membraneons appendage on the iden of the head by which they swim; but this is not formed in all by the same part. In some it is a dilatation of the body, in others of the anterior ridge of the head; and therefore you see in this case a clanaification of animals in one group from an external likeneas in one respect, which is not owing to an uniformity of structure.

I now pass on to the examiation of the Cephalopoda. The diagrams present anmerous itiastrations of this class. Here are some without an external sbell. Here is one apparently onked, which has an internal shell. The mont striking exteronl feature is that the head, in more distinct than in any other nollusca. There is a contracion about the anterior ridge where wesee iwo diatinct eyes. The ponterior part of the body is in the form of a sac. Around the head we have membraneous appendages which have been called arms or feet, and on whose aurface you see numerous suckers, by which these animala seize their prey and convey it to their mouth, which is in the centre of the tentaclea. Bome of the cephalopoda have only eight of theae tentaclea and feet.
Here you have eight of the same size; and two mach larger, of different form, with a cylindrical base and flat extremity. Some are even provided with hook in this more elongated form, by which they seize their prey more vigorously. In this species the arms are very mamerous and they have appendages like numerous tentacles, forming bunches, which are arranged around the mouth in a similar manner as the foar tentacles in the other species.

In their internal organization they agree in this respect-all are provided with large gills placed on thesides of the animal; and at the base of theso gills we see two venous hearts and one which is colored in blue and another in red. So that there are three hearts in tbese animals. But when we here speak of several hearts we must understand what we mean. These meveral hearts are little
more than dilatations of the tabes which carry the blood. They are large sinuses in the blood-vessela and not muscular hearts like the hearts of higher animals. The blood reaches the heart from the two large-lobed sacs situated at the base of the gills, which are coosidered as hearts by some naturalists. They force the blood into the gills, where it is brought in contact with the extensive surface of water, and then it is changed into arterial blood and is again appropriated for the functions of blood in the living animal. It then comes again into the heart proper, which propels it into all parts of the body.

In the diagrams the blood-vessels are colored as in the higher animals. But it is not so in Nature. In these animals the blood is transparent; and it is only for the sake of illustration that the coloring has been here employed.

Near the stomach, between that organ and the liver, these animals have a little gland which aocretes a dark-colored fluid of a very dense consistence, wbich is used in the manufacture of the "China ink." All the cephalopods have their sac filled with this black or rather brown substance in great abundance, and it is so tenacious that in all the fossil cephalopoda, which are very numerous, those ink-bags have been found in the fossil state, fall of fossil ink-and this fossil ink is so well preserved that when prepared it has been ased in the name manner as the China ink made from the recent cuttle-fish. I have repeatedly seen forsils drawn with the China ink furnished by these shells existing for thousands and thousands of yeara in the strata in which the greatest number of these animals is found.
I have just mentioned that in this group we have some without a ahell, some with an internal ahell, and some with an external shell. This clearly shows how little value can be placed in the existence and possession of shells, and how erroneous would be claasification resting only on that principle.
In the form of the shell this group presents a marked difference from the gasteropuda. In both types the shell is rolled up, but in the gasteropoda the animal moves sideways when rolling up, and thus in the snail you have the right hand side turning on the left hand side. I will illustrate this by a diagrams:

In the cephalopoda the shell is rolled up in a very different manner. You see here the back outside and the lower reaion below and the right and left
 liand side are symmetrical. So that the cephalopoda which colls up to form its shell, rolls ap head forward and back outinde, while the gasteropoda rolls in a different manner.Again, in the gasteropoda the interior of the shell is completely occapied by the animal when it is contracted.Vot so in the cephalopoda, or at least in most of them. There is onewhich maker an exception. The nautilus proper is divided into numerous chambers, and those chambers are at equal dig-
tances, constantly growing as the animal grows larger; and the animal occupies only the anterior portion of the shell, though it formerly occupied all these partitions, only when growing larger it moved on and furmed partitions between itself and all these chambers.

The siphon which communicates with the heart is in part a prolongation of the pericardium. We have only one genua of these chambered shells rolled up in that manner living now, and another where the shell is not entirely rolled op as it is here, bat where the anccessive convolutions are detached from each other, so that it is as you see here:

This has been called Spirula. It is an animal not very well known. Though found on these ahoret, it is rarely met with in a good condition for examination. The siphon passes through all theme partitions in a similar way as in the nautilus. Theme two are the only ones now living with chambered shells; and you will perceive that it is this animal which has not aimple tentacles, but bunchea of appendages forming masses similar to the tentacless in other diagramg. The structure of the gills and tentaclea alone considered would make the nautilus inferior to those beautiful animals in our aesa.

There are other anatomical reasons to consider the spirula as well as the nautilus lower in their organization than the true cuttle fish. The fact that they are rolled op in this manner, while the body is straight in hese and comes nearer the natural symmetry of an animal baving a longitudinal diameter and two symmetrical sides, shows ovidently that their type is higher than that.
Now all the cephalopoda found in a fossil state below the coal, during the coal epoch-during the series of aec indary rocks-belong to this group. They are as numerous as the gasteropodaare in our seas. In a living atate we have only two types, but hundreds and thousands of them are found in all the ancient strata, up to the most recent deponits forming the outermost beds of the crust of the earth. Those which have internal shells have also existed in former epochs, but not very late. They are only found in the oolitic beds, in the series of atrata extremely extensive in the British Islands and Continent of Europe, but foand in a very rudimentary condition in this part of the world. They are well known in every part of Earope under the name of "devil's fingers." They have a conical torm, and inside of them a hollow cone; and this cone is divided into partitions, and on one side it is prolonged in the form of a flat disc.

For a long time it was not known to what group
of the cephalopoda they belonged. They bave been considered as belonging to the chambered shells in the division of this hollow cone. But when atudying the shell which is found in the back of the cattle-fish, and is known under the name of "cuttle-fish bone," I found tbat this disc is divided in the interior by plates of calcareous matter.
But it had not been noticed that there was constantly a little point here, which, when minutely exemined, is foand to be hollow. On comparing the arrangements of these plates it will be found that they go into this point, and in fact the cuttlefish is a belemnite in a reversed position. Bo that there is no doabt now-and this explanation is generally admitted-that the belemnites are by no means the external shells of cephalopoda, but the bones of some cuttle-fish of the oolitic series; and the fact that in the beds where belemnites occur, we find the greatest quantity of those loose Ink-bags in a fossil state, is a confirmation of that view. (Applanse.)

The naked cuttle-fish of our day are numerous; and as you see, have tentacles arranged in pairs. Those which bave only eight tentacles never have a hard shell or any hard part. Those, on the other hand, which have ten tentacles always have hard parts. But in mome of them this shield which is placed in the back is cartilaginous-not very hard in the species common bere, but in the common cattle-fish of Europe, very hard and calcareous.

Now, it is not enough to have shown that the chambered class are last and appear first-that those which have an external shell are younger, and follow those which have hard plates. I want to ahow that there is a very regular mode of suc cession in these. In the most ancient beds below the coal, where the chambered shells are the most numerous, we find types already with varied plates. I have shown already how these chambered shells are rolled up. It is not necessary then to draw a

All forms of convolution, as it were, of the straight tabe are to be found in these shells just at the epoch when the family dies out.
fall shell, bat just enough to give a notion of it.
In the most ancient strata some of these chambered shells are perfectly straight, having a siphon in the centre, or on the margin of some of them.

Alreedy these two types occur in the mos ancient strata, and you see bere the beginning of a series which will pass through all possible modif. cations of their ahape. Some have the shell corved only in this way with a partial curve, and some have the ahell curved thue, like a hook ia the beginning, and then becoming quite atraight:

Here are specimens of these extremely diversified convolations.

LECTURE VII.

Cha Artieninted Animala...General Division into Worms, Insecta and Cruatacea.... Errorn in the Clansification of Animalf... Resalts of Recent Investigation.... Mistakes should be Corrected....Curions Fscta about the Berna clen . General Structare of the Articulata.... Peculiarities of their Nervous Syatam....Dincovery of Mr. Blan
 hoy come to Exist in other Animals? ...History of the Formation of Inteatinal Wormil...Curious Discoveriea ..The Theory of Spontaneoun Generation Exploded....Explanation of the Phenomenon of Red Snow.

classification of the articulata

I.. Venmet.................(Worme.)

1. Hsiminthes (Intestinal Worma.) 2. Apadn...............(With feet.) 3. Chetogoda (With foet lize hairn.) 4. Dersibrenchiata .. (Gills on the beok.) 5. Tubulibranchiata. (Gille like tubes.)

且..Insecta.....................(Ingecta.)

1. Araohnoida........(Spiders)
2. Buctorim............(Suckern.) 5. Mandibulata(With jawn.)

EII. Chtetacea(Crustaceana.) 1. Parasita............ (Paranites.) 2. Entomostrocz......(With articulated clawn.) 3. Malacosirsen (With calcareove clawn.)

Ladiss and Gentlemen:-The subject of the Lectare this evening will be the stractare of the Articalated animala in general and of the worms in particular.
The general atructure of this order of animals is Well known. The bodies of these animals are perfectly aymetrical. The two sides are equal. We have no longer here any such differences between the right and left hand sides as we have among the Mollasca, or anything similar to the radisted etracture of the lowent type of the Animal Kingdom. The Crustacea only show in their limbsin their claws-such a difference. In then we see frequently one of the claws much longer than the ether.

But it is well known to what circamstances this difference is owing. The Crustacea frequently lose the claws and these limbs are reproduced, but usaally of diminished size. When the animal doen not meet with ach an accident, the claws continue of the namesize, and this accidental disparity is still farther illastrated by the fact that sometimes it is the left end sometimes the right claw which is amaller than the other. This shows that the difference in size is not a characteristic of the type.
I propose to divide the Articalated animala into anly three classen-the Worms, the Insects, and the Crustacea.
This typo has always heretofore been divided into a great number of classes, and even some classes have been left ont of the Articulala, which I think really belong to that division, and here, in this conmection, I denign to make a few critical remarks on the general classitication of animals as we find them in the most recent works on Natural History. This classification has not kept pace with the progrese of our knowledge. Oar text-bookn do not give the results of recent investigation and discovery. I would refer to the beat of the classificasions, not perhaps the most recent, but the most extensive-that contained in the great work of Cavier on the Animal Kingdom. That if the greatest work on Natural History; not very voluminous, in five octavo volumes, in which the celebrated author has given the general characteristica of all the principal ty pea of the Animal Kingdom, and for the first time classified them ac-- cording to their organization. It was Cuvier who for the first time divided the Animal Kingdom into four types-who recognized four different modes of arrangement in the stractare of animals, and that there was not a simple gradation from the low-
er to the highest animals. When he divided the Animal Kingdom into those four groups, he designated those groupi by a very happy name for which I cannot find an Englinh term auffiently explicit. He called theme division embranchmenta. By this he conveyed the idea in a felicitous manner that the groupa of the Animal Kingdom did zeither form a aingle series nor parallel lines, but a somplicated grouping of individuals connected toyether by affinitiea in a similar way as the branchen of a tree, forming groups with very natural proporfions, though not divisible into familien of equal vaiue. The groups we may call typen-great divisions of the Animal Kingdom. For went of a better name, some have proposed the term "departments." Thas you see, if I am correct, that wo have not in the English language any terma which conveys the idea so happily an that employed by Cavier.

When Cavier divided the Animal Kingdom into these four groapa, some of the groups had not yet been stadied anatomically 18 fully as they gince have been stadied, and therefore it is not to ba wondered at that that illastrions mataraliat introduced into several of these greups animala whioh did not properly belong to them-that bave only an external likeness-which are analogous to them, bat not really identical in their stractare. For instance, in the groap of Radiate, to which I refer only three clanses.-the polyps, the acephala, and the echinodermata, -Cuvier had five classen, one of them being the class of intestinal wormsthe Helminthes-and the Infusoria, a class Which, I think, mast be entirely broken ap, and does not form a natural groap, but contains animals of very different structure, and which have been combined together as a class only in consequence of their minate size. That is the only characteristic which they have in common, bat their stracture is not sach as to jastify this union in one class, nor to jantify their admiasion as a nataral groap among the Radiata.

Cavier, Lamarc and other eminent naturalista were induced to maintain the class of Infusoris, in eonsequence of the general arrangement of vibratory cilia around the moath, presenting the form of a circular disc vibrating round the montb, and giving these animals an appearance of radiated atractare like some of the polypi. But on examining the bodien of these animala, it bas been found that there are transverse divirions in these animaln. Bome of the infusoria have been found to agree so fully with articulated animals that nobody nove donbts the propriety of combining at least the socalled Rotifera with the crastaceoan animaln. Others are worm-like, and belong more properly to the Vermes than any other group, and we know that many of the so-called infusoria are merely germs of plants which have been maistaken for animala ; and germs of different other animals which have been mistaken for full-grown animals. Thus it has been discovered recently that organizations which have been regarded as independent animals, and as such bave been placed among the infusoria, are really the young of certain Mollanca-certain gasteropodous mollusca.

Now sach mintakes should be corrected. When
they were made, the facts by which we are enabled to correct them were not known. The works in which the mistakes occur are and must long contivue to be the great fundamental books of Natural History, and bence the greater neceasity for rectifying these errors.

The clans of intestinal worms, heretofore ranked with the Radiata, belongs to the Articulata. All these worms are articalated transversely. These articulationa are very numerous. But tbey have a crrcie of radiated folds around the mouth. Hence the mistake to which I bave alluded in classifying them with the Radiata. The existence of a nervous nystem with ganglia was then unknown-so that the mistake of Cuvier cannot appear strange, particularly when we reflect on the extreme difficulty of observing the structure of many of the intestinal worm.

I bave said that I divided the Articulata into only three classes, though I admit all the intertinal worms and the greater number of the infusoria. Cuvier admitted more classes then I think proper to admit. The spiders were considered by him an a clasa distinct from the common insect, because they have no wings and because their respiratory organs are nomewhat different from those of common insects. But many true insects have no wings ; and when tracing all the modifications of certain insects we find the transitions so gradual an not to allow the differences between them to be of the value which was formerly placed upon them; and so the class of apiders is now merged in the general group of insects. Beside, we have now ascertained that the metamorphoses of insects are not so peculiarly a trait of that class as was formerly supposed, and therefore in the absence of that characteristic in the spider we do not see the mame ground of making a prominent distinction between them and insects. There are many insects which do not undergo so striking a metamorphosis as the butterfly and some other two-winged insect.
Then again, certain crustacea, which had been distinguished as a particular class, mast now be combined with the true crustaces. It will perhaps appear aingular that the Balani-there is a common English term for them, which now escapes me-ah I I recollect it, the "barnaclen"-should belong to the Articulata. They have been placed among the abellas. But that classification was erroneous, and this is perbaps one of the mont unexpected results of recent inveatigationg. Even during the lifetime of Cuvier-fifteen years agonobody suspected that the barnacles did not really belong to the class of shelle. Cuvier himself pub. lished an elaborate paper on the nervona system of the barnacles, in his memoir on the Structure of Mollunca, and he considered all barnacles as true mollusca. He made only one remark, that be was etruck by the complicated nervous aystem of these animals; and that remark has been the foundation of that true distinction between the Mollusca and Articulata. He found that the ganglia were more numerous in barnacles than in Mollasca, where there is only a large ganglion above, and another or two below the alimentary canal; while in the bar. naclea we find that below the alimentary canal there are several ganglia, and when comparing the nervous nytem of the barnacles with that of the greater number of Mollusca, and with that of the greater number of other articulated animals, it was found that this very great peculiarity conatituted the most atriking difference between them. From that time it was mapected that, thongh the barnacles were supplied with shells, they might yet be long to the articulated animals. A British nataral-int-Mr. Thompan of Cork-when engaged in the
stady of the barnacles found that the young, when escaping fom the egg, is a true crustaceans animal; precisely like other crustaceous animals, and fixing itself only after a certain time, when the shells are formed to protect it, and combine in sucb a manner with the animal as to give it an external resemblance to the Mollasca. But the internal stracture is entirely different. So there is no doubt that the barnacles, cons dered as a class of Mollagca by Cavier, do not only not form a clasa by themselves but are true Crastacea. This change in the classification is made neceasary by those receat researchea into the atructure of the nervous ayatem of barnacles and into the growth and metamorphosis of the young. But it han not yet been effected in general worke.

Through the kindness of Professor W atts, I am enabled to show this beautiful preparation, illumtrative of the atructure of the articulated animals. This is a large Scolopendra where the divisions of the body into transverse sections, and movable ringa, with appendages on each side in the form of feet, are seen much more diatinctly than they could be perceived in any insect.

The body is divided trennsversely. IVvery one of these divisions forme a protectiog ring of horny aubstance. Here we have no calcareous substance, ouly in some lobsters. In some of the crustaces the shield is hard and containg limestone.Autme riug aro uulted together by a membrane.
Here is the articula. tion, bat the ring does not pasa across the. whole. There is a folc and the next ring iseo The membrane here is thinner and allowa: fold to be formed, anr so the next ring is movable on this one.
 many of the articulated aniSo it is with weir rings aniform and very numeroas. Bo it is with wroma. Others have appendages to these ringe of very varied form. In nome these appendages are even very complicated. In some insects with rings there are as many feet as rings. .
 All the rings have foet. Tha number of them may remch handreds, even wevtral thousands. When chere are appendage: they are soft, aspindeed in seneral the covering of he worm is soft. The rings are also sutt, so thet the body of these animals has a leas conatant form than other articulated animals.

In insecta, if several ringa are combined, we unually aee the body divided into two or three regions-two more distinctly-sometimes three.

You see here a long taillike appendage. Here the tail is shorter-the hear very diatinct. All these appendages can be combined together, and we fibc them to be very analogons It is in the worms that wt can beat underatand wha they are, and I shall defel these details till I come th
 apeak of the worms.
You will recollec the characte ristics of

The Animal Kingdom.

radiated mimals. Bear in mind now that I direct your attention to the structure of the intestinal worms, which are now classed not with the radiated. hnt the articulated animals.

It is only recently hat a young French ataralist found that here was a nervous aystem in all intestial worms, even where eant expected, and ound that it differed boucw ina i.t arrangemunb trom the common articulated avimals. It is in this respent: that these threads go from one sanglia to another, and, instead of joining as a common awelling, form two independent series of parallel nerves. But you see that the difference is not very considerable. Afterall,
it shows how we ought tw cunsider these as arising from the junctare of the parallel threads, rather than as oue only with swellinge intermediate; and far from being the exception to the rule, it gives the true key to the underatanding of this arrangement, which in fact we did not know before the discovery of Mr. Blanchard.

The class of worms, insects and crustacea rest for their distinction particularly on the respiratory organs-the circulation and mode of respiration.

