PALEY'S

NATURAL THEOLOGY,

WITH

ILLUSTRATIVE NOTES,

BY

HENRY LORD BROUGHAM, F.R.S. ASD MEMEEE OT TRE NATIONAL IMMTITUTE OT HRAYOE,

AND

SIR CHARLES BELL, K.G.H., F.R.S., L. \& E. PROEESBOR OF GURGERY IN THE UAIVEREITY OT EDINEOBOH, FORMERLT or rei coumcil, AND pEOF. ANAT. HOY, COLL. sURG. LONDON, ETC. ETO.
TO WHICH ARE ADDED
\section*{SUPPLEMENTARY DISSERTATIONS,}
By SIR CHARLES BELL.
dith numerous woodguts.

TWO VOLS. VOL. I.

LONDON:

CHARLES KNIGHT, LUDGATE STREET. mpCccexxyr.

JoNDON:

Preited by W. Clowen and Soms. sitanford Street.

BLISs
 P'
 1536
 r. 1

ADVERTISEMENT.

Ir is apparent that considerable difficulty must attend the task of illustrating the justly colebrated work of Dr. Paley. According to his design, no one subject could be fully and finally treated: the eye, the ear, the teeth, and many other organs, are of necessity touched upon occasionally and repeatedly in different chapters, at one time to prove prospective contrivances, at another to show compensation, or relation. This is undoubtedly a plan suited to the object of the author; and time and the opinion of the public pronounced on the work have amply con* firmed his judgment in adopting it. Fearful of introducing too many additional subjects in the notes to the text, and thus overloading the argument, we have thrown the Dissertations, in illustration of the various matters, into an Appendix : thus leaving the reader more at liberty to select the subjects on which he desires further information.

Mr. Paxton, of Oxford, several years ago, pubfished a valuable work illustrating the " Natural b 2

Theology," to which the reader is referred for further illustration on some of the subjects, particularly those connected with anatomy.

The authors of the present work have been indebted to Professor Lindley, of the London University, for the botanical notes to the twentieth chapter ; and to Mr. Waterhouse, Curator of the Zoological Museum of London, for the entomological notes to the nineteenth chapter; those which were kindly communicated by Bishop Brinkley are specified in chapters twenty-two and twenty-five.
The Dissertations connected with the last ten chapters will form a fourth volume, which will complete this work.
The whole of the Notes, and nearly the whole of the Dissertation, now published, to the first seventeen chapters, were prepared for the press several months ago, and the greater part of them printed last summer. But the expediency of making some additions to the Dissertations has occasioned the publication to be delayed.

CONTENTS OF VOL. I.

CHAPTER I.

gTATE OP THE ARGUYENT.
Watch, page 2 ; eight cases, 4-10.
Note 1, Referring to the Appendix for a description of the mochanism of the watch, page $1 ; 2$, on "how the stone came to be there," 1 ; 3, on the turning of oval frames, 5 ; 4, on "laws" of nature, \&c., 9.

CHAPTER II.

STATE OF THE ARGUMENT CONTINUED.
Note 5, on the management and tendency of the argument in Chapter II., 19.

CHAPTER III.

APPLICATION OF THE ARGUYKNT.
Eye and telescope, 22; light-distance, 31 ; eyes of birds, 36 ; eyes of lish, 37 ; minuteness of picture, 41 ; socket-eye-brow-eye-lid-tears, 42; nictitating membrane-muacle, 44; expedients, 48 ; why means used, 50 ; ear, 52.

Note 6, referring to Appendix, 21; 7, referring to Appendix, and on the adaptation of the eyes of fish to the medium in which they live, 23; 8, referring to Appendix, and on refraction, 27; 9, on the adjustment of the eye to different distances,
$33 ; 10$, on the pressure of the sea at great depths, and on the structure of the eyes of fisbes in order to renist that pressure, 39; 11, referrirg to the Appendix for observations on the structure of the eyes of fishes, 44 ; 12 , on the mewbrana nictitans, 47 ; 13, referring to Appendix for observations on the limits which the Deity teemg to have prescribed to his own power, $50 ; 14$, referring to the Appendix, and on the atructure of the ear, $52 ; 15$, on the chain of bones in the ear, 57.

CHAPTER IV.

of the suocesbion of plants and antials.
No account hereby of contrivance, 63; plants, ib.; oviparous animals, 64 ; viviparous-rational animals, 66; instance from Gardener, 67.

Note 16, on the limits of the term of existence, and on reproduction, 68.

CHAPTER V.

APPIICATION OP THE ARGUMENT CONTINDED,
lepetition from Chapter I., 72; imperfection, ib.; superfluons parts, 74 ; atheistic argument, 77 ; remains of possible forms, 82 ; use arising out of the parts, 86 ; a principle of order, 91 ; of our ignorance, 92.
Note 17, on the suspension of respiration, 74; 18, on parts of animals said-to be superfluous, 76 ; 19, on results supposed to arise from chance, $80 ; 20$, on the supposition of animals having been produced by chance, 84 ; 21, on the dexterity which man acquires by practice as distinguishing him from other animals, 89.