The worms are elongated, cylindrical and composed of very numerous and rather soft rings. The skin shows superficial folds, and these folda are movable on each other, not to be compared with the hard ringe of higher articulated animala. We find in worms the grestest variety of structure. There is perhaps no class of the Animal Kingdom which shows more of this variety. Many characters which are considered of the highest value diasppear here entirely. For instance, in the intestinal worms we have no circulation whatever-no heart -no blood-vensel-no blood even; while in other worms of the same class and which cannot be separated from them, we have not only blood, bet blood of the most ruddy color-blood-vessels very complicated, and not even one alone, butsometimes three or more pairs of hearts. Thus the most complicated circulating apparatus and a total absenre of blood-vessels are found in one and the asme class of animals. More than that, nome of the worms have organs of respiration, gills, highly complicated gills, perhaps more complicated than the gills of fishes, or of any of the Mollusca. The most complicated structare of the gills is found in some of the worms. In others there are not only no gills but no respiratory organs at all. I would go beyond that. In some we have an alimentary canal, which is simple. There is only a moath and an alimentary canal branching into the body and diffasing the prodact of digestion like a blood-vessel through the organs vithout causing that flaid to pass before through peculiar tubes or through any organs of circulation. What, then, is there in these in comamon? Why combine saimals presenting such dissimilarity of atructure? This is really the question I have to answer, because they have heretofore been divided into distinct classes. Worms wifh respiratory organa and circulating apparatus have been united into one and the aame class nnder the name of Annulata, and worms without these organs have been united in the class of intestinal worms, while some others which are less known and are also parasitical have been formed into a third class under the name of Tubularia. The common char-
acter of all these insects is to have the elongated form, with numerous articulat wings connected in such a manner as to able on each other in all directions, the stru the skin being more simple than it is in animals, not being divided into so many layers; and the muscles so combined with the skin as not alway: easily to be distinguiahed, so that the skin is formed of interwoven muscular fibres with hard horny ringe moving on each other.

Again: the nervous system is uniformly constructed; and there are intermediate types so numerous that between those very complicated worms with bighly organized organs of circulation and respira$=$ on and thoae which have none at all we find all intermediate steps; some where the circulation is farther developed but where the organs of breathing are not so highly organized, and vice versa.From the uniformity of nervous structure and from the fact just mentioned with regard to the numerous intermediate stepa in the cavity of respiratory and circulatory organs, we are justified in arriving at the conclusion that all these animals must be combined in one class.

The Insecta in the full-grown atate have no organ of circulation-at least they have no heart. But they breathe through a very complicated aystem of air tubes penetrating into the body, having numerous external outlets, penetrating, like vessels, throughoat the body, and undergoing considerable and very striking metamorphoses; while the Cramtacea have a circulation and breathe through the gills. This evening 1 must, however, limit myself to the investigation of the worms.

Bo many changes have to be made in the claseification of these animals, that, at present, it is scarcely possible to admit any of the classificatione in the books ; though theae classifications appear very simple, and are founded upon characterintices very easily recognized.
The first division of worms is the intestinal worms or Helminthes, which is their aystematic name. They have been the aubject of many specalations. How do thev come to exist in the bodies of other animals? How can they be introdnced iato cavities perfectly closed? And if they cannot be introduced into those close cavities, how are they produced within those cavities? These were questions which were apparently answered in quites a satisfactory manner; and the reply-these worms originate where they are found. That was the common solution of these questions; and, in fact, it has till recently been believed that intestinal wormas originated, in particular circumstances, within the bodies of animals, within the alimentary canalwithin the surface of the abdominal cavity of animals in which they are found. But is that true? This atatement rested merely on assertion; and no one ever made observations so as to prove that the animals had been prodeced where they were found. It was only because it could not be explained or shown how they were introduced, that it was quite generally adnaitted that inteatinal worm originated where they were found. But recent researches have explained the wry in which thene animale are introduced into the cavity of other animals.

I will give the history of one of them, and then show what conclusions may be educed, and then give nome dataile of nther divisions of worms.

The history of the intessinal worms is mont interusting, owing to the fact that they have been resarded as affording the nost striking example of +pontaneous generation. The mode of formation without apparent cange
has been called spontaneons generation-the inteatinal worms. as also infusoria, were considered as arising spontaneously either from a diseased condition of the alimentary canal, or from peculiar circamstances, without knowing how. Let this be the body of a common epecies of fresh-water shell. Steenstrup, the Swedish naturalist, disovered that at a nartirniar season this shell bad worms of

a minute size. These worms have this form: Here is a kind of sacker. Here the alimentary canal, dividing into two tubes in this way-a forked alimentary canal. At particular seasons these worms fix themselves upon the skin of this shell-fish and within the macas which aurrounds it. They awim in innamaerable quantitiesin the water, till they fix themaelvea upon this molluac; aud there they form little cysts in which they bury themselves. Fixing themselves on the skin by means of these suckers, they produce a hind of irritation. The mucus is secreted in large quantities and accumulates around them, forming a kind of cell in which they are baried. They remain there curled up in such a aac, and may be found in great abondance in the ekin after the macus has been removed.
During time they are buried in that way, they undergo a metamorphosis similar to that of the caterpillar which is to be changed into a bntterfly The tail is cast, and a circleo folds is formed aroand the bear and we have then an animalo such a form which escapes fro these little sacs. The anim! then penetrated into the ski with these folds, which are harr er than the outer portion of t h animal.. It bore its way int and passes through, the skin-
 enters into the wall of the animal, and, passing across that wall, enters into the abdominal cavity, and reaches the organs contained in the abdominal cavity, entering even into these organs them«elvéa

Theae folds then disappear, and the anterior region of the animal assumes, another form. Here we see a ancker-a mouth which is small. The intestinal tube atill retains its bifarcated form. But here is another large sucker
 suckers the animal walks over the inaide of the abdominal cavity, over the organs, in a manuer aim. ilar to the leech, and fixes itself upon the liver, Which it penetrates, and we have thero that com mon inteatinal worm of the liver which has been described in the class of intestinal wormas, under the name of Distoma hepaticum.

Several other worma are found to enter the abdominal cavity in the same way. I have lately seen some of thome penetrating into the gills. One of
the gentlemen now present, saw it within the fleah of the abdominal wall, penetrating through the flesh and reaching the internal organs. It had nearly gone through the whole thickness of the fish, and was about to reach the abdominal cavity when the fish was opened. So that, in the case of the distoma, the way in which these worms penetrate into the cavities of other animels is well known. I do not asy that all inteatinal worms are intreduced in the same way into the alimentary canal; those are not found in the alimentary canal but found in the organs of the abdominal cavity. We shall see is what manner others are introd aced into these cavities. What is still more curious is that thin distoma, after it has been in the cavity of the body, will lay eggs, and thene egga have a very singular atracture
Within the egg, we see a young one formed which has this shade. The moment the shell of the egg
 breaks the new individasl encapes, and here there are nuneroun vibratory cilia by which it moves with great rapidity, in a manner so similar to some of the rotifera that I do not doabt for a moment that many of them are only embryon of these intestinal worms. Bat even withn the egg we mee through his shell another thing. It is very thin and transparent.When the young escapes and begins to move, that faint body inside becomes mnra pranenarant -more prominent-always of this shape. At that time this free movable covering, with all these vibratory cilia, is cast. II is no longer a portion of the ani mal . It is like the skin of the caterpillar which falls away, and out of it comes a sluggish worm. moving very slowly, which grow: and grows, and we see withil that these extraordiaary phenom
 ena which, if not observed by meveral experienced naturalists, would be well deemed incredible.The moment the skis is cast we have a very slaggiah animal of this shape. We now see egge
 formed which become numeroas and grow. We see some assuming a peculiar form. Wa see through this body new individuala formed inside, which have a form somewhat different frome that. When ripe to escane, their form in like Shey escape, nd now they
grow. We have, therefore, here a generation arising from the egg of the distoma, which does not produce animals of that form-a secand generation.
 Inside of this rgas form, and 'ggs form, and
 hese growing so that the very orm of the individual may be listinguished, inside and whem these new young-the third seneration-escape, we have this animal, the common Cercaria: the third generation from the sgg of the diatoma. (Applazes.) [bave no part in these beantifal discoveries. I only relate them.
(Applanse.)-Here we have animals of successive generations undergoing in each generation a Eeries of metamorphoses. We have three alternate generations each andergoing metamorphoses, producing individuals different from the mother, and so for three generations, till at last we have the furm of the common intestival worm, which reaches the internal cavity and there becomes a parasite.

How difficult to identify all the successive generations when each generation. in its metamorphosea, assumes such different ferms! But when the great grand-father is reproduced in the fieh Seneration, all doubt mast end.

Whatremains then of the theory of spontaneous generation? It is gone forever! Every one now who attempts to reason on spontaneous generation knows that he is reasoning on what has no existence. He is reasoning on a supposition which has been scattered to the winds. (Applsuse) Because one such fact well-ascertained-as that has been, and you will see that aimilar facts have been well ascertained-is sufficient to destroy forever wach a theory. Another case adduced in favor of the theory of spontaneous generation has been ahown to be equally unfounded in fact. I allade to the infusoria. Bat the rotifera also lay eggs. I bave ween some rotifers living in the snow at the hight of eight and ten thousand feet above the level of the mea, causing the snow of higher moantains to be as red as blood and presenting a mont beautiful appearance. This red snow is only an accumulation of microscopic animals belonging to the class of rotifera mong infusoria. I have seen some of these laying egge. I have had the good fortune to have been able to trace some of the changes in these eggs, not all of them, so that I mention here an imperfect series of observations, because I can stand for that; bat other observers-Ebrenberg, in particular, who has made that beautiful bistory; in fact created the natural history of Infasoria-have completed the researches on this sabject. Ehrenberg bas seen rotifera laying eggs an bundred times. He has seen the young form and grow within the egg. He bas not only seen them grow, but he has traced them for a series of generations. Individaals which he grew from eggs he has seen laying eggs. He has meen them for three, four, six, ten generations. He has even seen individuals arising from a stock from which millions have been derived; and now, again, I ask, what remains of the theory of apontaneous generation? (Loud applanse.)

But there are other intentinal worms for whose presence in other animals as parasites it is not so easy to account. These are found in the eyes of almost all fishes, and in other portions of the body. How they were introduced is a question which could scarcely be answered, were it not for the discoveries of a distingnished Professor of Natural History in Copenhagen-Prof. Eschrich. He traced them in fishes which were kept in a pond, so as to be able at a moment's notice to kill a sufficient number of fishes and examine the condition of the intestinal worms within each animal. He found that in the scolpin of the Baltic, at a certain epoch, there were always very large tænia in the alimentary canal, while at other seasons there were none to be found. He ascertained, for a series of years, that the presence of these tænia was periodical, and he knew at what season he could fiad them, and in what condition he would find them.The moment that be ascertained this preliminary fact, which cost years of patient inventi gation, he went on tracing still farther the phenomena, till be discovered that these animalewhich are exceedingly long, with a amall head, a very alender neck and thin body,of extraordiaary
length, divided intn transverse articulations-cast,
 at certain seasons, the greatar portion of their hody and hat he could produce it by lividing this portion of the nead, the articulatione diviling and dividing till a great number were formed. When studying the anatony of these links he ascer. cained that there was a :ontinuous tube running through all-in fact, an al. imentary canal, but branched in such a manner in every ring as to supply the ring with substance; these branchings of the alimentary canal being at the same time a sort of blood-vessel. or organs of circalation. But he found, moreover, that in each ring there were several han dreds of eggs, each having the true character and three essential parts of an egg. When these bodies were cast, then of course innumerable quantities of eggs escaped into the water and were s wallowed by the fishes with their food. This affords a perfectly clear solution of the manner in which those intestinal worms find their way into the bodies of these fish.
As to the terrestrial animals in whose cavitien intestinal worms are found. the same process takes place. With the vegetables on which they live, there are constantly conveyed into their alimentary canal innumerable quantities of egge. And now we can alsp explain the reason why some animals have one species of worms and others other species. The alimentary canal of some has an inflaence which the egga of certain species cannot resist, and they therefore perish, while in other animals they grow and propegate.
It bas been still farther ascertained that these eggs exist in the blood cavity, nay, they have been found circulating with the blood corpuscles of certain animals-in the frog, for instance.
These researches of course require great patience and care, as they are attended with obvions diffculties; but they have been repeated by competent observers, and there can be no doubt of the accaracy of the resalts.

All this shows as how defective the old classifications must of necessity be. Even old divisions of inteatinal worms can no longer be admitted.
 This is only one state of an animal, so that it must be combined with that class instead of forming an independent division. So with others which belong to the distoma , which, as we have seed, undergoes many changes, but is still the same animal. Then we have the Cystinn whinh narhans qre not rea' wumb, but unly the sacs is which the actual worms art found. All the classifications of them are yet to be changed.The class Nematoidea of Cuvie) and the families Aconthocepha la and Frematodea, which last contain the Dist oma, must un dergo an entire revolution as the bistory of the animal becomeb

known. In fact, the whole classitication of this type of the Animal Kingdom should be re-written and made to accord with the resalta of recent inventigation and discovery.

LECTURE VIII.

The Remaining Types of the Class of Worms....Its Divisions or Families-The Apoda, or Fresh-water WormsThe so-csiled Planarias : the Leech and its Structuro.... Rudımentary Feet....Respiratory Organs of this Class-External Gills, or Remifications of the Blood-vessels in the fonm of Stiff Hairs: the Dor ibranchiata.. . Another Group of Worms still more complicated-the Tubulibranchiata.-Articulations of the Body and very complicsted Gilla....The Singular and Interesting Metamorphoses of these Animals.... Disappearance of the Eye....These Animsls when young highly phosphornscent....Experiments....The Class of Insects-the most momorous Clage in the Animal Kingdom-their Structure closely and extengively studied-Illuatration of their griting Phenomens....Structura of their Respistory Organs. Structure of Wings. The Order of Coleopes ra...Ths Orthoptera....The Emiptera, Neuriptera, Hemiptera, Diptera and Aptera....Their Structural Po-
The Class of Crustacca, and its sabdivisions....Structure of the Eyes of particular Clesses.

Ladigs and Gentlemen: I know no greater dificalty which a lecturer is celled on to encountel than that created by the necessity of crowding a great quantity of matter into a limited space. That diffeculty I cannot avoid on this occasion. In this Lectare I must finish what I have to ary on the worms, and introduce the insects and crantacea; in order to have some time left for the remarks on the higher animals, and for gezeral observations on the phenomene of gradual or successive introduction of每ypes through geological times, which will, I think, constitute a becoming conclasion to a coarne of Zo --logical Lectures in order toshow howithe succension agrees with the classification and atructare.

I shall avoid repeating what I asid in the last Lecture, and proceed at once to the remsining types of the clase of worms. The families which wo have atadied are the lowest-those without any external appondagen, provided only with tranaverse articulations or ringu. The other worms are not parasitical; at least few them are, and mont of them have shorter bodies composed of fewer ringe than the intestinal worms. In one of the families which has received the name of Apoda, and contains a great number of fresh-water worms, we have that extraordinary type in which the alimentary canal is branched like a blood-vessel. It is a very beantiful sight to see through the transparent body, the tomach branching like a blood-vessel, contracting like arteries and the alimentary fluidrunning through the vessels like blood, to the periphery. Several are to be found in this neighborhood in ponds and rivalets, some of them being very beautiful. If they were not so minute I could have had the pleasure of showing some of these worms, as I have now several alive which were collected in the vicinity of this City. They are among the objects which will interest in the highest degree all who take the trouble of looking for them. They are usually found ander stones in fresh water. Their form is that of the leech, and they are usaally mistaken for leeches. The leech belongs to this type, but is more highly organized than these, the so called Planoria.
Their form presents this appearance. Usually they have two eyes-but sometimes a greater number-placed exter mally; and it is casy seen the eye has not attained in them the high value which belongs to it in the higher animals. Here we have the opening of the mouth, and there is the long alimentary canal, from which tabes branch off like blood-vessels toward the periphery in all directions. Thene veasels are usually of a darker colon than the body itaelf. Some have appenazyes likn tentacles, varying mach in the general outlines, but all have this general form and are usually flat.They fix themelves by this large mouth on the bodies on which they prey. The tranaverse articulations are scarcely diatingaishable. A flat densation on the margin is all that is seen of them. In fact, it has been doubted that they belong to the type of articulata, and if it were not for the atruc. mare of the nervous aystem these doubte would

have some value. But it is owing to the very transparent nature of the tissues of the body that these articulations are mo slightly marked. The
 leech belongs to this type. It 1an a straight alimentary tube and also large jews armed with reeth. Some bave two jawn, thers have a third, and that the bite makes a triangular cat in the skin of the enimal on which they fasten. The alinentary canal, now and then, thowe dilatations, and thenediiatations correspond to the aricalations of the body. There a one point in the stractare of the leecu whicu must be considered; itis this: that the number of transverse ridges on the skin is not precisely in correspondence with the number of nervoas ganglia. There are in aeveral apecien three or four sach ridges to one swelling. As very little in a physiolosical poist of view can be learned from this species, I pass them, and proceed to the earth-worm. This class begins to have feet. But these feet are exceedinglv slight and simnle. If we have here transversf articulations, we willset that some of them ar more prominent thes others. Three or four o
 more are more prominent. lu every rins wicioure strong bristles or hairn, and these are the rudiment of feet-not articulated, only movable in their care, and it is by the motion of these stiff hairs that the earth-worms meve about and burrow in the soil.

The respiratory organs here are little holes on the side opening outside, and with ramifications like blood-vessels inside. All these animals are terrestrial, but there are a great number of worma provided with feet living in the sea, and these have external appendagea which are provided with little membraneous cells in which blood-vessels ramify and act like gills. These worms lie baried in the and and are not seen anlesa the sand be disturbed. Some a wim freely on the surface of the sea. Some of them are extremely beautiful and exhibit a great variety of color. Meay, however, are very uniform. The principal and most interesting point in their stracture in that their transverse rings, which are very distinct, are usually provided with two sorts of appendages. In the upper region we bave usually blood-vessels ramified and forming an external gill extending toward the back, and these tiff hairs sometimes in the hape of a brash; sometimes tronger and articalated even. Sometimes there are two such rashes of hair, one above and he other below the gills. In his respect the worms vary excetculusty, untu han the position of these stiff hairs and of the gill is not the same in two species of these worms. Owing to these differences and to the phyaiological interent of their atructure, the atory of these warms is one of high interent. For
instance, we can see all possible transitions between such 2 complete gill atanding out and forming paddlem or feet, and a more simple structure which is observed in others where there is a kind of bladder standing out with a few blood-vessela; and these have some hairs also standing out above and below this vesicle. Now when we examine in detail all these complications, we see bere only a little vesicle, the remnant of the largs one. which has diminished in proportion as the blood vessels eame out and formed a gill. The groap of worms which have auch gills and such stiff hairs as organs of locomotion bave been called Dorsibranchiata.

There is another group of worms atill more complicatod. Many of them form a tube of sand, by means of the sucker which takea in particles of and which are fixen by the macas secreted by their skin, and thise a solid tabe is formed. Some more撸 together fragments of shell and form a harder tube in which they conceat themselven on the approach of an enemy. These have received the name of Tubulibranchiata. Bometimes they have hard calcareous tubes. In other oases the tabe is membraneous; others have thbes formed as I have said, of aggregsted particles of sand. The diatinction between these different clases is that the body has not gills upon every ring, bat only apon the anterior ringa.

If this were the body articulated in this way we would have here only stiff hairs on these posterior
 rings ; bat here upon two or three of the anterior rings are very complicated gills,formed of

blood-versels exteusively ramifying; or as many pairs of such complicated gills as there are rings, of peculiar form, behind the head; and here the head surrounded with appendages of a most extraordinary kind: umally very long, slendes appendages, proceedin from the apper part of th. head and forming a brusl all round the head, anc nometimes so extensive ar to concealnearly the whols of the animal. These ap
 pendages aro singalarly ebnstracted. It is a thin membrane, folded in the centre, so that a tranaverae eection would show such a position, and when entirely folded looks like a fiat ribbon. It is as it were two ribbons folded into one, and when opened the animal walke in a way similar to the motion of the leoch.

The metamorphonis of these animals is very singalar and interesting. When young these worma are quite uniform; all the ringa have precisely the same appearance, and there is a simple gill coming out from every ring. In fact, it is not a ring prop-

eyes placed in two serien on the siden of the head. As the animal grows, the posterior gille disappearthe anterior grow larger. and they gradually diasp pear in sach a manner while the anterior becom. more and more complica ted, so that several pair. will be formed, and in pro portion as these poaterio gills disappear the anterio
 grow larger. The eye also disappearn, aun in its place those long tentaclesbegin to grow, and it is with the tentacles that theanimal moves and foels its position when it has lost its sight.
1 recently made the unexpected discovery that these animals when young are highly phosphorescent. While examining one of these animale not more than two lines in length under the microscope, on the introduction of a drop of alcohol into the water, I perceived that the animal contracted and that light was produced. I thus perceived distinctly that theae animals are phosphorescent. I had some donbt on that point, because I had eeen in water some of the microscopic animals whieh are phosphorencent, and feared that the light might have been produced by their having fixed themselves on the worm. But this observation satisfied me that these worms were the cause of the phom-phoreacence-(Applause)-though, as I remarked in a former Lecture, there are various causes which aid in producing the phosphorescence of the ocean.
The class of Insects is the most numerous of all the classes of the Animal Kingdom. There are certainly between sixty and eighty thouasand species already noticed by naturalists, and more than forty thousand apecias which have received namen. Wo may then safely estimate the aggregate number of thesespecies at some hundreds of thousands.
Their structure has been extensively and closely studied. But to give even the briofest abstract of what has been accertained regarding their structare would be a task extending far beyond the limits of such a Course of Lectures as the present. I mast confine myself to the illustration of some of the moststriking phenomena: the metamorphosed of these animals, and the structure of their jawsthe organs of grinding the food-and the atractare of the wing which exist in mont of them.
As a class they are characterized by the atructure of their respiratory organs, which are air-tubes opening outside at the lower portion, or rather at the lateral portion, of the wing, and communicating with extenaive tabes branching in the interior of the animal.
What ia most peculiar to insecta, however, in the fact that they undergo extensive changes during the progress of their growth. They are born in the form of worms, and live in that form for a certain time, when, chaoging their akin, they aasume another form, and uaually terminate their lives in the form of a winged animal. In this class we have usually three regions of the body, well defined: a head, forming the anterior portion of the bodymiddle region, which is called the thorax, and a posterior region, which is called the abdomen. On
 the last named region we have the winga. We have here the feet. These regiona are divided by transverse articalations into numerous rings.These rings are not always so diatinct an they tre represented here.l'hene appendages, the leet, are articulated, their
atracture is complicated, and they usually terminate with a hook, by which they seize upon their prey.
It is on the sides of these rings that the openings for respiration are seen. Thenumber of joints in the body is well defined-three for the hesd, three for the thorax, and a number which varie: for the abdomen, or posterior extremity

The structare of the winga varies very mach. Some are transparent and have ribs brauched in different ways. They have a very varied appearance. These are the remnants of blood-vessels. It has been ascertained that these ribs are hardened remnants of tubes throagh which the circulation was carried on in the earlier stages of life. In the perfect animal these tubea becom. hard. and the opening is oblir erated. When the wings art very hard, as in the beetle, nt trace of the ribs is percept ible. Usually, these bard wing: answer the parposes of shield: for the protection of the mem braneous wings underneath
 and extend over the posterior puriun of the abuemen. Bat in many insect the two pairs of wings are membraneous. Sometimes the posterior portion of the wing is softer than the anterior portion. Thene differences in the stracture of the wing have been made the basis of the classification of many entomologists.
Where there are hard wings covering membraneous wings, as in the beetle, the insects have been ealled Coleoptera. They are the most numerous, and of them the greatest number have been described. When the external wing are straight and hard and the lower wings are also straight,
 though not so hard, they bave been named Orthoptera. Grasshoppers belong to this class. When only the base of the upper wing is hard and the external end of it soft, they are called Emiptera. When the whole wing is membranenas, but when the "nerves" are aranged so as to form a network. as in the dragon fly. they bave been called. Neurip'era. When the wings can be folded longitudinally and transverealy. as in haes. they have been called Hemip. tera. When only two pairs of wings exist, they are calle Diptera. You see I have scarce ly time to mention the funda mental principles of the classi fication. It would be interest ing to enter into details abon the structare of these wines but it is not possible in the limits of this course. Anothel group of insects has been called Ayciru, ve "wiugless."
Other naturalists have made use of the jaws of insecre as the bnsis of a rlassification. The beetle.
 'or instamee, bas very onwerful jaws, by which it can cut its fond and livide it just as thecarnivurous animals. These juws are as follows: in he anterior portion of he head there is a strong \therefore air of plates like a scis. sors, which have been valled the " mandibles."

The head of the insect should be viewed in profile, and then we have this appearance. whichexhibits the mandibles and the mode of their articulation.
There is another class which have lateral appendages. These palpi are the organs by which the animal swallows and appreciares its food.
These stractural peculiarities have given origin to the terms Suctoria asd Mandibulata as designato ry of these two classes o insects. But all the elt mentary works on entomo ogy give so fally all thes details that it is not neces ary to enter into them mort at leneth.
1 will only add a few re marks on the metamorph". ses of insects, and show what evidence we have for
 the systematic arrangement and appreciation of the value of different types of articulated animals. The oaterpillar of insects is composed of a series of rings which are quite uniform. The three anterior pairs have feet of a peculiar stracture, which ate terminated by hooks, and these three pairs of hooks or feet correspond to the three rings whinh will form the thorax in the perfect insect. The sev enth, eighth, ninth an، tenth rings have othe feet of a pecaliar form like
 sackers-membraneous tect whicu a, use., as organs of locomotion-and usually the last ring has still 2 pair turned backward. Now the nervous system, alimentary tube and all the organs of respiration are perfectly uniform in all the rings. There is a nervoas mass in every ring, so that the structare of such a caterpillar is very similar to that of any worm. The alimentary tube is a simple tabe scarcely swelling in the region where the horny feet are seen, and quite uniform for the whole length of the had. R... in the nerfect insect, where we
 lave the head well doined, the thorax disinct and the posterior egion divided completey from the anterior parion, we have the antelor rings of the head till the same, but only ne large nervous mass nu cuic. H. J.ucilun of these three nerves; and then in the abdome we see again this difference. But when some of the rings come together we bave a greater approximation between them. Here, though combined, the tundamental distinction of these swellings can still be observed. Here we see evidence that such insects with defined and distinct regions of the body must be considered as superior to those which have no such divisions.

The class of Crustacea is the highest among articulated animals, and wo ivfer this for the reason that their circulation is quite perfect. They have a heart, from which proceed large blood-vesuels, conveying the blood to all parts of the body. This blood is returned to the organs of respira. tion. In a lobster the organe of res piration correspond precisely to the thorax. They are in common chitfly formed by the janction of rings on the back and are above the base of the feet. Now if you will remember what I showed you in articalated animala, where we have here little haira, here a
branching blood. vessel-here a vesicle with veasela ramifying in it.' and if we trace the whole series of modifications in the type of articulated animals you will readily admit that in the Cratacea you have only in a higher and more complicated organization the blood-vessels noen in worma.

It in not a uselens playing with forms to make these analogies. I will take my example from an actual speciea. We bave inthe earth-worm, aimply stiff hairs as organs of locomotion, articulated at the base. We have in many of the marine wrms these hairs not only articulated at the base, bat aleo articalated at mome distance from the base. We have that. for instance. among the Aphrodita.-
 But talie some of the inrects and we have a foot with articalations and a hook at the terminationfoot formed of numerona joints and a hook at the end. We may trace all thene mod. fications in certain families of the Crustacea. Here we have the last but one, and bere the last joint. Now let this projection become 2 little more prominent and you see how little is wanting to make that a claw! Nor is this at all accidental. All can be referred to one and the same type-in fact, that all thene complicated atructurea of loconnotion from the heavy claw of the crab and lobster dow to the aingle atiff hair by which worms move. are only modifications of one and the same type of ap pendages. (Applanse.)
The jaws are the aame as the feet. In insents the juws are only modified
 feet: and if we wanted
poof of that we haveonly to look at the jawn of
to mave crastacea. In many of the crantacea there are not two paire of such lataral movable appendages vin the insect, but there nre as many as aix pairs. The arrangement is thus : Let this be the foot of the crab. We cau see huw it is divided into these rings. The anterior one has an ap pendage. At its end we find an eye. Then come an appendage, as we sef here-internal and external
 anternm; and here the moath. Here are the mandibles. Then another pair more slender; and a third pair still more slender. Then come three other pairs more complicated. So we have a series of appendagen from the tail to the anterior extremity of the head. In the posterior extremity they are paddles, by which the animal swima. In the tail they are flat appendages; in the thorax they are feet; in the head, jawn ; in the anterior extremity of the head, appendagea by which the animals tonch their food, and the firnt of these ap-
pendages terminates in an eye, and all these differont appendage are only modifications of one and the same type. Nothing in more interesting than to trace these modifications through different families.

Among Cruatacea there are a great many which. are paramites and form a group. They attach themselves to the gills, skin and fins of fishes.In these, nome of the jawn and anterior portion of the feet unite together from the two sioes and form at the janction a large ancker, by which the little animal fixes itself on the fish on which it lives an a par
 asite. These appendages, these nacker-like discs, are formed sometimes of the jawn, and sometimee of the anterior portion of the feet. The metamorphonis of these paranites is extremely carions. They are free-moving insect when young, bat afterward become fixed, and uanally grow to a monstrous aize, and change entirely their ahape, so that they are frequently mistaken for other adimale.Many of these parasitical crabs have been described as peculiar genera, when they are only familien which bave long remained attached to othor animals.
The form of theme animals is extremely intereinting, but still extremely obscure. The crustacea proper, which remain free-moving animale, are exceedingly numerous, and it is difficult to classify them. The most common division in that of Entomostroca and Malamostroca.

Their eyen, like those of insects, are oxceedingly complicated. Of this complication you will form some idea from this diagram. The surface of the eye is composed of a great number of little eyes united, and to each of which a nervous thread may be traced, arising from a common nerve which proceeds from the anterior or upper swelling of the nervous symtem placed in the anterior portion of the head. The number of these eyes varies from handreds to thousands. Some have ten thousand eyes united to form one aingle hemiaphere, apparently one eye. The mode of vision in these animals is difficult to understand, and it is owing to this arrangement thas the rays only which fall perpendicularly on that part of the eye can reach the hervous gyatem, because every one of these little eyes is tubular, and has not a spheroid form as the eye of other animals
Among the Crustacea we have a series of forma, similar to those which we see in the metamorphosem of insects. We have elongated types in which all the ringe are similar, as in the ahrimps. On the contrary, we have other types, in which the anterior region ia very mach complicated, while the tail is short and curved on the body. This is the case of the crabs. The latter stand highest, and those with elongated tail mast stand next, and so down to those which are parasiten.

LECTURE IX.

The Stracture of the Vertebrated Animels-Fishes....Vertebrated Animals characterized by striking Differences... Charscteristics of Flahes-The Formation of their Vertebral Column.... Connection of the Vertebra.... Fins and their Structure.... Division of the Fishes according to the Position of their Fins.... Formation of the Scsles of Fishes....Restorations of Fishes....The Brain of Fishee possessing the same essential parts as those of higher Animals....Succestion of Fishes, Reptiles, Birds and Mammalia, and in the last epoch only one type-Man, who stands at the head of Creation.

Ladies and Gentlemen: This evening I intend to illustrate the atructare and aome points in the history of the vertebrated animals, beginning with the class of fisher.
The vertebrated animals, the higher group of the Animal Kingdom, are characterized, an I have already stated by striking differences. Their esaential organs-the nervous aystem, comprising the brain and spinal marrow; and the organs of vegetative life, the aromach, the alimentary canal, the lungs, heart and blood-vessels, are contained in two different cavities;-the former in an apper or posterior cavity, according to the position of the animal, and the latter, the organs of vegetative life, by erbich the animal livee, in the lower or anterior cavity. These two cavities are formed by bonesa series of bones called the back-bone, having appendages curved upward and uniting on the back, forming the cavity which contains the spinal marrow. Other appendages are tarned downward, sometimes uniting, nometimes terminating between the soft walls of the animal, forming a lower cavity in which the alimentary canal, the langa, the heart and ether viscera are contained.
In these three skeletons on the wall you may see these general traits of the vertebrata, just as well as in any of the higher classes. Yor see that in these skeletons the vertebral column is andivided in its whole length and not divided by transverse articulations. Few fishes have auch an undivided vertebral column. These belong to a peculiar class to which I shall soon refer. Gen. erally the vertebrated animals have this colamn formed of divided bones moving upon each other. In those which have an undivided vertebral column we have a reminiscence of the condition of things when the animal was in the egg and the vertebral column was merely a cartilaginous atring-the socalled dorsal cord, which in the foundation of the vertebral colamn in the new individual when very young within the egg; and thir vertebral column remains soft in mamy fishes, and in those which mant be copsidered as the lowest. These only in their fall-grown atate preserve the character of the embryo. It is a peculiar condition of things-a mont extraordinary condition of thinge, which I regard as of high importance in attaining a correct uaderstanding of the succession and gradation of types in geological epochs. I had thegood fortane to notice, when investigating these fishes, that there are fighes which in their full grown state ex hibit, in their vertebral colamn, precisely the $s_{a m}$ atate of thinge asexisted in the fish when forming within the egg.
The first thing which is perceived in the畀解 when the substance of the upper layer of the egg in condengating-becoming divided into organg-is a series of lateral condensations, and between that there 18 a continuous string, which has recaived the name of doraal cord. That is the foundation of the backbone or vertebral column. It is certainly cartilaginous in the ernbryo and remains so in the stargeon and is seve ral cartilaginous fishes; and this is, most extraordinary to asy, the astaral and uniform condition of all firhes of ancient typer. In the ancient atrata-in the atrata bolow the

conl, at the beginning of the creation of animal life, when the fishes were first introduced in the waters, all the fishes had this peculiar condition of the vertebral column-bony appendagea, but no ver-

tebre-no division of the back-bone-a cartilaginoas dorsal cord remaining throughout life.

There are very many pecaliarities in the atructure of fishes which deserve to be noticed, in order to distinguish the olass of fishes from the other classes of vertebrated animals.
It appears to be of little value, bat it is one of the most striking characteristics of this class, that all are perfectly horizontal-sill swim horizontally. There is a longitudinal diameter, ranning from the head to the tail, which is perfectly straight. Now you will find that in any of the other vertebrated animale-in the reptiles. in the froga and salamanders, in the sakes-tbe head rises moreor leas. Ever in those which bave no lega, as the snakes, the head rises more or less from the horizontal position of the body. Another characteris. tic trait of the fish is to have no neck. The head and trank are continuous; so that the fish casnot move its head upon the neck. The fishes move the head and the trank together; they form a lateral curve more or less marked, bat there is no possibility of an immediate motion of the trank upon the neck. There is one single exception to thisand it is in this fish whose skeleton you see here.
The vertebre of the fish are connected in this mamer: Just take two of the vertebres, with theil apper and lower append ares. The surfaces by which the bones unite here, when cut across would have such a sur face. These singular sur

faces, from which theme points arise sbove and these ribs below, are aot flat as in the Marmalis. They are hollow mones formed in soch st on anner, and these hollow trnes art Alledwit cartilage These ar
 ticulations du nut aliow any conaiderable motion between the vertebre; and that is the reason why the fishes have general metion and cannot move one part of their body on the next or following portion. One type of fishes has articu. lations eimilar to those of reptilem. There is
a fish of the Westero waters, found also in the Northern lakes, which has vertebree with hol low aurfacen posteriorly and writh hemispherical swelling anteriorly on thearticulating surfaces. This fish is only a remmant of a numerous family, of which you have here some reprellonta-

tions. They were very numeroas, not in the oldeat strata, but in the so-called secondary strata of the crast of our globe, and this living type, whose stracture can be well atudied, has that likeness to the reptiles that the articulations in its back-bone are movable by a ball-and-socket joint. This is a reptilian structure of the skeleton in this fish-a form common in many fishes at an epoch when reptiles did not yet exist. They are the next step in the fishes in their succession in geological epochs, and that is one of the first fishes whose vertebral column, instead of remaining cartilaginous, becomes bony-osseous. Now I had the good fortane to see one of that class of fishes alive last Spring; and my first thought was to see whether it moved its neck, and the first look at it conveyed the impression that it did. In this respect this reptilian fish, with this pecaliar articalation of the vertebræ, has the faculty of moving ita neck right and left,-though the neck is not divided; though there is no division, the head can be moved sideways.

Another pecaliarity of fishes is found in the fins. Instead of legs, these animals have fins of a pecaliar kind, which serve the parposes of organs of locomotion. The organs of locomotion in birds and in reptiles consist of a few joints. There is the ahoul der-there is the upper arm-the fore-arm and thehand. They have similar bones in the posterior extremities. All these are detached from the walls of the animal. In fishes we have also a shoulder, arm and fore-arm ; bat the bones were detached from the body, only the hand depends sidewaye. The arm remains within the wall of the animal, and the fingers are numerous instead of being reduced to the number of five, as in the case of the higher vertebrated animals. None of the higher vertebrated animala. no reptile, no bird, no mammal has more than five fingers; there are many which have only two, three or four fingers; in horses there is only one: the hoot is the nail of the single finger. In fishes, I was about to say, instead of being reduced to the number of five, the fingers are many, and are united isto many joints. I jant stated that the bigher animals have several fingers, and I might go on and show the beartifod adaptation of the haman hand. In animale which have only four fingers, the first which is wanting is the thumb; then, in the next, where there are only three fingers, the little fingerthe shortest remaining-is also wanting. In those which have only two fingers--which in uniformly the case in the ruminating animals-we have only the middle and annular, or fourth, finger; and there are usually two rudimentary fingers backward, corresponding to the first and fitth fingera, and which even have aloo rudimentary nails. Where only one finger is, left it is the medial finger, and that is the case in the horse. Thus, in proportion to the fingers, we may trace the gradation of the hand or foot in the whole meries of animals. (Applause.) This is nothing but a common anstomical fact.
Bat, beside, the fishes have other fins. I will just mention their names. First: there is the pectoral fin, because placed on the chest; then the abdominal
fin, on the abdomen-usually placed on the centre of that cavity, but in some we have the abdominal fin jast below the pectoral, and in them it is even more forward. So it is in the cod, where the ventral fins are placed under the head in front of the pectoral cavity. The other fins are placed verti-

cally above and below these bony appendages, rising from the vertebral column According to the position of these fins, they have received different names. The one on the back is called the dorsal fin-that below the tail, the anal fin-that at the termination of the tail, the candal fin.