CHAPTER VI.

CHAPTER VLI.

 ANTELALS AND VEGRTABLEIG.
Imperfoction of knowledge ne proef of want of contrizance, 99 ; on chemistry, 105 ; secretion, 107.
Note 22, on the perfection of the immechanical parts of animals, 99;23, on the gastric juice as not acting apon the stomach of the living aninal, 107.

CHAPTER VIII.

MECHANICAI ARRANGEMENT IN THE HUKAN PRAME.
Of bones, 116 ; neck, $i b$. ; foro-arm, 119 ; spine, 123 ; chest, 133 ; knee-pan, 134 ; shoulder-blade, 136 ; joints, 137 ; ball and socket, 139; gynglymus, 141; knee, 142; ankle, ib.; shoulder, 143 ; passage of blood-vessels, 145 ; gristle, 146 ; moveable cartilages, 148 ; synovia, 150 ; how well the joints wear, 151 ; immoveable joints, 152.
Note 24 , on the meaning of the terms tenen and mortice, 118 ; 26, on variations of structure to suit the peculiar condition or neceesities of different animals, $130 ; 27$, referring to Appandix for further proofs of adaptation of structure to habits and condition of animals, 134 ; 28, on the shoulderblade aud collar-bone, $136 ; 29$, on the absence, in the oranoutang, of the ligament in the bead of the thigh-bone, 141 ; 30, on the anklo-joint, 143 ; 31, on the cartilage which covers the ends of the bones, 147 ; 32 , on the manner in which the thigh-bone rests upon the shin-bone, and the use of the cartilage between them, 149 ; 33 , on absorption, in a case of inflammation of a joint, 151.

CHAPTER IX.

oy the mubcleg.
Suitableness to the joints, 154; antagonist muscles, 158; not obstructing one another, 159 ; action wanted where their
situation would be inconvenient, 160 ; variety of figure, 161 ; how many things must be right for health, 163 ; variety, quickness, and precision of muscular motion, 165 ; tongue, ib. ; mouth, 166 ; nowe, 169 ; music-writing, 171 ; aphineters, 172; combination of muscles, 173 ; delicacy of small musclem, 174; mechanical disadvantagen, ib.; single muscles, 176 ; lower jaw, ib.; ulit tendons, 178 ; bandage at the ankles, $i b$.; hypothesis from appetency repelled, 179 ; Keill's enumeration of muscles, 180 ; why mechanism is not more atriking, 181 ; description inferior to inspection, ib.; quotation from Steno, 182.

Nore 34, on the balance of action between the antagonist muscles, 157; 35, on the sacrifice of power in certain muscles, in order to acquire velocity, $163 ; 36$, on the complexity of sfructure in the tongue, 170.

CHAPTER X.

OF TERE VESEBLA OP ANTMAL BODIES.
i. The circulation of the blood, 184 ; disponition of the bloodvessels, 185 ; arteries and veins, 186 ; ii. heart, as recsiving and returning the blood, 188; heart, as referable to the lungs, 191 ; valves of the heart, 199 ; vital motions involuntary, 205; pericardium, ib.; iii. alimentary aystem, 207 ; passage of the food through the stomach to the inteltines, $i b$; passage of the chyle through the lacteals and thoracic duct to the blood, 208 ; length of intestines, 209 ; peristaltic motion, 210 ; tenuity of the lacteals, ib. ; valves of the thoracic duct, 211 ; entrance at the neck, ib. ; digestion, 212; iv. gall bladder, 236 ; oblique insertion of the biliary duct into the intestines, 217 ; v. parotid gland, 218 ; vi. larynx, 219; trachea-gullet-epiglottis, 219, 220; rings of the trachea, 221 ; sensibility, 222 ; musical instrument, 224 ; lifting the hand to the head, 225.

Note 37, referring to the Appendix for a dissertation on the circu
lation of the blood and its uses, 185 ; 38, on the composition of the atmosphere, $191 ; 39$, on the necessity of exposing the venous blood to the air, $192 ; 40$, on the valves of the veins and arteries, 201 ; 41, on the germination of seeds which have passed unbroken through the stomachs of animala, $214 ; 42$, referring to Appendix on the stomach of the home, 217; 43, on the necessity of certain sensibilities in the body, 223; 44, referring to Appendix for observations on the lungs, 225.

CHAPTER XI.