These fins vary very much in their form and even in their number Sometimes the dorsal, caudal and anal fins are united into one continuous fin, beginning at the neck and continuing till it terminates in the tail. Sach is the case in the eel. This condition of fin we find in every embryotic fish at the beginning of its formation in the egg. All these bave a continuous fin. As the fish grows, moreor less dentations are to be seen, and the fins at length divide, as we see them in the full-grown fish.
But what is most extruordinary is, that young fishes have the vertebral column not terminating i^{n} a miltaight line, as you aee here, with a regular bipobed medial fin. That is only seen in full-grown finhea. Young fishes always have the vertebral column terminating in the following manner: The white-fish, common in Lake Sa perior and other Northern Lakes, has its medial fin as deeply emar-
 ginate as this. We have one in our D wiss Lakes quite similar to the white-fish of these Lakes; and, indeed, it cannot be readily distinguiahed from the latter, unless by those who have made Zoōlogy a very serious atudy. In this fish I had the chance of examining the ega, and of tracing the succesive
 changes which occur there. I could observe in the young fisbes the following outline: Lines be kinning here and extending so all round the animal, the backboue extending so, and then terminating in the centre, oo that we have here a regular termination of the vertebral column. Now when the fish growe larger this is diminished; the lower extremity becomes more prominent, and after the fish has been hatched it changen its form so as to present that appearance. This is only that exaggerated. But you will easily perceive how readily it may be changed, and even the vertebral column be come regalar and ouly a little remnant of that irregularity re main in the carve of the very last part of the column. This is observed not only in this fish, but in many other fishes-in fact among all those bony fishes whose young have been observed within the egg. Now we will see that that ame form of tail is seen in these bony fishes of ancient types. All fishes in the coal and below the coal, which have a bony akeleton, have such a termination of the tail;
andit is only in the secondery atrate, in the intermediate epoch of a succession of animals, that we find the tail becoming more and more regular. In one of my drawings bere there is only a elightobliquity left. It is a fish from the chalk. Among the fishes of our day we have only the sturgeon which bas this cartilaginous vertebral column, and in the tribe of cartilaginous fish at large, those whose skeleton never becomes bony-the sharks and skates-we have also that irregular prolongation of the vertebral column.
It is a matter of surprise even now, and of course was more sarprising when firat discovered, that there should be such a strict correspondence between the form of ancient fishes, which alone possessed the waters of former days, and the changes which we now see going on in all the young fishea within the egg. These changes correapond precisely to the order of succession of fishes in geological epochs, so mach so, that more than once I have been able from this to establish the apecies and even the geological epoch to which fossil fish belong. In this country there is a full series of strata, containing fossil fishes which all show in their atructare such a position of their tail-an oblique termination, not this aymmetry-whose ora must be between the coal and the oolitic series. I have seen a beantiful series of these fishes in the collection of a acientific gentlemanin this city-the mont beautiful, indeed, that I have ever seen.
This correspondence of atracture between the egg of fishes and the growth of the embryo, is one of the matters which can be established, perhaps, only in a class of animals whose structure has been fally ascertained. I could show some examples among the acephala of the Mollanca, because they have been better atudied than other types. But the fact being that there is such a strict correspondence between the phenomena observed in the growth of individuals and the anccession of geological epochs, I ventare to maintain wbat 1 have already asserted, that all classifications in which we should not find such an agreement must be defective, and can have been constructed only on account of want of information. In Nature, when we have ascertained a rale of such an extent, we are safe in regarding it as the general rale, because there have been observed no anch exceptions in organic life.(Applane.)

I see this favorite subject of mine has already led me beyond the limit of time to be devoted to this class of animals. I must, therefore, abridge what yet remains to be said of fishes, in order that I may be able to go through that class in this evening's Lecture.

There is one point in the structure of fishes to which 1 mast allude, as it is important in its bearing on the stady of fossil fishes. I refer to the scales of fishes.

Naturalists have usually classified the fishes by their fins, uniting first the fishes which have a bony skeleton and those which have a cartilaginous skeleton; uniting, for instance, the skates, sharks and sturgeons into one order-then all fishes with a bony or hard skeleton, is another order; and then andividing these two primary groups by the position of their fins. Cavier adopted these primary divi-
 sions, and arranged the ishes into two great groups -those with only soft rays n thair fins, and those which had not ouly soft 'ay a, but apines alao rising is you see here-bard spines on the anterior of the dorsal fins and soft rays oackward.

Linnmas adopted another mode of classification. He divided the finhes according to the position of the pectoral and ventral fins. He named "abdominala" all the fishes whose ventrals are placed in the middle region of the abdominal cavity.The next be called "thoracici," those with ventrals on the thoracic region. Then he named "jugulara" those whose ventrals are in front of the pectorala, and then he had in another class those whose fins are continuous, as in the eele. But such a clasaification, though readily learned, is not at all natural, and does not bring the fishes together as they are really related. The classification followed by Cavier, in which the hardness or softness of the rays of fins is the principle, is not any more natural than the other, which is beneath criticism.If, instead of taking the hardness of the rays, the structure itself were taken as the basis of classification, it would be much more natural. Then we would have fishes which have, in the dorsal, simple rays in front and articulated and divided rays in the posterior. When these rays are divided not only longitudinally, but also transversely, the dis-
 Itinction has, I think, some value. I will show that by referring to another diffarence. Stadying the fossil fishes I could not satisfy myself with the classifications, because they scarcely evershowed their general form. We find too rarely a complete fossil fish to be able to ascertain by the structure-by the form of the fist-to what tamily t belonge. But the scales were frequently fond is an excellent state of preservation; and when investigating the subject I tried to find in the scale some characters by which I could recoenize the fishes, or by which 1 conld classify them. liminary fact was then as certained: that those fishes which had some likeness to the ancient fishes hac scales of peculiar strac ture. The structure of x common scale is this: Luy ers are formed successive ly on each other in a man ner very similar to the or
 mation of a shell. These scales ure of a horny stracture. I make now a section of this scale. Such a
 scale is a coil oflayers piled a_{Γ}, the oldest being uniformly below, and is covered with a mass of considerale thickness of true enam-
el, as hard as the hatued enamel of the teeth, anc the lower portion of thi scale is bony sabstanct showing all the charac teristic peculiarities of vor, outucture. Here we have two varieties of scales, of very different structure. Now all the fossil fishes, without any exception, have such enameled scales-the lower layer of bony sabstance and the upper of enamel of considerable thickness. This afforded a sufficient reason for the union of all these fishes in one order, especially as they differed so completely from the common fishes.

Recent anatomical investigations have led even those who at first ridiculed this mode of classification to adopt it themselves. Johannes Müller, for instance, of Berlin, who at first laughed at this singular desquamation, as he was pleased to term
it, has himself aclnowledged that it was the most fortunate hit I made in Ichthyology. (Appleuse.)

Every animal is cartilaginous at the beginning. Even those animals which have the hardeat bonem huve a cartilaginous skeleton in the embryotic state. It is only at a later period of life that they become bony. That, then, gave me the basis for a clasrification, and I think that from that time 1 made more rapid progress than before in Ichtbyology. After I had ascertsined these avalogies I went on, and found thet sharks always bsd scales of a pecalisr charncter, formed ouly of enamel without bony substance below. All those protaberances on the akin of the skates are of enamel, bat they are not arranged in layers on a bony basia, and, therefore, they form another type. Then among the fishes with scales of horny substance, deposited in layern I found that these were two typen : one type in which the acales are simple layers with regular outlines; and another in which the scales had dentated ontlines, so that every one bac teeth in its posterior edge, mat that as the scale grew larger these dentationis became more mumerous, and the surface of the meale became gradually rougher and rougier. Now we beve that in the perch. The mere touch of that fish discovers this pecaliarity, while the fishes whose surface is smooth bave the seales formed in simple layers.

A singular coincidence is this, thes fishes, with few exceptions, which have such dentations on the ponterior margins, are just, those which have tha hard bony spines on the anterior portion of the dorsal fin; and more than that, the head of the fish hes something quite characteristic.
 joins with the lower jaw here, also movable.These four boaes here have been called the operculum.

Having ascertained such a connection between the hard parts of the animal, I became more and more convinced of the value of scales ; and I then endeavored to ascertain to what families belonged those of which any scales had been found, and to classify the whole of fishes according to the stracture of the scales. I pat in one order all the fishes which have only enameled grannles on the skin, and called them Placoids. All those which have scales covered with examel I called Ganoids. All those which had dentated, serrated scales, with hard bone in the back-bone and serratures in the opercular bones, I classed together as Ctenoids; and those which had simple head-bones, soft rays and soft scales, with simple outlines, I classed together and called Cycloids.

Of course, when atudying the different families, I found the similar relations in the details which onabled me to find correspondent adaptations between the higher characteristics by which we dis. tinguish genera and apecies.

Now, I was enabled to "restore" a fish from isofated scales. So much has beon said about that
that I will show how possible, and indeed how easy it was for any one who took the troable first to investigate these relations. I have shown how the different modifications of the structare of the headbones are related to the structare of the fins and the structure of the scales. I will not try your patience by going into details, but I willonly show you how easy it was, from the knowledge of these relations of the scales to other portions of the animal, to give the probable and approximative oatline of a fish when you have had only a single scale as a starting point. (Applause.) Let me draw a scale. A great many fossil fishes have angalar scales of this oblique form. That portion which is here enased by enamel is covered by a soale which proceeds so that I am allowed to draw my outlines of nerely of the enameled portions without drawing the portion which is covered. I will make the scale of a size which will enable me to give the whole thing on the board. Let that, then, be the outline of the scale. Now we know that there are usually forty, fifty or sixty scales in one longitadinal series from the head to the tail. We know that fishes which are about as thick as long have these scales higher than they are long; and that those which are longer have their scales longer than they are high. These are preliminary facts easily obtained by inveatigation. We now find a scale which is about as long as it is high. You see then what an easy task it is to draw scales of about the same form, perhaps forty in that line, and you will have to make a fish about as high as it is long. You at once draw your outline and when placing your scales you will find that they fit easily, and you draw them with as mach precision as if you had the living model before you. But you have now got a fish withont fins! The question is where are you to pat the fins? And, again, what sort of a

head are you to put to such a body ? (A langh.) A fish which has a flat, ovate form like that will be a fish of not very rapid motion; and we know that all fishes not possessed of powers of rapid motion have rather elongated dorsal and anal fins, and that the caudal fin is not forked. Those that wwim fast have the tail forked, and these fina act as a paddle. The fishes which have a broad, flat body, are not voracioas; therefore they cannot have a prolonged anout. They will have a short, round head, and so in that way you terminate your drawing. (Applanse.)
That all that can be done with precision I had the good fortane to be able to demonstrate in a rather striking manner. In the year 1833 I delineated in the firat number of my worl on "Fousil Fishes," a scale of a foasil fish sent me from England, and from it drew the fish to which I considered it to belong. In the following year, 1834, the whole remains of the fish were collected, and the drawing was given in the third number of my work. I have the satisfaction of saying that the two delineations do not differ in any emential way, even in the detaile (Loud applause.)
(3i:-
These restorations have been repeatedly made. They have been made in other casen where the procens was atill more difflcalt. Cavier was the first
who made thene reatorations from single bones of those fossil mammalis found in the gypsum near Paria. He restored meveral genera. He gave not only the whole skeleton of these animals, bat even the outlines of their forme. Thas far he could go, and thum far he did go, and gave entirely atia factory details to his figaren. Some imitators followed and went farther than he-giving even hair to these animals and dots to their colors! They accomplished all that, but there were as many lien as additions to the figures. (A laugh.)

The atructure of fishes is in general the same as that of the higher vertebrated animals, except perhaps as far as regards the organs of respiration.All fishes do not breathe by lange as the mammalia, birde and reptiles. They breathe by gille, organs placed in the sides of the head under those large covers which protect the siden of the head. These gille have the following atructare: Let that be the posterior margin of the bead. Here we have in the opercle three, four and sometimes more, arch-shaped bones, amally three or four, to whose posterior margio To see attached smal
 bony appendages, along which blood-vessels ran in great abandance. These are the organs of respiration. The blood comes to them immediately from the heart, which is placed here below and has thia form. A large aac receives the blood coming

from the body, which is the auricle, and emptiea into another cavity called the ventricle; and that emptien through a tabe which has received the name of aortic tube ; and here arises a large blood. vemsel, under the name of aorta, which branchea into as many branches as there are arches in the gill. There is no continuation to this great blood-vessel. The blood goes directly to the gills and then comes back after it has reached the termination, through
a sinus, and all these vein unite, forming another large blood-vessel by their junction, which runs to the back-bone and along this cavity bereath it, whence it in distributed to all the viscera of the abdominal cavity. The blood, after it has reached all parts of the body, returns through these veins and is emptied into this large sac, so that the venous blood comes into that cavity and is propelled into the gille, where it is converted into arterial blood.
Such a circulation is called "a nimple circulation." Bat beside these organs of respiration we have in fishes a carioun organ placed in the apper portion of the abdominal cavity-a large air-bac called the air-bladder, which opens into the alimentary tube above. This is a radimentary lang. It is the firet indication of the formation of a lung in vertebrated animale; and when tracing the formation of the organs within the og'g we may ascertain that in its position and formation this air-bladder is aimilar to the lang of bigher animala.
The moath opens into the gille, which form the arches on both sides. The food passes betwoea these arches, and moves on into the stomach which is very uniform. The alimentary tabe is acarcely more alender than the atomach, and is vary short in most fishes. There is also a large liver and gall bladder, so that in the structure of the viscera the fishes do not materially differ from the higher animala. All of them lay egge in innumerable quantities. There are species which lay as many as fifty thousand egge. This extraordinary fecundity afforde a ready explanation of the great number of fishes, and the non-disappearance of any of the types notwithatanding the voracity of thene animals.
The brain in fishes has the same essential parts as that of higher animals. We have also nerves proceeding to eye, the pose and the ear, which hut no external outle but is yet quite comp plicated. Here ia an other atriking anal ogy with the highe animals. All belon
 to one and the same plan, and the order of their structural arrangement precisely corresponde with their succemaion in geological times. There was an epoch when there were no fishes, no reptilen, no mammalia. First come the fishen, and fishes only exist. Then appear the reptiles-then the birde, and lastly the mammalia; and in the last epooh only one type is introduced-Man-who mitands at the head of Creation.

LECTURE X.

Geologienl Succession of the Clus of Fishes....The Vertabrel Structure of Fishen-Peculiarity of their Teeth... The Placoido-Sharks and Sketer-Fossil Remains of the Shark...The Ganoido-The Gar-pike: its Hard Enameled Scales...The genus Lepidostens-Their Vertobrel Stractare....The Alligaton.... Peculiarities of the most ancient Fishen-their Analogy to the Reptiles...The Ctenoids....The Sparoids.....Position of Flat Fish in Swimming-Peculiarity in their Eyes...The Herring....The Trout....The Cod fish.....The Clase of ReptilepApparent disainilarity in their Structure-Snakes Lizard ${ }^{\text {without feet-The Turtlesimilar tothe Lizard-The Frog }}$ -Structure of the Heart in Reptileb-Divinion of Reptiles into four Orders: Turtles, Lizards, Snakee and Frog …Scales of the Tortoise nothing but extended Ribs.... Brain of Reptiles small....Dste of the existence of the Turtle not very ancient....Crocodiles a Remnant of the Ancient Type of Lizards.....The American CrocodileFossil Remsing of the Mososaurus....Characters of Ancient Types determined by Comparizon of the Vertebratextenive Discoveries yet to be made on this Continent....Lizards without Feet and Snakes with Rudimentary reet....Difference in the Strycture of the Jaws in Snakes and Lizarda-Enormoua Distension of the Jawn of Snakes....Fosail Snakes found in the London Clay.....Batrachians.

Ladies amd Gentlemen:-Through the kindneas of Prof. Watte, I have been provided with a series of specimens from the College Maseum, which will enable me to show eeveral facts of in-
terest relative to the structure of Fishes and Reptiles. Havinggone through the examination of the anatomical character of fishes, we have the means of underatanding more fally the order of succension
and the mede of introduction of the different typea beological epochs.

I will now advert to some of the peculiarities in the farilies of Fishes. I have already stated in my last Lecture that the class of fishes is divided inte four Ordera, from the structure of the scales. But these pecaliarities in the structure of the acales are not the only characteristics by which these Orders are distinguished. For example: in the first groap, the Placoid, which is covered with enameled tuberclen apread over the skin, we have a skeleton constantly cartilaginous. This, though sometimos hard, is,never boay as in other fishes. Again, the vertebres on the central portions of the back-bone are also separated from appendage which stand above and below, so that the vertebral column can be taken out of the body like a stick. Here is a specimen. You see plainly on thesesurfaese the prominent characteristics of all fishes that have the whole aurface articulated. You observe this cevity and, opposite to it, a aimilar one. You see several vertebrie, one nbove the other, and these boles form biconical cavities. For the sake of a clear anderstanding I will repent what I have before explained. Such a portion of the back-bone of the shark is divided into a series of cylinders which are hollow io this manner. These hollow

cavities

 contact with each other are filled with cartilage. So there are herethe hard portions of the vertebre, and above them the appendages of the vertebral column, but separate from the back-bones themselves, and articalated in such a manner that they easily fell off.Another pecaliarity of all cartilaginous fishen, is to have their teeth loose, without mocketa, and only attached to the jaw by the skin. They are not inserted in deep sockets as those of other fimbes and higher orders of animals. This mode of insertion renders the teeth movable, wo that the shark can erect its teeth. The shark has not a single row, but five, six or seven row behind each other, and the first erect teeth are placed thus. On the edge of the jaw we have an orect tooth, and back of it namerons seeth whose point is turned bsckward As often as such a tooth is destroyed, the next tooth will take itn plece, so that there is a constant aupply. The rows of teeth are not always as dis tinct as in this instance. In many the teeth are united so an to form large plates by their junction.

In the skates the teeth are arranged in this manner; like paving-stones. This being the anterior
 margin of the jaw, there are constantly new teeth forming at the back as often as the front ones 'all of. There are sometimes as many as twenty or thirty in one row, all of wiblh are renewed in the same manner, and as the animal increasen in size the series of teeth grow larger. The series of teeth are oblique, and as they fall off, those which come to supply their place will fill up the whole margin of the jaw. Those back teeth are formed on a larger acale than those in front.

The order of Placoids containg two familieswharks and akates. These two familien, though
very different in form and atructure, have this in common-their gills are merely covered by strips of skin. There are as many oponinga as gills. In the common fishes there is only one opening in the gill and a series of flat bones covering the whole cavities in which the gills are contained. But in the sharli there are externally five, and nometimes six or seven
fimsures, each of which covered stripe of skin In the sl ates which
flat, the fi
 sures open ander the beads-in the eharks, on each side.
A knowledge of the detaile in the epractare of the shark is very interesting to goologiste. The great number of their teeth found in a fessil state, renders it quite necensary for the geelogint to know what differences in their structure the teeth indiofte. Their skeleton, being rather soft, is not often preserved in a fossil atate, but the teath being exceedingly bard, are very common in geological strata. In the tertiary strate mome are foumd exceedingly large. In this shark, which is aboat twelve feet in length, the teeth are nearly an inch long. Bome are found, having the rame form, which are several inches in hight and as
 much in width. In Malta, teeth are found meven inches long and four and a balt broad at the base. One would suppose that the shark from which it was derived must have been exceedingly large. Such is not the fact. They probably did not exceed nome living ones, being about twenty-five or thirty feet in length. It has been pposed that they were sixty or one hundred foet long; hat such is an exaggeration, caused by want of a proper knowledge of the corremponding living a pecies. Sharks of the greatest size bave not the largent teeth, but on the contrary, those having the smallest body have the largeat teeth, and it is to this tribe of aharke the fonsil apecion belong. So then we have no right to infer that the teeth belong to an extreordinary aized species.

The next in Ganoids, of which I have explained the character from ancient atrata. This drawing represents the ene which I had the plearure to "restore" from a single acale some yeara ago, and I here exhibit the outlines of that taken from the specimen itself. You will ebserve, on comparing thia specimen with the first outline I gave, how closely it agrees. They have not only enameled scalea, but they are rhomboidal in the same way as the Ganoids.
You have here one of the few remnanta of these ganoids, the gar-pike of Lake Champlain-found also in the Southern rivers. It is provided with sharp

conical teeth, and is extremely voracions. You can find all the pecaliarities which I mentioned, aboat the position of the dorsal and anal fins, in the voracions fishes. In those which have a short body, the dorsal fin is usually on the back and is of a larger size. The head is proportionably shorter and roander. The acales of the gar-pike are ao very hard that it is atteriy impossible to pieroe them with a nail. They are covered with the hardest enamel. The fin likewise is protected on either
odge with aimilar hard acelea, which prevent the breaking of the rays. Only a fow similar fiahes are found.
This genas Lepidosteus is pecallar to North America. It is found in rivers emptying into the Gulf of Mexico and the St. Lawrence. A genus ia also found in the Nile and Senegal called the Polypterus, which has numerons rays on the back.The stargeon is allied to this genus. Fossil fishes, of which a few amooth scales are found, differ from them by the position of their fins and the form of the head and teeth.
I have alladed to the pecaliar atractare of the vertebre in that genus where we have articulating arfaces of the back bonea, rounded on the anterior, and hollow on the posterior extremity. I have ahown you a series of vertebre of the back-bone from one of these fishes. Though it is from a large pecies, it is so small that you will scarcely be able to examine it at a distance. I ehow it to compare the form of theme vertebre with those of other fiahesthe ohark and codfish for example. In the form of their articulating aurfaces they resomble those of the crocodile.
I have here the vertebra of the alligator. You nee these rounded articulating arfaces. There in 2. bollow socket in which the sooceeding vertebres can fit, and the manner in which the two vertebree move is like a ball-and-socket joint;-precisely the mode of articulation in the family of the Ganoids. This peculiarity is more interesting, as these finhes are the only vertebrated animals existing at en epoch when reptilen had not yet been called into oxintence. And after the reptilea began to exist, those typen of fisher became no diminished that they were almost extinct, and at the present day we have only a fow remnants of them-in fact only two genera.
It is not the place to speak of the types of thome ancient fishes, and I would only allade to some more pecularities of the most ancient ones. to show that they are somewhat analogous not only to reptiles, but have some other carions analogies. These animals, with these curions flat bones on the head and behind the shoolders, have in their form some resemblance to tertoises, bat of a mall size. They have aleo some reeemblance to certain crustacea. They have been mistaken for the former by some and for the latter by othors. It is only since 1 had an opportuni ty of atudying minutoly their atructare, and finding come of their types more fiah-like in the
 etractare of their vertebral column, that I coald ascertain that this as well as that form belonged to the class of fishes. The analogy is so striking that it is possible to satinfy any one that this type will follow that, and that being a truefish, we must pecescarily conaider this extraordinary form as belonging to that olage.

At the first appearance of the class of Vertobra they bore such a resemblance to types entirely different from the fiehes now in existence, as to exhibit a mont cerions phenomenon in Natare, show-
ing us how that from the beginning all types were contemplated by the Creator, bet only called into existence gradually.

The ordinary bony fishes are divided, by the pecaliarities of their scales, into two Orders. Firat. those with hard, rough scales, called the Ctenoids, to which the Perch belonge. They have not only apines on their backa, but dentations on their scalea, and have been divided into numerons families, according to the ntracture of some of the head.bones. They are not found in general works, which may be an inducement to some to stedy them. We
 hatve here a proóperce. lum which is dentated or serratod. Then the opercalum which is the oext lower is caually dentated and provided with vplines, and two other bonee below the serraturse. That is the character of the perch families. Beride that, the perch have teeth in the upper and lower jaw, and upon the palatal bones inside the mouth, ar well as the bones of the skull. It in a most extreordinary fact that the bone which is known by anatomints to form the division of the nome in higher animala, called the vomer, resta apon the bones of the skall in fishes whick have no auch deep cavitien in the nose. The vomer forms part of the palate in the perch family, and is coverod with toeth.
Another family allied to this, the Sparoids, to which the "sheep-bead" belongs, differ in having no serratures along the edge of the preóperculum. This and two other bonen areamooth in their edges. but the opercalum han spinen, the back fin bes apines, and the sonles are rough. The $\mathrm{S}^{\text {cienoids. }}$ to which the weak-fisb belonga, hat the same characteristic of the op.
 ercular bone, and no teeth on the palatal bones.
One mont extraordinary family belonging to this group is the flat fishes, for it is the only family that is ungmmetrical in the vertebral column. The two sides are not equal. The one is fiat and colorlesn, u bile the other is awollen and colored. Instead of swimming vertically, they awim flatwise, on one side. They are distinguished by the fact that the two eyes are on the side that is colored. When young, in the egg, they are nymmetrical, bet when they grow larger, and oven very early, one of the eyen turns to one side-mometimes to the right and sometimes to the left. The eye tarns the moment the fish begins to grow. That wide which is exposed to the action of light is the only one colored. Though these fishes have soft rays, they have radiated, serrated scales, thereby making an oxception to the general rale that there is a correspondence between the bardneme of the raye and the estructure of the scales. The flat fiabes form an exception to the whole type of vertebrated animale, in their want of aymmotry. The name of the family is Pleuronectes.

The fishes with amooth acales are more nume. rous than any other typea, and are the type belonging to our day. Fome have had raye upon their backn. The Mackerel are of this clase. In them we fiad the following pecaliarity: Let this be the

body : Wo have here hard rays in the aame manner ae the perch. Namerous branchen arise and even divided rays. According to the rale I geve, this fish should have amooth acales. On the contrary it has serrated scales, but only on some parts of the body-the other portion is covered with emooth meales. It is, in fact, an intermediate type between the herring and the otenoida.

The family of the herring, of troat and of codian, all have the same scalen and soft rays. The family of Codfish in distingaished by having numerous divided fine-sometimes three dorsal and two anal fins, all of them with soft rays and smooth acales.The family of Eels has the fil continuous with the body.

Then we have the families of Herring and of Buekens, which differ in the following manner. In the family of herringe the body is provided with a single

whole class of Fishes. I will show a apecimen containing three forsil fishes. The scales in the fossil fisher are precisely the same as in the living gar. pike. The specimen is from this country-one from the collection of Mr. Redfield.
I heve now to introduce the clase of Reptiles.They are animals very diasimilar in their structure and appearance. At first one can scarcely underatand the likeness existing betwrean a snake and a tartle. Their skeletons in their external form are so totally different that a common oharacteriatic is by no means easy to perceivo. It meems almost imponsible that much heterogenous animala as froge, enskes, lizards and tortoises ahould belong to one natural diviaion; nevertheless the clans of reptiles is the most nataral groap of the Animal Kingdom. The extreme differences we notice between the groupa just named, dinappear more and more when we oxamine the distinct typers of those animals which lived in former epochs and are now oxtinct. Wo have now some animals which. by their form, atand intermediate betwen lizards, or crocodiles, and tortoises. We have other form even intermediate between the makee and lizards. The common anake has no foet; numerous ribe extend the whole length of the body. The numerons vertebrw have each a pair of ribs, and the atructure is a uniforme that in a transverse section in any region of the body, we nee precinely the same arrangement of the bonef and soft parte.

Some lizards, like anakes, haveno feet. In nome there begin to appear on the sides and underneath the abdominal cevity radimentary feet, or ribs, at
the extremities of which there is a hook. Firat We observe thene onlarged-then there are two fingern-then some rudimentery feet on the siden of the head with one, two, and afterward three toes, until wo have the common form of feet with five diatinct fingers. All pomsible intermediate atates between the existence of feet and the complete want of them is known among the living rep-tiles-nakes and lizards. The length and proportion of the body vary. Some are of extraordinary length; in others, in which the body is shorter, the tail in more separate from the body and forms \& long, tail-like appendege.
There is no longer any difficulty in tracing this form in that of the tartle, in which the body is broad, flat, Eith very short tail and neck. Here we have a type where the tail is very long and very similar to a enake's body, and here we have feet of conwiderable nize.

Again, in the frog the lege are of extreordinary length, being in many instances longer than the body. The medial region is broad, flat and short as in tartlea, no that the external form, where we trace all intermediate forms, should no longer be an objection to the union of all these animals in one group. Butin the intermediate forms we have poeitive characters by which they all agree and therefore must be clased together.

Theme characters are-first: the atractare of the heart. In this injected heart of a turtle you aee two red cavities in which the blood comes from the langs, and this black cavity from which the blood is forced into the langs axd other parts of the body. The heart of reptiles is divided into three oavities.
 Let that be the ventricle or heart proper: from the suricles arises a large blood-vessel proceedinginto the body of the animal and also sending twa vessels to the lungs. A large trunk arises from this cavity sending brawches to the respiratory organs. The main trunk, which carries the blood into the body, divides into nomerous brauches, supplying the head, anterior extremities and alimentary organs, and also the viscera in the posterior extremity. That blood retarns and enters one of the saricles, while the blood which goes to the lungs will enter this other auricle, so that the blood from the body is mingled in the common ventricle. Thus we have, going to the body, blood of a mixed nature. That which has become blood and has lont its vital properties by being used in the body, retarna to one of the auricles; and the blood which has become oxygearted in the lungs comes backyo the other aaricle. The venoas and arterial blood then empty into this common cavity, the ventricle, and are forced thence into the body, as well as the respiratory organs. Such a circulation is that which is fonnd in all cold-bloodod animale.

In the higher snimals the blood which comes from the body into this cavity passes into that, and does not mite with the arterial blood, but is forced into the rea piratory organs by a vessel distinct from that, and from the lungs comes back into this cavity, and from this into that, so that the blood coming from the body and reapiratory organis never mingles. This is a double circulation peculiarto warm-blooded animala.

Roptiles are cold blooded, the temparature of the blood never riaing higher than that of the

currounding atmosphere. Their temperatare ainks with that of the atmonphere, and when it is very low the animal becomes torpid and remains no during the cold season. Turtles, snekes, lisands and frogs sink into thie atate during the Winter, and their circalation is very mach diminished.

All reptiles breathe with longa, which are of a very peculiar appearance. I have here the lung of the enapping-tartle-it is sponge-like and fall of large air-cells. The air entera into tabes or air-pipes, which unite in one tube opening into the
 mouth and communicating with the nose. Hers is the lang of another reptile, the boa-conatrictor, in which the celle are beautifully seen, ninilar to the form, but more numeroun and not divided into largar cells. These two reptiles have azoh organs of respira. tion. We have seen in firhe only a rudiment of a long-the air-bladder. Hare we have the lang of a reptile, into which the air in constantly introduced, moving in and out am ofton as the animal requires air: bat the inspiration is not so frequent as in warm-blooded animals, and the quantity of oxygen consamed is mach less.These two charactors are susficient to distingaish reptilea from all other animals, and to show that, notwithstanding their extreordinary divernity of form, they are a very nataral class in their etractare.

Without entering into any more anatomical detaila, I would mention some pecaliaritien of the different organg.
Reptiles have been divided into four ordorsTurtles, Lizards, Snakes and Frogs. The first are named from the Greek Chelonias, the second Sawrians, the third Ophidians, and the fourth Batrachians. These terms simply signify the same as the common name, and are only used fer the aake of a common underatanding in different langages. The common name is juat good, only it would sometimes creato mistakes. For instance : here is a fish callod the gar-pike, which has a namesakejbelonging to a different family. Boit is necessary to have scientific torms derived either from the Greek or Latin-for scientific mem of difforent nations apeak diferent tongues, and it is essential to a thorough atrady or knowledge of the different typen of the Animal Kingdom that there ahould be a fized Clasaification, as the names in common use ameng us woald necenarrily change with different langrages.

The order of Cheleniann is peouliar from the ningular form of the body. The common turtle is covered with large flat cuirass-shaped scales, both above and below. These scales rest immedistoly apon the bones. The question is, what are these bones ?-

Turtles have been connidered as animals of a peculiar order, eonstracted on \& different plan from other animals, in hering their skeleton outside, and having bozes enalagons to no other animals.But it is eary in comparing to find what the brond. flat bones are. Here we have the indication quite plain: the whole space between the scales is not filled ap.

In all marine animaln the ribe do not enlarge the whole length but are only united near the backbone. The large, broad diso in nothing bat a aeries of ribe, and when looking internally they prenent precisely the alme relations to the central back-bone as in common vertebrated animals.
In the philoeophical comparisom of animale the mere dise is not suffient, bet will lead to frequent mistalies. On the anterior portion of the animal we have a aimilar series of bones something analogous to thone of the erocodile. The anterior extremities of the ribs unite in a series of middle bones, called aternal bonee. The lower cuirass of the turtle in nothing bet a series of thone bonees formed in the name manner as ribe. The whole middle region of the body is thus immovable between them. There in no possible motion of the ribe or aternum. In some terties only the anterior and ponterior portions are movable, and the animal has a head of montextreordinary form.

Here is a boad of a large green-tartle. From the oavities in it one might suppone the animal had a large brain-bat it is not mo. Here is a little bole through which the spinal marrow passes. These large covered cavities are only to proteot the large muscles which move the low erjaw. So that wo have a covering formed by the akull to protect the lateral musclem which move the lower jaw. The hoed is large, bat the apace for the brain small. So in reptilen, the, brain in not very large, and we have in this clase the anmorelative position of the different parts of the brain. The little quantity of brain remains uncovered by the amterior lobe. The only
 progreas in the form of the brain is that the anterior lobe of the brain is larger than the other, but the posterior part is
atill uncovered by it.
These tartlen form a natural group. They did. not exist very anciently-we do not find them beyond the oolite period, bat we find the next order, the Bauriana, at an earlier age, immediately after the coal ora. The quention arisel, Are the asurians, which are found below the oolite and above the coal, real lirarde? They have been mo conaidered, but I think tho analogy with lizarde has been exaggerated. In fact ell the reptiles found in the etrata below the chall have a peculiarity which the actaal lizard has not:-the toeth are inserted in cavities. Lisards have teeth anited with their jaws, but thene ancient eavrians have teeth inserted by a long root into a cavity; and we have the same structure in the crocodile; so that the analogy between the crocodile and lizard which was considered mo natural and close, is, I think, rather exaggerated. I consider crocodilee as one remnant of those ancient types of large lizards having, like reptilea, teeth inmorted in tho hollow cavities of the jaw. You see in this head of an alligator the character of their teeth very plainly. Most of them have fallen out, but in the fow remaining you see a long root projecting above these cavitien. Among lizards we have teeth which unite with the bead and there are never any such cavities for their reception. These reptiles should be called Rhizodonts-having teeth with roots.

I will mention the diatingaishing characteriatics of the alligators of the South, from the croc odiles of the East. You see the teeth of the lower jaw oome within the up-
par jaw, and when the jaw it cloned they unite in sich a manner that only the teeth of the apper jaw are seen outaideof the lower. In the crocodile proper you have the toeth closing in a difforent manner, cronsing esoh other, so that on a side view yeu see two seta of toeth-thone of the lower jaw coming ontaide thone of the apper. It is a fact for which we cannot account that all the crocodilen of the Old World have teeth varying in thin manner from the alligators of this continent. There is one species, however, in the Went Indies conatracted on the plan of the Eantern crocodile.
With this type we have to combine fossail reptilen, of which portione only are known.They have been described chielly by Conybeare, Prof. Owen, and other British Nataralista. It in in the oolitic series of Great Britain that they are mostly found. They are traly sigantic, some of them excoeding in size the largest terrostrial mam malis. Only parts have been restored. They aro denoribed under the name of Plesiosaurus and Ichthyosaurus.
I will only allede to amother of thene types, of which I have nome fragmonta, the precions gitt of Dr. Torrey. Here in a fragment of a teoth, portion of the jew, and some radimentary teeth 09 ming insidoways. These teeth are larger than any of those in the jaw of the living crocodile. Yoa see the portion of the tooth is larger than the whole of the other. Therefore we are allowed to infer that this animal was mach larger than any of the largost alligatora of this conntry. This woald be one of those large reptilen. It belonge to the genas Mosesaurus, foond in the cretacious strata of Europe. The pecalierity of the teeth is this: Let that be a portion of the jaw. Here is a large cavity for the teeth, which are gone. Here in a root of a tooth broken away, but the root
 is united with the bone so that it it not tally separated from the bone; bat that it was, at the time
 When the tooth was formed, wo see by the fact that mo mach of the tooth is preservod. Back of this there are the small teeth coming oat whose pecaliarity is to take that form. They bave two sharp edgen. This in a transverse section. The vartobre are of considerable size. Here you have one of the beckbones. The appendeges abovend below are broken. The back-bone of the fonsil is t wice as large as that of the largent orooodile. How onn this be ascertained to bo a reptile? It is oncy. You have these hollow surfaces. So this simple bone cal be referred to the olese of reptiles simply by the eharactor of the articulating arfaces of the vertebra. That it in a reptile and not a fieb in ascertained by the fact that the appendages were united to the vertebrw, as is seen by these fractures. Wo may ascertain to what genus it belongs bythe pecaliar form of the joints of the vertobre, which las soen in the next diagramp are obtusely triangular. The articalating sarfacen, thoagh concave onone and conver on the
other side, are wanally triangular, and that is the peculiarity of the genus Mososaurus.
It is by this simple pro-
 cons of comparison that the charactora may be determined, and if any one will investigate all the relations between such bones and Eselotons of a reptile, he will himself be able to restore the entire animal, giving the whole outline with great accaracy.
The number of fossil bones coming to light every year is so great that there is a greater field of investigation than there are stadenta to enter it, which shoald be an indacement for many more to begin such stadies. In this country, fossil bones have been atadied but very imperfectly. The Mastodon has been discovered here, and I have ne doubt there are an many bones remaining undoscribed an there were several yoara ago in many countrien of Europe, no there in ample room for investigation. Owing to the before-mentiened pecrliaritien in the atractare of the crooodilo-the form of the teeth and modification in the vertebrothone ancient types should form a pecaliar ordor by themselves.
The order of lizarde, no namerous in oar day, is of little goological interest, becanse so few fonaila have been foand to compare with exinting typen.
The next order in Ophidians. Having shown how gradanlly this order pasees into that of lisarda by the formation of the feet, the inquiry arisel. By what are spakes distingcishod from lizarda? for there are lizards without feat, and mnaken have radimenta of foet. In lizards the lower jaw in movable in ita articulation on the temporal bone, and can only move up and down. In the anake the same motion is possible, bat the two jawn in front can alno move sidewaya, so that the jaw can be -aparated considerably, and thus the mouth ean be enlarged indefinitoly. This is the reason why snakes can awallow animals of a larger diameter than their own body. Not only is their moath onlarged in that manner, but the posterior articaletion of the jaw with the head is auch, that the jaw can alide on the side of the head, and thon enlarge in that direction. The temporal bone is detached from the akin, and forma the joint of the lower jaw, which joint ia movable right and loft, allowing the snake to distend ita mouth enormoasly. Bat the uppor jaw is also movable, and in some, as in ven-- mous serpenta, there are movable toeth, uniting with the sac containing the poison which they inject through the tabe of the tooth into the wound made by the bite of the reptile.
Snakea have existed in former times. Prof. Owen has ascortained that in the London clay, fonsils are found allied to the boa-constrictor, as early as the deposition of the most ancient tortiary bodien.
The lant family is the Batrachians, which in 00 interesting in its geological bearings, and allo anatomically from the exteneive metamorphoses it undergoes, that I beg leavo to pas by the class of birds which is so well anderatood and is of less interest, and take ap the order of Batrachians for the next Lecture.

LECTURE XI. ${ }^{-1}$

Evamiaation of the Order of Batrachiens-Their Metamorphosea the Key to a proper Clasifieation of Animele In the Semle of Being...The importance of thif tey or principle nevar an yet known and epplisd.... Foadi Batrin-
 of flight is Birde.... Peculiarity in the Toen of Btrds-A Clee to the Diecoverien of Aacient Forma by their
 Whales ce order of Mammelis-Fomil Whalom... Tha Hydrarchos... Herbivorous avd Cernivorouninimale-Dif-
 feroncs in tholr almentary orgena....Tbe teetipof Redentua-The jaw of the Bedger.... Motiong of the jaw in ani-
 The Ruminesifo-Tho Rodentie-The givgular charncter of the Didelphides-The Carwivern-Sealn: Cargivora proper....The Quedrumana-Dirierence between a man and monkey.

Ladiss and Gentlemen: In the examination of the class of Reptiles, we have already gone through four ordern-viz : that of Rhizodonts, containing those gigantic fonsil extinct typer and the now living Crocodile; second, the Chelonians or Turtles ; third, the Sauriane or Lixards ; and foorth, the Ophidians or Bnakea.

We have to-night to examine the order of Ba trachicne. Thene enimaln are very numeroan, and of a ingular charactor, ewing to their mode of growth. They differ from the other reptiles in this-cthat their body is naked, without scalen, and the akin in soft. Bet what is the moat atriking feature in their character, is that thoy undergo a geriea of changea doring their life aftor they are hatched. The young batrachiang all have a long tail, hike lizards ; evon frogn and tonda, when young, have thin appondage.

The ordor of Batrachitan contains Progs, Toads, Ealamanders, and many other animals allied to Balamandera. Thero is an extraordinary difference in their external form, thowgh all agree in thin, that ftor they have encaped from the egg they have a long thil ciroamseribed by 2 fin, and in their early Etage they have no foet. Soon after they are hatched, the feet begin to appear, and in mome the tall diappears, and they almame the ahort, compact form of the frog and toad-while others retain their tail. Again, when young they all respire through gills, which some lone, in later life, and breathe through lange like other reptiles.

In there few facts we have a mont important indication of the value of character throughout the great diviaion of the vertebrated animale. If my object was not to illuatrate the principles of Zoology, I would enter into more detaila in the examination of the different specien and their extermal characterinticn; but theas can be learned from books. In theso facts of the ntructure and cbarncterintics of the Batrachiane, we have illastrated come fundamontal principlea of clasaification-and, in fact, a new principle which I consider an mont important for that objeot. Animale have terally. been clasified by the difforence in their atracture, which princlple in perfectly correct; bet the diffculty is to maertain by a knowledge of their atructure which combination of orgena-which atrac-tare-belongi to the higher and which to the lower order. We have had no teat for amoertaining thin. The good opinion mea have of their own enperiority over the roit of the animal creation, han induced zoologista to consider thone animals more nearly allied to Man to be the higher order, and thowe that differ more widely from this type to belong to the lower ordern. Rat the actaal scale by which wre measare the degree in the gradation of animale is found only in their metamorphoses; and anhappily this teet has not been introduced into our clafsification as it hould have been. The facte we know already in relation to the etractare of Batrachians and their metamorphoses are sufficient to give a perfect key to the clasification of the two lower clames of ver-
tebrated enimaly and the maccention of any order even with the mont minate detaile.

In this diagrem I will sketch not may one particular animal, but the general octine of a group. When the young batrechian eacapon from the egs the general outline is elongated, with a tail, but

without legn. Soon lega will begin to be formed-

and we then have the form of a Salamander. Them the lege will increase in cize and the tail will dian-appear-and we will have the form of the frog and toad. In the beginning there are external appendages for respiration-the gille. Thene diaappear entirely in the alamandera, froge and toada, and romain pormanent in the othern. The eariier stagen

in the growth of the animal will be considered to be very analogons to the lower grad on of animalu-and in the full-grown state, to the higher. Let us aee what are the relations of theme to other vertebrated animaln. In it among birds and mammalia that wis find an analogy to these animala? Certainly not. It is among the fishea we have a nimiler utructure. Therefore wo shall consider fahes as lower than those reptiles which begin with the characterinticm seen in fachem, and progrens to a higher devalopment. Here is evidently a test by which wo know that the clans of finhes ahoald atand lower then reptiles, which, otherwhe might be donbted. The fact that some respire by gilla, is not of itaelf maficient ovidence that thoy itand lower or higher. There are nome reptiles that breathe by gill their whole hife. The fact of the fish-like forms in the young batrachian is suflicieatly indicative of the position which fisben should occupy with reference to reptiles and other vertebrated animals.
Let un again examine the different familion in the order of Batrachians. We have tome families in which the form in than:

Firat external gille, and, having lont them, a very minute fin appeari, and afterward ill-shaped, imperfect foet. Then in some, whome body is larger, we will find the fingers more complete and the lege more developed, and larger and 'more complicated

feet. In others the tail will graduaily shorten, and the fin circumscribing it will gradually disappear. The gills at length will disappear, and the lega attain such a size an to become the main organs of locomotion.

Here, thon, wo have-in anch a series and gradetion of forma, and in such a relation between these forms and the changes which the frog undergoesthe actual indication of the order of classification in the arrangement of all the families. And wherever Embryology-the knowledge of the changes in the young animal-has taught us the nuccenaive forma, we may bave in these changes important hints as to the classification of types. Therefore I think the principle of metamorphonis, as a foundation for classifieation, is the best and most striking gaide a soologist can take. But, as I have said, this principle has been very imperfectly understood, and in fact never applied as one upon which classification in general could reat.

There are several fonail Batrachians, and what is again intereating, is that the larger ones and those which have appeared earlier, belong to the older tertiary strata. It is in the more recent tertiary bede we find those which show a closer affinity with frogs or tailess batrachians.

I will not enter into farther details. My object in apeaking of the Batrachians was to illustrate the principle of classification, derived from a knowledge of the metamorphoses in any portion of the Animal Kingdom. In another Lecture I shall show that this principle will be of direct application in the order of succession of the different types of the Animal Kingdom. Though we have not investigated all classes, there are sufficient facts obtained to abow, even now, that this is a fundamental principle upon which classification can rest, and that this pame principle is the one in the order of succeanion of typen in all geological ages. (Applane.)

The next class is Birds, and next the Mamma. lia. These two classes have certain characteristics in common, of which I will first speak. They are both warm-blooded animals, and they both breathe with lungs. Birds, as well as Mammalia, have large air-sacs celled langs, which open externally through the mouth as well as the nostrils, in the same manner as reptiles; bat there is this fandamental difference between reptiles and birds and mammalia. The latter two classes are warmblooded. The difference in temperature is undoubtedly owing to the greater amount of oxygen consumed in respiration.

Mammalia and birde agree again in the large size of their brain in proportion to the body. It is so mach greater than in reptiles as to be quite striking. In comparing, for instance, the brain of the sparrow with that of the largest sea-turtle, that of the sparrow is found to be about half the size of that of the tartle. The difference in proportion to the size of the two clanses is as 100 to 1.

The peculiar characteristics of the clase of Birds
are that the antorior and posterior extromition are entirely diasimilar. The former are winge-the latter lega. Neverthelens the atractare of the winge and legs in birds is precisely the mane-the bonea exactly correspond, and the true difference is owing to their arrangement. The large thigh bone, aniting with the back-bone, correspunds to the shoulder. The thigh-bone corresponds to the humerus-the leg proper corresponding to the fore-arm-then the foot and fingern correspond to the hand. These parts are covered with feathers, and the difference which is obvious in the bones entireIy diappears in the external limbs. This analogy in the anterior and poaterior extremities can be traced throughout the great type of the vertebrated animals. The short fingers on the foot of the bat, correspond precisely to the long fingers of its hand, even to their arrangement and number of benen, and the difference is only in the manner in which they unite tegether by membranes.
There is no class among vertebrated animaln mo uniform as birds. What I have said applies to the

> whole class-they differ ouly in the shape and form of the bill and the fingers, and is the proportion of their bodies. In the parrot, which is widely differont from the ostrich, you will find the same neok and back bonee, the same arrangement of tha wings and even the mame aumber of articalations in the toes.

In their respiration, they differ from Mrmmalia. Birds, in order to fly, must necessaarily be very light. Toobtain this, they are provided witha largeair sac, extending from the lange into the abdominal arvity, and even into the bones. The bones of the arm in birds are hollow, commenicating with the sir sace of the lange. The reason why a bird falle when its wing is broken, is because the air within the cavity no longer resists the preanure of the chent. If you sever the bone of the wing, yon will hear the nir whistling through the broke

bone. It is owing to this arrangement that the specifie weight of birds is 80 mach diwinished, and they are ensbled to soar through the air with such ease.
Only fow birds are doprived of this faculty-ach as the ostrich. In this the aternal bone in quite flat and withour the pecaliar projection which is seen in other birda, to which the large muscles are attached that move the wings. I will draw s transverse section of the breast bone \square of the ostrich. The
 arface is entirely flat and here is the cavi-
 cy for the langs-hereare the ribs and here the breast-bone entirely flat. Js other birds there is the same arrangement of the ribs and breast-bone, nod there is a large ridge rising from the middle, nud to it are attached the broad mascles which move the wing. These mas cles are well known as the white meat of the fowl. There in a con stant proportion in the extent of this bone and the power of flight in all birds. I will onter a little

farther into details. Let this diagram represent
 the beokbone and ribs attached to it. There are edditional bones not found in other birda, passing from one rib to another, preventing the compres. sion of the chest, which would other. wise modify the reapiration, by diminishing the quantity of air inspired.
I have mentioned that the fingors, or rather the toes, were similar in all birds. I will parsae this point, as it is the only one upon which birds have acquired a geological interent. Many yeara age Pres. Hitchoock of Amherat College discovered enrionatracks apon oertain rocke in the Conneotiont Valley. He oxamined these improssions and pablishod some diagrams of them, maintaining that they were the footprints of birde. I believe thin appertion was received with an mach incrodulity in this coantry as in Europe. He has for years been struggling against opposition in reforence to hin assertion. To himaelf, as well as to a fow individale who had confidence in the fixity of the lewn of Natare, the evidence was astisfactory. At length his views have been fally borne out. It can be proved with as mach certainty that birde have oxisted an oarly as the deposition of the new red nandstone, as if we saw them-though only the tracke remain, like those left on a sandy beach. These tracks, were made long before Man was created, and the evidence is beyond the slightent doubt. (Applause.)
The evidence is this. The toes of birds are always two, three or forr in number. When there are four there is one behind corres ponding to the thumb. Let this represent the foot-

In the posterior finger there is one bony articulation and a nail-in the first finger, two bony articalations and a nail -in the secosd, three articulations and a nail-joint-and in the third, four articnlations and a nail-joint. There is not another animal in which the
 namber of artisulations is such an in birds. Here we have ouly three fingers. The first bas three, the second four, and the third five articalatiog jointe, including the nail joint.In the only bird which has two fingers, the African ontrich, the firat linger has four and the second five joints.Now in the new red sandatone of the Connecticut Valley, the impressions lelt show plainly the joints of thetees and num ber of articulations, which correspond precisely to the fore-
 going arrangement. This is satisfactory evidence to every anatomiat that the impreasions were from birds only. I do not maintain by this that President Eiltchcock has nhown that they were all birds' tracks. There were alao impressions of other amimals whose tracks do not agree with those of the birds. But there are tracks of birds ranning over wet aand, that have been preserved by a deposit of mad upon it, which is enough to prove conclaaively to the mind of the geologist the existence of animale-thoagh there are no remains at all. These results are satisfactory, because they promise more information concerning the true history of geological muccension on the surface of the globe. Bince the ripple-marts of the ebbing tide, and the slightest impressions of the feet of animals can be recognized, we have evidence that the time will come when wo nhall know all that has transpired on the narface of the earth, at a period when Man did not exint, and we can reeconatract the form of the whole

Animal Creation only by these mlight ovidences.(Applaze.)

The last clase of vortebrated animale of which I have to speak, is the Mammalia. It is a olass in which the types are almont as diverae as in reptiles. We have, in this alass, animals provided with fins, others with feet, and others with wings. There are some which have external horns of large size, some with amooth skin, and othere covered with hair. Though their external sppearance is extremely different, they all agree in this respeot: they have warm blood, like birds. But they have no air-ate extending into other cavitien of the bedy. The breast is divided by a large partition called the diaphragm, which eeparatem the reapiratory cavity from that in which the other visoera are contained.

Birds lay egge, while the Mammalia bring forth living young. It is apon this ment important differenoe in their cheracter that the redinion of mo many animales so widely different has boen determined. For example, the Whales an well as bate bring forth living young and nourish them with milk. The similarity of their general stractare is closer than would appear-owing to this peenliarity. The internal atructure of the whales is the same al the higher Mammalia, and though they have been conaidered as fishes they have no affini. ty, butoaly an external analogy to that class. The whales are really much more allied to Man than to any of the fish tribe.
The distinction between analogy and affinity is, that the former indicates only an external similarity ; bat the moment we investigate the internal atructare of the whale we find such a striking resemblance to the Mammalia that we call it affinity. So then whales are analogous with fishes, but are traly Mammalia. Even this analogy wtih fishes is much less than it might appear. They have fing, bat for a different use from fishes. In fishes the large fin at the end of the tail is placed perpendicularly, and clesvea the water from right to left, producing a forward motion only-while in whales this fin is placed horizontally, and its motion causes the animal to rise or sink at will. And this arrangement facilitates their respiration, for they enonot breathe except in the atmosphere. Fiahes can rise and sink, but only slowly, on account of the perpendicular position of the tail; but whales cas rise rapidly to the surface to breathe the atmonpheric air.

This is theskall of a dolphin, one of the whale tribe. It is widely difierent from the clans of fishes and is provided with uniform teeth. The whales are, however, the lowest order of Mammalia, as is indieated by the structare of their other extremities. They have anterior feet, bat no poaterior. They have fingera, five in number, as in other Mammalis, bat united by a thick membrane forming a fin. The structure of the caudal appendage, and in some of them the existence of a dorsal fin, shows some relation to fishes, which pata them in a lower grade, bat atill their true afinity is with Mammalia.

Whales have existed in former times. Mont extraordinary sized fossil types are found in the South ern parts of this country. In Alebema large apecimens have been discovered. which unfortunately bave been described by an ignorant German naturalist as the remains of reptiles, and this diacovery of $s 0$ mach importance, has been lessened jn intereat by the unsoientific manner in which they were deseribed. Bat lately Prof. W yman, a young nat-
aralist of Beaton, and Dr. Gibbs of Bouth Carolina, have given a scientific deacription, showing their essential etracture to be that of Mammalia. And atill later, aince thoir proper place hae been earigned, a skall has boen discovered, showing the pecaliar rounded form of the postorior part of the head, giving another evidence that the remains are those of a apacies of whale, and not those of a reptile called the Hydrarches. The existence of whales dates as far back an the cretaceous epoch, and many have been found in the tertiary strata. There is a diffcalty in determining the species of these fossil cetaseans, on account of their large size. It is much oasier to oompare smaller specimena.
The Mammalia are divided into two other large Orders beride that of whales: the Herbivora and the Carnivora. There is a difference in those which live on vegetables and those which devour animals for food. The form and atractare of the teeth for grinding vegotable food and for cutting and devouring living animals-as almo the alimentary organs for digention, which require the foed to undergo a procons of assimilation-are very different in the two Orders. The difference between the food and the uabatance of the body of an herbiverous animal and the modification it has to undergo to become asaimilated, render the digentive organs mach more complicated in the herbivorous than in the carnivorous tribe.

Again, the food of these two orders is so different in the variens families, that we find numerous farther modifications in the operations by which the food is prepared before it is swallowed. We heve, for instance, in the gnawing animala teeth entirely diasimilar from those which act upon the sarface of
 the jaw. This is jar of the beaver. Yousee the two anterior teeth, both in the apper and lower jaw. Then there is a space deprived of teeth, and in the pos. terior portion of the jaw We beve the grinders. Animals with such jawn, and they are very numerons, are called Rodentia. Rate and squirrels are of this group. Rebbits and hares have two anterior teeth in the lower jaw. and foar or five griaders on the right and left side of the posterior part of the apper and lower jaws. The

first are called incisors and the second molars. We find such only among herbivorous ani. mals, while in the carnivorons we find a third kind of teeth: In the jew of the tiger you bave in front the incisors, and in the posterior part the molars ;
bat beride these, in the anterior position and on the siden, there are four large teeth, called the

eamine teeth. They are those with which the animal seizes and retains its prey. In the badger .the articulation of the lower jaw is ao powerfal that
the jew cannot fall. There is a groove into which the enlarged end of the lower jaw in introduced, and closed by the apper so atrongly that they are kept in their natural ponition, and even aftor the noft parti are remored, the jawil cannot be dirjoined.

All carnivoran animals can make only apward and downward motions of the jaw, with a very slight lateral mevement, while thone which live upen grase have, beside these, a lateral motion.This is especially evident in raminating animals. All the herbivoroas animals which have a complionted stommeb, from which the food is retarned to the mouth to be ground over again, have no eanine teeth-only the large molar teeth, with no incisors

in the upper jaw and five in the lower. Deers, elks and cows are of this family, having no incisors in the upper jawn, andno canine teeth at all.
When I asy no herbivorose animale have canine teeth I suppose many have thought of the extreordinary tusks of the elephant, which are placed in the same ponition as canine teeth in other animals. In this head of the Barbaroasse appear canins teeth of extraordinary size, but you will readily perceive the difference between these and the canine teeth of carnivorons animals. They are not used to aeize the prey. They are carved upward, and are used for other parposes, beside being an ornament to the held. In this bead of a boar, from the Island of Bor neo-the Barba. roussa-they are carved like horus. In the elephant they becomelarge taskia, oorrenpond ing to the canine teeth, bat are not ased to perform the oflice of canine

teeth as in the Carnivora.
Among the Herbivors we will first diatingaish the large family of Pachydermata, in which the fingern are covered with a hoof. The horse, the elephant and the rhinocerom belong to this family. They have grinding teeth of a large size. Some have many and nome very few. The elephant, the largent of the Mammalia, when foll grown has only four molar teeth-two in the upper and two in the lower jaw. The young elephant has twice as mas-ny-four in the lower and four in the upper. This difference is easily explained. The new téeth are
 not formed ander the old ones, but bohiad, and as they grow they nove forward, firat the anterior portion of the woth appearing above the bone of the jaw, the posterior portion being still covered
with boue. As they
come forward they displace the ocher teeth, the anterior portion ancoessively falls awty and the posterior comen in gradually. In the full-grown animal there are only foar maxillary teeth in the whole jaw and two tunk, making six; bat these are remewed constantly, co that after the second pair has taken the place of the firat, another will bo formed behind. Bo it is not trae that the fall-grown animal has only four teeth, forthere are new ones conmtantly forming behind. They have now eight and now foar teeth, and when fall-grown there are only foar left.

The family of Pachyderms is highly interenting, beoanse it is to thom we must refor many of the gigantic torrestrial animals feand in the tertiary atrata. They are quite nomerons, and it is these which have been for the firattime reconatracted and
 the Anaplotherium, is sim ilar to the Palmotheri nm-but of a slende frame, and the body iadi cates an animal of quicke motion, while the formen whs more heary end alow
illastrated so admirably in the immortal works of Cavier. We have here the remains of the $P a-$ lootherium, an snimal allied to the Tapir in the form of its hend, and grinding and ca-

The main difference is in the arrangement of the teeth. There is no vacent space between the incisors and canine and molar teath of the latter, but in the former you see the canine can crose each other and fill the vacant spaces when the jaws are broaght together. These animals have never been found entire, but the skeleton has been drawn from related bonem. Never was even complete head found of a Palsantherium or Anaplotheriam. They have been rêconstracted oven from much more imperfect fragments than are now contained in the Musenm of Paris. The difference in the animals is notonly in the teeth bat also in the feat; the Anaplotherium has three fingera, the middle fing er being much larger than the lateral ones, while the other has two fingers only. The older pachydermata found in the gypsum are not of gigantic size-the largest is not greater than the horse, and some are as small as on ass. But in the more recent tertiary bods, other genera of this animal have been discovered, such as the Hippopotamus, showing the same characteristics in the canine, incisor, and molar teeth. And not only isolated teeth are found, bat in the Val d'Arno, near Florence, complete skalla have been found larger than the largest specimens known to naturalista, and most of these are preserved in the Museum of Paris, which contains the largeat and most complete collection of fonsile.
Several species of the elephant have been found -and what is most remarkable, they lie in the coldest regions of Siberia and the most arctic portion of this continent. The apecies is similar to the Asiatic and African elephant, so that we cannot doubt that they lived in a mach warmer climate than that where they are now buriedthereby proving extraordinary changes in temperature in those regions, and more particularly as it is evident that they are baried in the conatries where they lived. The best evidence of this is the fact that one of these elephants was found so well preserved that after disinterring the body, the flesh was actually devoured by wolves. These wellpreserved remaing are numerose in the North of

Acia. Parras, and more recently Admiral Vrengel, when visiting the White See, mays he had to trevel for days over remains of these fonsil elephants and rhinoceri and hippopotami, gathered on the beaches mos actually to form hills. It is in the frozen region of siberia that the soft parts have been found. The hairs, akin and even the mueclea which are known to exiat, ahow plainly that they must have been auddenly baried after their death, and could net heve been dragged from the tropieal rerions.
There is a gence of Pechyderma, the Mastodon, which is entirely extinct. It is sometimes called the Mammoth, batimproperly, as that name should be remerved for the fomsil elephant of Northern Asia. Several apecies of the mastodon are found in this country, Burope and tropioal America. The largest apecios is common in this contiment and appears to be of recent geological dato- $\mathbf{s o}$ recent that few geological phenomena can have taken place aince its extinction, mo that it is even a question among geologists whether this species has not lived within the existence of mankind. This is a pendant quettion apon which evidence is not aumeient to determine the facts. All this show how recently anch animals inhabited this continent, and how etapendoua the changes that have occurred on the arface of our globe.

Next to the Pachyderms comes the family of Ruminantia, of which the Northern Elk is one. The horns of the elk are flat on the internal margin and with projections on the edges. All the raminating animale are characterised by the want of incisors in the upper jaw. There are two groaps : those which bave compact horns which falloff every year, and those which have hollow horns which are permanert. These horns atand upon a bony projection formed of a horny substance, but different from the enamel-like substance composing the horn of the dear. -A apecies of very large aize has bean fousd.
The family of Rodentia, containing many minute species, among which the beaver is the largest, have only two upper and two lower incisors.

One type in the class of Mamamalia has puzzled naturalists exceedingly, being similar in one respect to mammalia, and entirely dissimilar in many others. It is the family of Didelphida, containing the kasgaroo and opossum. This family has one pecaliar character: they bring forth their young in a very imperfect state, and they are afterward introduced into a large pouch under the skin, where they remain till they can provide for themselves.Bat, except this common character and the fact that they have a common atractare of the brain, they differ widely-some having the structure of the teeth like carnivorous and others like herbivorous animala. Some are, in fact, carnivorous and others herbivoroas, and it is probable that a higher consideration than that of food will prevail to make these a natural group. The whole family of these Didelphides, except the genus oposaum, is pecaliar to New. Holland, where also numerous fossil speciem are found. The opossum is the only species which is a native of this part of the New World. There are some few apecies in South America. In New Holland the species are quite numeroas and extremely varied in the strurtare of their teeth and alimentary organs. The fact that the fossil species are numerous also in New-Holland, shown that the opossum has a relation to that type, as among fossils in that country we find almost none bat the Didelphides. Only one has been found in the plaster of Paris, and no one elsewhere.
The next group is the Carnivora. In these we observe distinctly the cutting canine teeth and the slender claws adapted for seizing the prey. This
characterintic is particalarly atrong in the cat tribe. The claw which terminaten the toen is arched and abarp to an to be used an a fang.
The onder of Carnivore containg fanilies anffaiently different to be dintinguished. We have firat the family of Seals, which heve sll the stracture of Carnivora except thet their fingern are anited to form fins and the ponterior extremitios are exceedingly far back.
Next the Carnivore proper, which have the fingers divided, the lega long and the cutting teath moot atrongly daveloped. Thene cernivora have been mamerous in former ages and de not differ me widely from living cernivora as fonall herbivora do from the correa ponding living group, and when appeaking of the order of unccension in the dext Lectare I aball show that the nearer we come to the actual types which prevail apon the sarface of our glabe, the lean namerous are the correnponding fonsile.
Another family is the Bats, and differ chiefly by the form of the anterior extremities. They have foar fingern which unite by a mombrane, while the thumb is eoparated and is used an a meara of enaspending the animal in caves, and for the parpose of crawling. Daring winter they enapend themselves by their hind feet.

The lant family, the Quadrumana or Monkeys, begin to approach so near to Man thet Linnean could not find a common obaracter to separate the monkey from Mankind. (Lnaghter.) It is singalar that the firat nateraliat of the patcentary, the one
to whom we owre all our princip'es of modern clesnification, was incepable of diatinguinhing by characters exprensed in worde the true difference botween some of the higher monkey a and Man, bat has oven placed one opecien-the Chimpanzee-in the seme gente an Max, under the name of Homo lar. It is only by clone enetomical investigation we can learn the difference. Now it is eany to understend it to al nover to miatake a monkey for a man again. We have two hapde and two feetMonkey: have four hindn. Bat, some will ask, what differenoe is there between the band and foot? It in not merely the length of the fingersfor the tingers of the hand of the fore arm of nome monkeys are shorter than thowe of the foot. The difference is bere: We can open and clowe the thamb with each auccessive finger, which we oamnot dn witn our toen. (Loud applause) It in to this characteriatic in the haman band and foot that Man owea his superiority over the lower cre ation. The fact that we have two feet allowa na to stand apright, and while standing to ane thone delicate organs-the banda. Again, this upright position enables Man to move the head freely in all directione. The very fect that we have not fonr hande, aud that we stand apon our feest, and in that position our hande and head are in equilibriam ou our vertebral column, moving in all directions, gives to Man all his superiority over the Brate Creation, both mentally and physically.

LECTURE XII.

The Geosraphical Distribution of Animale-Animaly all limited in the habitation-Fiabea on both shoren of the Atlentic perfectiy, ditinct-Bpecien more identical near the Poles, but the Identity lont as they approach the Equator.... Peculiarity of the Didelphiden of Now-Holland.... Modifiontion of Typer not caued by climete.... group of Fiahes peculiar to the Indian Ocema....Different varieties of Wen circumseribed in the Natatel Boancarion of Animal Groapa....The Order of Succomion of Typer in Geological Timell-Strate of difforent afea contain differont epecies...The renalta of observations of Geologleta and Zoblogitte-The Primery Rocke....Secondary Strata....Tertiary Bede....All contain different Speaies...The Opinion that Animala meceed each other ia regnlar gradation entirely faico-In viow of this fact some dony all order of anccestion-Illustration of the Order of Sacceman....All the Invertobrated Clanes and one Class of Vertebrated foand in the beginning-illagtrations of this fact....The firtit typon the hitheat in themsolves.... Reptilea mitch frat existed ambame all charactert....A this fact....The in the fertebrated Animale which in not foand in the Invertebrated.... Man the lantractert....A -No farther progreas to be expected.

Ladies and Gentlemen: Before proceeding to the consideration of the abject upon which 1 intend to epenk this evening, I will limit myself to a very few remarke upon anothor subject, which I would gladly have introduced before thia time, if it were not so axtebsive that I could give no notion of it without ontering into very minnte details. I mean the subject of the Geographical Distribution of Animals. It is, perhsps. necenaary to know nomething of it in order to anderstand fally the relation, the distribation, the atractare and the order of saccesaion of typen; and, as I have to introduce the ubject of the order of auccention of types into this Lectare, I will merely mention the geaeral resalts of the recent investigatione apon the geographical distribntion of animale, withont giving the facte upon which these resulte are foanded. I beg yon to a.cept them mat resting upon inventigation as sccorate an any that ean be made in the department of Natnral Hiatory.
Animala are all limited in their habitation t; some particalar spot on the warface of our globe.There are few apecien existing over the whole extent either of land or warer. Thene few apecies belong to geners in whioh it in very difficult to parceive apecific differencer, and it is atill ponaible that those apecien which are thenght to be so widely disporsed, are neverthelenis to be limited to
soma particular apot, whon the minate differencea thown in their charactera shall have beon fally ascertained and establlahed. Again : Bome which eppear to have been originally so widely diffused have been acattered over large areas ander peculiar circametances, which are not natoral to the apecien. But leaving those fow specien out of conaideration, we can with correctnem ansert that all mpecien have a limited habitation, and that mankiod only are diffased over the whole extent of the aurface of the globe. There are verietien of epecies in the coldent climaten of the arctic regione, an well an ander the barning san of the tropical zoae, while there is no enimal type which is distribated in a aimilar manner to the type of Mankind, all over the earth. The ocean, which is the most oonvenient mode of commanication for Man, bas not been an eary mediam for the diffasion of animela frem one ehore to snother. What will perhaps astonish come of my adience is neverthelens perfectly evident from rocent iovestigations;-fishes on both shores of the Atlantic are perfectly distinct. There in not one apeciea found in the Mediterravean which occarn on these shores: not one specien occarring on the shorea of France ia found south of Cape Cod; I do not maintain that there is not one apecies in the northern shores of Enrope identical with those of Cape Cod. The farther north we proceed, the more
mpeoies we find identical in both Continente, from causes which I am now about to relate.
There is a certain extent of land in which all animals in the different reginds of Earope, Asia and North America are found to agree. In America they oocar lower south than in Rarope. where we have at the 70th degree of north latitude, the same mean annual temperature of 82 degrees Fahrenheit, an in Amerioa in latitode 50 degrees- 20 de grees farther soath.
This is the northern portion of this continent,

and the corresponding portion of the Eastern Continent. Within these bouadariea [the dotted lines in the apper part of the diagram] the animale are identical; eeven the aquaticanimals in the seas are also identical, and extend farther eoth than the land animala. For example, we have the fishes of Baffin's Bay extending along the sheres of Norway, Scotland and Ireland to a lower latitude than that in which the identical laud animala in the Asiatic and American ice-fields are found. Indead, we have some of these arctic fishes coming as far south as Cape Cod, and occasionally still farther.There is no identity between the main portions of the two continents, bat aroand the Pole there in a region where the animals of either verge of the continente are identical.
A. soon as we go farther Borth we find in the temperate zones of Asia and America the animals all become distinct from the arctic animals and differ among themselves, so mach so that those of the temperate region of Earope are diatinct from those in the same region of North America. gtill there in a great likeness between them, so great that the first settlers of this coantry gave them the names of Earopean animals. You have the fox, the bear, the deer and the marten, which are so many names of European animals. In fact ell the valgar European names are applied to your own animals. But notwithstanding this, the animals of the two continents are only analog jus, and as apecifically distinct as some allied apecies are distinct among themselves. For example, two species of foxes are found in Europe, -the common fox, and the jackall on the shores of the Mediterranean, differing in the asme manner as American from European foxes, or as some in Central America differ from those in this region. Thus you see that as we recede from the cold olimate of the North we find animals gradually becoming more and more distinct, and showing a certain analogy which is very striking among certain types, though leas so in others. I may go so far as to say that the geners are the same, though species differ.
As moon as we reach the tropical regions we bave not even an analogy between the genera. Animala of Tropical America and Tropical Africa and Southern Asia differ materially. We bave no such genera ae the hippopotamua, rhinoceros and elephant in Central America, nor do the tapir and llamaexiat in Africa. There is only the camel corresponding to the llams in Tropical America. All thone in the tropical regions of that world have no analo. gous types in Central America.

Al we recede to the temperate regions of the

Sauth, we return to a greater uimilarity of types In the eouthern extremity of America we retern, 2.6 it were, to the types in the Arctic regions. Buts the sosthern poist of Afrios is peculiar and distinct in its animals, and the Continent of New-Hollasd is so exceedingly different from every thing olse that there is a combination of animals having no analogy with any other groups in any other spot on the globe. And indeed what is atill more oarious, is that the didelphides found in all parts of Now- \&iolland cocur often in New-Guines, in those warmest portions of New Holland, and also in the temperate regions, so that wo have here a most atriking evidence that these modifications of ty pes are notowing to temperatare, bat that they are regalated by a higber design, one which escapes our observation, unlesa we refer it to the primitive Law of all existence.

I would not go beyond theae few remarke, ooly to mention that even in the Paeific there are aimilar laws of distribation; and animals in the northern portion are identical with those on the Aaintie and American shores-while in the temperate and tropical portion there is no analogy at all.

Some marine groups of animala are circumecribed in narrow limits, though they are at liberty to a wim in alldireetions. There is a groap of fishes common in the Indian Ocean, very little known in this part of the world, and not represented either in America. Earope or Africa, bat confined about the large islands between New.Hollend and Indie Proper. In this little group of islande there is a family of fishes circumscribed and not extending into the Pacific, nor even all over the Indian Ocean.
This showe again how limited some types can be, notwithstanding the power they possems of traveling about in all directions. Far from considering this power of locomotion a reason for the spreading of animals, I think it in only a canse for their keeping within definite boundaries. Being at liberty to change their location they will keep within the most congenial boundaries, and not be acattered at random. That the egge of fiahes can be carried by carrents is true, but we do not find that this influence causes the fishes to be so diffased; bat, on the contrary, they remain witbin what appear to be their original boundaries. In fact, we caa come to no other conclusion than that they have originated where they exist.

We bave another fact connected with this which is highly interesting, and perhap! will throw some additional light upon the origin of Mankind. The different varieties of men are circamscribed in boundaries similar to those occupied by natural groupa of animals. In other words, the different races of men cover the nataral boundaries of the definite associationa in the Animal Kingdom.
But, without going into details in this investigation, I will proceed to elacidate the subject of the Order of Succession of Types in Gealogical epochs.
It was necessary to show that all animals ars limited to certain natural boundaries, which appear to have been their original location, in order to show the importance of a knowledge of the characteristics of fossil animals. If it was not the fact that all fossil avimals of New.Holland are identical in ty pe with those now living in the same locality, and that the fossil types of Boath America agree preciaely in type, though not in species, with those now living in Brazil, I would long since have left the sabject.

The subject of the order of auceession of types in geological epochs, is one which has been considered by geologists in a different point of view from. that in which I shall now consider it. Perhapa it is proper for me to make a few remarks upon
the value of investigations made under different views.

Geologista heve for a long time known that fosaile in different styata are not the same. All the apecies that have been found have for the most part been fully described, figared, and well compared with liviug animals. It has been shown that strata of different ages contain no identical species.Nevertheleas all I have now to say hae been mentioned in works in which these facts are related.Geologiats have considered fossils by themselvesan medala by which they can ascertain the agea of geological strata. They have, in fact, been enabled by thees fossils to find out whether certain strata of rocks are older than others. What I have found on investigating the ame subject, has been, that the order of that succession corresponds precisely with the gradation of types of animals when clas. aified according to their structure. Zoölogists have done an extensive work, in connection with anatomiata, in investigating the structure of animals, and from their external characters they have worked out a classification more or less nataral, and a methodical distribution of them, forming a complete Zoollogical system. These series of investigations have been traced for half a century since the first researches of Cavier, and his classification according to atructure.

Hers, then, we have two series of independent observations;-first, those of geologiats, ascertain. ing that in different successive strata there are fossile of different kinde and apecies which do not oc-- cur in other series of strata above or below; and, seoond, the classifioation derived from the structare of animale.

What I can add is this ;-to show that these two eeriea of phenomena cover each other:-that you may read the order of auccession with a certain intelligence. and you will find that the classification according to succession agrees precisely with the classification made according to the structure of animals.

In order to make this evident, let me mention a few geological facts. The whole series of atrata forming the crust of our globe, not to inclade those which contain no fossils, can be divided into a series of lay ers, each of which contains certain fossils.

The lowest strata. for instance, the limestone, so extensive over the northern and wentern parts of this State, belong to the oldest formation deposited daring the existence of animal nopermine life. There we discover
 thi oldest animals. Above this we find another set of rocks which are allied to them, containing coal-strata so extensive in certain parts of the Middle Staten and in the Weat. The oldest strata of coal I would unite with the lowent series under the name of primary rocks. Then we have a serien, not ex-
 tensively developed in
 this part of the world, in which the new red sandstone of the Connecticut Valley forms a part, to which belongs the series of -olitio rocks so extensive in the South of England, and the bluish limestone of Somersetshire and Yorkwhire, and above that the chalk. All these bave a certain connection, and heve been called secondary strata. In themethe green sands of New-Jerney are included. Above that we have atrata of more re-

cent date, which contain shells similar to thoee now in exist. fence ; these strata are called tertiary beds. The primery, secondary and tertiary beds are not to be mistaken for those rocks which have no stratification and contain no forsils.

Let me mention that fossils found in the primary beds, and even in the different layers of the primary beds, are different from one another, as well as from those fond in the secondary beds. Geologists have known this for half a century. Again, the tertiery contain fossils entirely different from the secondsry. I will represent these layers by concentric circles, which will be ia accordance with the for a of the earth, only the proportions will not be true. Let this be the most ancient strata formed on the primitive rock; the next, the secondary ; and the upper, the tertiary. Tbese atrata bave been distributed in an irregular manner, nome beiag inclined by the upheaving of the Platonic or volon-
 nic masses, which have modified their primitive horizontal position. But all these details belong to Geology, and have no connection with the order of succesaion.
Now there bas been an opinion prevailing among geologiste and nataraliste, that the animala succeed in these different strata in an order corremponding to their zoological gradation. The view has been widely entertained, and it is still the opinion of many philosophera, that the higber ty pen wrere gradually introduced, until at last Man was formed.

This view, thas expressed, is entirely false; investigations of geologists having ahown, to the contrary, that in the most ancient atrata there are polyps, echinoderms, and in the Trenton limentone even higher types of the most ancient echinderms. There are also bivalve hells, cephalopoda and crastacea, found in the most ancient rocky; and there are alao fishes. We have, therefore, not the lowest types in the oldest strata, bat we have representatives of all the types. After this fact had been aacertained, geologiste were led to believe that there was no regular order of succession in the appearance of fossila. We have gastero-poda-all classes of molluscs, acephala and cepholopoda, we have trilobites belonging to the ordar of crustacea; and we have some shells similar to those of worms, which have indaced geologiats to consider the clase of worme as belonging to the oldest strata; and we have fishes. Therefore the notion of succeasion in constant, regular order was donied, and it is this view which generally prevails among modern geologiats and naturalists. After they had been ander the impression that types in the order of succession correspond to the gradation of the Animal Kingdom. beginning witb polypi and ending with the class of fishes, having found fossils of all the different classes in the lowent beds, they actually denied all order and every evidence of plan in the succersion of ty pen.

Now let us investigate and ascertain what occura in the oldest atrata. What animals do we there find 1 That is the quention for examination.

In this diagram I have divided the circle by draw-

No. 1.Mammals. No. S.Cephelopode No.10. Worme. .. 2.Birds. .. 8.Cruateces .. 11.Polypl.
.. 3. Fiahes. .. 7.Gasteropode. .. 12.Echinoderme.
. 4. Reptiles.
.. 8.Insects.
ing four heavy lines from the centre, making four sections. In these sections I have drawn lighter lines radiating from the centre, to indicate the order of introduction of the different classes. We have in the primary atrate vertebrated animala, as is indicated by the light linem extending into the primary atrata. In the most ancient atrate we find firhes, but no reptiles. The type of reptiles is not found till after the coal era. The section on the right side contains the class of molluscs. You remember I divided this type into three classes: acephala, gasteropoda aud cepbalopoda. Theae three classes occur at once in the beginning. We have bivalves under the form of apirifers and terebratala; we have gasteropode in the form of univalve ahelis, and we have cephalopoda. So we have three classes of mollascs, but only oue of vertebrated ani-mals-the fiahes. In the left section I have figared articalated animals. We have crustacea from the beginning. We have insects in the coal, which belonge to the primary bede; and we have worms in the most ancient atrata. So we have in the primary epoch the three clasies of Articulata. In the bottom section I have figured the classes of Radiata. Now we have the polypi from the beginning, and also the echinoderms. The soft animals, the zeeduswe, are not foond in ancient atrata, but in the oolitic series ; alao in the lithographic limestone of Germany impressions of jelly fiahes have been seen. There is no doubt, then, that if this class existed in the oolitic epoch, they existed earlier; only on account of their softness they hevenot been preserved. So it is likely that three classen of radiated animala existed, and we know that two-the corals and echinoderms-were numerous.
So we have the nine classes of invertebrated ani mals beginning in the lowest state, but only one class of vertebrated animals-the fishes-in that epoch. From the beginning, therefore, animals of all classes, except the three higher classes of vertebrated animala, were at the same time called into exist-ence-even all classes of invertebrated animals, and fishen among vertebrated.

But now let us examine what we have in these different classes in the geological epochs. I will take a few examples in order to give an idea of the order of succession. Having made Echino-
derms a particular stady, I can give more precise examples from them. All the anciont types are crinoids. You remember that the olass of echinoderms is divided into three orders-polyps. echini.

is divided into groups, comprising thuse wbich reat on a stem and those that are free. The echini sre divided into three families-the circular ones, the heart shaped and the oblong. of which this is a representative. There are nosuch echinoderms in ths
 primary strate ;-all are starfish like, with the stem fixed apon the soil by a root, in a way similar to the polyps.All that have stems belong to the lowest famHly, and to thas family wbich in zoological classifica tion is considered as the lowest. No zoōlogist will claim a higher rank for the crinoids than the lowest. They have been sometimes placed among polyps, before they were known to belong to echinoderms. Now it is not enough that they belong to the lowest ;-we can show that we have the free star-fish from the Mediterra
 nean, the comatula, found fixed upon thesen-weed. When they escape from the ege they have a long articulated steo like all those crinoids of ancient times. They bave radii extend

ng in all directions, and when these little animals grow larger the stem is cast, the centre is free and we have the star-fish. Now yod sée we have two relations
between these an cient types and the living ones. The ancient types of eohinodermi are the lowest rrder belonging to thosp which have astem, and in that resem ble the young of the free star-fish But of those which

bave stems there is ooly one speoles now existing -the pentacrinites, and what is singular is thatour free star-fish, at least the family of comatula, have such a stem in their young state, and the young bear a strong resemblance to these ancient types. The next family which succeeds these is the free-star-
fish. Thus we see that clase branching into differont familiem. and these divisions aloo correspond to the types which begin to exist in different epochs.
I asid we have no free echinoderms before the secondary strata. Now free atar-ish of a higher or. der begin to exist in the tertiary formation, and the multiplication of types if accompenied with a gradual extinction of the primitive fixed star-fiolh with articulated stems. As the forms become more free and more different among themselves. the primitive atock is lent numerous, until at the preaent time only one species remains.

Of the polypi I cannot explain the order of accceasion, though the living onea have been beantifally illastrated. The forms of the fomeile bave not been compared to ahow eny relation to the living species. There is yet a wide field for inveatigation in reference to the gradation of structare in living ones and the order of anccesaion of ancient types.

Among the molluscs I obald point to very similar facts. The class of bivalve sbella, to which I have already alluded, is represented in the oldest strata only by auch irregular bivalves as the brachiopoda. There are no regular bivalves in the primery strata: it is only in the secondary that wo find them, and only in the tertiary do we find that variety of shells exist ing now. But we have neen that the gradation in the clasa of acephala is such that the brachiopoda should
 be considered the lowest.

The Monomyaria next succeed; then thowe which have two mascles. In that clana we bave an egreement hetween the order of succession of types with geological timen, and the order when clensified by their atructure. The aame fact can be seen in the cepholopoda. Those allied to the nantilas-the gonoidæ-are the lowent, while the naked types are found ia mecondary strata.

Among Crastacea, the lowest are the trilobites. Who would consider them as bigher than the lobnter or crab ?They are similar to the larve of crabs. Any one who bas investigated the first formation in the egg of the young crab
 will remember ne form within the egg which shows only cuchtransverae divisions.and even atthe beginningwesee a kind of depression from which the sacceasive rings will rend forth respiratory organs Ir external appendages.Bnt seen from above they wil have abouc chas form, with perhaps anme sppendage here which is wanting among trilobiten. There is such a clone resem blance between young crabs and those ancient trilobites-the only crastaces found in the primary beds-that it is quite extraordinary that the old agree with the first form of young crustaces in the egg.

Next we have the lobster tribewhich occur in the econdary atrata.
 We know that crabs atand higher than the lobster, and there are leas of theme external appendages in the tail of crabs-which appendagea are by no means indicative of superiority; therefore we consider the crab as higher than the lobater. But the crabs begin to appear in
the chalk juat after the exiatence of the long-tailed crustacea.

So we have given the order of succeasion of these types agreeing with the gradation of form now in existence, when we consider only their orgenizetion. I conld mention the first appearance of the winglena insects, with a form allied to that of the spider and the soorpion triben, -the only onem are found in the coal deposition; those with winge, analogoas to the more perfect insects, beginning and occurring in the secondary strata, in the bede of chalk and the oolitio nerles.

So we have in all clansen the lowest existing first, and of invertebrated animals all classen in existence at once, because worms have been found from the beginning. So there can be no doabt that if all classea began to exist simaltaneously, their lowest ty pes occurred first, and their higher typea appeariag in succeasion-a great variety being established only during the existence of Man.

What are the facts with vertebrated enimale? We find fiabea only in the older atrata. In the secondary strate reptilem prevail considerably, with some indication of birda, and at very late epocha another indication of mammalia. Bat in the tertiary beds we find reptilea, birds, mampalis and fishea, animals which illastrate all the types of former epocha. But do we find the firnt fish called into existence to be the lowest ? By mo means.The types of those first created mast be considered the higheat in their clase. The first clase that existed are the ganoids-those covered with eaameled scales, in which we see some likeaess to reptilea, and in fact indicative of higher orders which were not existing at that time.

Then again at another epoch-wben reptile began to exist in the secondary atrats-we do not find batrachians first, but reptiles allied to the crocodile -the Rhizodonts-which indicate, by their character and form, a likeness to Mammalia, which were called into existence later. There is a great resemblance between these and cetacians-so great that in some respecta it in difficalt to distinguish their bones from cetacians.

Again, we find pterodactyles, as allied to birds, which were called into existence later.
So we see that the first types of the oldeat vertebrated claseen which are introduced are the bighest among themselver. They are prophetic types, indicating the fature existence of other types at a later epoch, and if we trace all these series we can go so far as to see that the order of succesnion is auch that there is only one chain in the whole series of vertebrated animals, indicating from the beginning an intention to introduce at last Man, the bighest type, at the head of Creation.

And this point of view allows as to consider the vertebrated animals as the only one in which there is a progression of thie peculiar kind, in which the first step is already indicative of another higher step, till the complete series is accomplished.
It would take me much beyond the limits of my time if I were to enter inte the details of all these types. Let me only show that these types succeeded each other in auch a manner that they cannot be considered as derived from eaeb other. They may be considered as entirely independent of each other, and only connected, in the idea of the Creator, in the same manner as these facta, of which we showed a succession, are connected, not materially, but in our minds only. All these fishes, though they have analogy to reptiles, are neverthelesa by their characters true fishes: they have fins, gills, a vertebral column, and articulated fingerm in the form of singularly modified fins with numerous rays. Even in different strate of the primary rosks we find fishen of different genera and apecies. We find in the
mecondary atrata again other fichen-and, what is vingular, the moment the clase of reptiles begin to oximt, these fishes no longer show so strong a likeneas to reptiles, but begin to resemble more the finhes of our own day. In the cretaceous merien we have all the typen now in exiatence, though the genera with bony spine, dentated scales and multiplied fins on the back, show no iadiontion of existence in the ancient strata.

But reptiles which firntexint, aname all the cbaracters we find in the beginning among fiabea. But can they be considered an derived from thone fishem? No more than any of our living epecies can be derived from another. There han never been a apecien derived from another. Wo have always neen the order of reprodaction remain within the nataral limits of the apecies, and it never parmes from one to another. It muat be maintained as a matrral law that one apecies will not produce another, for what doen not take place now cannot be admitted to have taken place in other epoche. If it had been so, we should find intermediate forma, and in such a manner that they could be mhown to have been derived from different specien exiating previoualy. In fact, the anstomical characters in reptiles are such that there must have been a change in atructure, and such change in never assumed except in varieties which can be found in tribes of domeaticated animals when the racea are mixed. Theme effects are entirely different from those of a anccession of different apecies in geological epuchs. So we would consider this analogy between the ancient fishes and the reptiles of a later periodthis change of character in fishes when the reptile begin to exiat, and then the renowed changea in the succeasive epochs as indicating merely that at such epochs the phan contemplated at the beginning has actually been effected, and these modifications, which were intended to carry on the progreat up to the appearance of Man. have been gradually accomplinhed by the Creator.

Thare is, therefore, in this view a gradation in all vertebrated animals. There in no such in the invertebrated:-they were intended to be companions of the vertebrated throaghout the geological
epochs, improving till they ecquired that great variety which now accompanier Man-which type of vertebrated animals wan intended to be the stock from which the higheat type should apring forth at the lateat epoch. then to find all that variety in the lowest animaln. Therefore we conclude that Man is not only the bighent gronp in Creation, but is the last intended type. We can even go farther, and Lay that thia having been the intention of the Creator from the beginning, we can expect no higher progrems or new development. The crastion of Man is the higheat possible development in the progreas of Creation.

In this riew we are borne out by other facta. For though the different geological ty pes have been introduced upon different points of the murface of our globe-and theugh, an i have tated, animale in different parts of the plobe are conatantly cir-comscribed-Man at lant begen to be diffused, and to acquire a power over Natare which no other apacies ever bad. At no epoch han any speciea ever had nuch a mark ed nuperiority over another as Man has now over the lower creation.

Again, when in any point of view we compare the atructure of Man, we can see that he wai the last object intended. You remember that fishen have a brain very little larger than the spinal marrow and it is placed borizontally with the vertebral column: the clans of reptiles begins to raise its bead : in the class of birds the head risen atill highor : bat in Man a position is assumed to which there is no soperior. He stands erect-with a large brsin and a head of sach a spherical form that there ia no improvement poanible-bat the highent degree of perfection is realized on that plan. Then if we take in convection with this the fact that, in the succession of typen, the different species of animals are confined to particularlocalities, and that Manis spread all over the surface of the earth, we have an unmiatakable indication that Man was not only the laat creation up to the present time, bot was intended to be the last-snd that no material progrean is posaible on that plan, but ell progress to be expected within the lisits of Mankind is improvement in intelligence and morala. [Great applause.]

Profestor Agassiz here reached the conclusion of his Coarse, amid the general applanse of a highly attentive and intelligent amsembly-who, during the whole series of the Lectares, had evinced an intense interent in the maltiplied subjects ao ably yet nuccinctly treated. Professor A. retired from our midnt acsompanied by the warmest congratulations and ancere hopes for future success of a multitude of ourmont diatingainhed and talented citizons.

THE NEW-YORK TRIBUNE.

We are on the eve of another Preaidential Eloction. Lat none fancy that, since it is appruached so calmly, it will be cunducted alugsishly and terminated without excitement. Whoever cheriahen auch an illusion miatakea the character of the Americen People and the impulsen which sway thom. Equally ide is the imagination that Party liner are to be offaced and broken down in this con-tent-that the preatige of some heroic achiovement or the gitter of an epanlette is to chame from the popular mind all memory of the radical differences of seatiment which have so often arrilyed one-half our countrymen in fierce conflict with the other. Idle chimeran these! offopring of an empty beart or a sickly brain! With the progrens of events a particular mesure may become more or lesa important, the emphatic asmertion of a certain principle more or less onsentisl, but the queation of quentions romaine and will remain. At one time, the eatablishment or maintenance of a Sound and Uniform Gurrency; at another, the upbailding and cherishing of new or feeble branchen of Home Industry; at another, the proper dieposition of the Proceeds of the Public Lands; at a fourth, Pesce or War, Spoliation or Juatice; but underneath all theae, mightier than any, more enduring than all, lives evor the elemental difference in which parties have their origin-on oue side the ides that Government nhould be Ceentive, Constructive, Beneficent; on the other, the negative, akeptical, do-nothing element, whose axioms are 'The beat Government in that which governa least;' 'The People are inclined to expect too much from Government,' \&c.-which sees in a Canal, a Railroad, a Harbor, a Protective Duty, only a meane of eariching a fow individuale at the expense of the community, nnd which cannot conceive how any can be benefited by a public work without inflicting injury in at least equal measure npon others. The fundamental axiome of this negative philosophy are really hostile to Common Rosds and Common Schoold required and austained by Law, woll as to those elementa of National well-being againat which it now directs the energies of a great party. The antagonime of sentiment growing out of these conflicting viewn of the nature and true ende of Government cannot, in the nature of thinge, be lastingly compromised; it cennot be terminated by the result of any one clection. It muat be potentially felt in the party contesta and popular asitation of many yeara to come.

On this and all the great questiong growing ont of it, The Tribune maintains emphatically the doctrinea of the Whif Party. It advocatea Protection to Home IndugTay, wherever auch Protection may be needed, and to the extent of the neceanity; a National Curesercy, aund and of nniform value, composed of Cain and Papor in stach proportions an public intereat and seaeral convenience shall dictate; Internal Impzovement, by the Goneral and State Governmente, each in ite own sphere, and by Assuciationa, liberally incited thereto by ruch far silities an Legialation may afely and juatly afford; and atich diaponition of the Public Lavd Proceeds as aball eecure the benefit thereof to the People of all the 8tatea thronghout all futare time. Above all, thin paper will 'atudy the thinge that make for Peace,' and etrenuoung oppose the fell spirit of Wer, the luat of Conqueat and the pasion for Military Glory, $s 0$ mortally adverae to all
the ideas of Social and Political Economy to which it io devoted, as a mildew to genuine Democracy, as uttenty at variance vith Chriatienity, and an a scandal to the Nineteenth Centary. Thene viewn will be faithfolly and foarlescly commended to public favor; while our opposition to the Extenaion of Humen Slavery over one foot of coir where it hik not now a legel existence shall be unsparing. incompromising and aubject to no conmiderstion of Party advantage or Presidential triumph. Far ©oner will wer rink with our principles then succeed without them, however desirable ancese or however mortifying defeat. -The Tribune will endeavor to commend itself to all classen of readers by the fullnosm of ite intelligence as well a the fairness of ite dircurtions. With this intent one Assiatant Editor will remain at Wabington during the Sesmion of Congreme, giving daily reporta of mayings and dolaga in the Houses and elsewhere; two Enropean Correapondenta will tranamit ue regalar dispatches from the Old World; while no expense will be grudged in procar. ing the earliest and moat reliable information from all parts of the world. Reviewn of New Booki of decided interest and zelections from the Popular Litarature of America and Europe will be frequently given, with oceasional reports of Public Lecturea of high character; but it ahall be our first object to prement a fair r ad full picture of the real world, only varied at intervala by excursions into the raslm of the ideal.
-The New-Yorr Tribune iaianed Daily (a Morning and two Evening Editiona, in order to serve each aubscriber with the lateat newi poasible) on a fair imperial sheot at Five Dollarl per anaum, or half the price of the great Commercial journsis, by which it aime to be enrpassed in nothing but Advertisements. A Semi-Weekly Edition is istaed one similer aheet each Wednedday and Saturday, and sfforded to subecribers at Three Dollarn per annum or $\$ 5$ for two copieg. The Werely Tribune ia printed on a sheet of nearly doable the size of the Daily, and afforded at Two Dollara per annum, Sill copien for 10 , Ten copies for 15 , or Twenty for $\mathbf{~} 24$-peyment being invariably required in advance. When the term paid for expiras, the paper is uniformly stopped, so that no man need hevitate to take it from an apprehervion that he will be persecuted by duns or nnable to get rid of the paper when tirod of it. Thin rule han given offence to 2 fow pan trons of the non-paying order, but the graat majority seem to like it better than the old famion.
It in not our cuntom to sppoint Local Agenta to solicit mabacriptionu, nor to place great reliance on Agente at all. Bat eny permon who in well enough known to be trusted by his neighbors may aid un if he will and help himelf if he choosen, by taking this Proapectus and aking thome who like The Tribune to hand him the money for a yoar, which he can remit at Clab price and thue obtain pay for hin time and tronble. Subscriptions accompanied by paymonta sre respectfally solicited by

GREELEY k MCELRATH,
154 Namau-at. Now-York.
FFoter of all specio-paying Banks in the United States aro taken for mbatoriptiona to this paper at par.Money inclosed in a letter to our sddreas, and dopositod in any Poot Office in the United States, may be considered at our riak; bat a description of the bille ought n all cases to be left with the Pontmaster. G. \& M.

CLUB PRICES.

W?JTET TETBUNR,

W. No paper continmed after the expliretien of the theo mbocribed and pald for,

$\because \because: \because: ~!$