OP THE ANIKAL STRUCTURE REGARDED AS A MAss.
i. Correspondence of sideu, 228; not belonging to the separate limbs, 230 ; nor to the internal contente, 231 ; nor to the feeding vessels, 232 ; ii. package, 233 ; heart, 235 ; lungs, $i b_{1}$; liver, $i b_{\text {. ; }}$ bladder, 236 ; kidneys, ib.; pancream, ib.; spleen, $i b_{0}$; omentum, 237 ; septa of the brain, 238; guts, $i b_{2}$; iii. beauty, 240 ; in animals, 241 ; in flowers, 242 ; whether any natural sense of beauty, 243 ; iv. concealment, 245 ; v. standing, 246; vi. interrupted analogies, 250; periosteum at the teeth, 251 ; early skin at the nails, 252 ; soft integuments at the skull, 253.

Note 45, on the spleen, 237 ; 46, on the sensibility by which we are enabled to bulance the body, 249 ; 47, referring to the Appendix for a dissertation on the teeth, 250; 48, on the use of the nails of the fingers, 252 ; 49, referring to the Appendix for a note ou the form of the skull, 253.

CHAPTER XII.

COMPARATIVE ANATOMX.
i. Covering of animals, 257 ; of man, $i b_{\text {. }}$; of birds, 258 ; atruc ture of feathers, 260 ; black down, 264 ; ii. mouths of animals, 265 ; bills of birds, 267 ; serrated bills, 270 ; affinity of mouthe, 273 ; iii. gullets of animals, 274 ; iv.
incestinen of arinable, 875 ; ralve or plates, ib. ; length, 276 ; v. bones of animals, 277; bopen of binds, ib.; vi. lungs of animals, 278 ; fungs of birds, $i b$.; vii. binde oviparous, $i b$; viii. hastrumertes of motion, 279 ; winge of birds, ib, ; fins of firh, 282; web-feet of water-fowl, 287; ix. senses of animals, 288.
Note 50, on the coverings of birds and other animals with reference to warmth, 264 ; 51 , on the adaptation of the bills of birds to the habits of each kind, 268 ; 52 , on the connexion of the fifth nerve of the brain with the organ of touch, 272 ; 53, referring to the Appendix for observations on the relation of the bodies of birds to the atmosphere, 278 ; 54, on the necessity of binds being oviparous in onder to wetain the power of flying, 279 ; 55, on the similarity of the sywem of banes in all vertebrated amimale, 282; 56, on the uses and menceular power of the fins of fishem, 285.

CHAPTER XIII.

PEOUEIAR OBGANEEATIOME.

Pax-wax of quadrupeds, 292 ; oil of birds, 293; air-bladder of fish, 294 ; fang of viper, 297 ; bag of opossum, 298 ; claw of haron, 299 ; stomach of camel, 300 ; tongue of woodpacker, 301 ; babyroussa, 306.

Note 57, on the ligaments of the neck, 292; 58, on the air-bladder of fishes, 296 ; 59 , on the habits and tongue of the woodpecker, $\mathbf{3 0 2}$; 60, on the erroneous notion of the babyroussa. sleeping standing, 307.

CHAPTER XIV.

phospective contrivances.
Teeth, 308 ; milk, 311 ; eye of the frotus, 314 ; lungs of the fostuo-foramen orale, \&c. \&c., 315.

Aote 01, referisig to Appendix for note 'upon the toeth, 310; 62, on the meana by which the socoud set of teeth are made to suceard the fisst, 311; 63, on the peovision for the first nourishment of plants and animals, 312 ; 63, on the gradual development of animal bodies, 317.

CHAPTER XV.

Rrlationg.
Alimentary system, 321; kidneys, ureters, and bladder, 325; eyes, hands, feet, 326 ; sexes, $i b$. ; teats and mouths, 327 ; particular relations, ib.; swan, ib.; mole, 329.

CHAPTER XVI.

COMPEMRATION.
Fłephant's proboscis, 333 ; hook in the bat's wing, 336 ; crane's neck, ib. ; parrot's bill, 337 ; spider's web, 838 ; multiplyingeyes of insects, 341 ; eyelid of the cameleon, 342 ; intertines of the alopecias, 343 ; snail-muscle-cockle-lobster, 344 ; sloth-sheep, 346; more general compensations, 347 ; want of fore-teeth-rumination, $i b_{0}$; in birds, want of teeth and gizard, 349 ; reptiles, 352.

Note 64, on the unreasonableness of the notion of a change in the original structure of animal organs, 334; 65, interesting particulars concerning the powers and habits of spiders, 339 ; 66-67, referring to Appendix, 346, 347 ; 68, on the digestive organs, with reference to the different kinds of food, $348 ; 69$, on the relation between the mouths and stomachs of animals, $351 ; 70$, on the variety of the instruments of motion of different animals, 354 .

CHAPTER XVII.

the melation of andgated bodies to inanimate nature.

Winge of birds-fins of fish-air and water, 353 ; ear to the air,
$i b$; organs of speech-voice and reapiration to air, 354 ; eye to light, ib.; cire of animale to external thingu, 355; of the inhabitants of the earth and sea to their elementa, 360 ; sleep to night, 361.

Note 71, referring to the Appendix for observations on the bones of large animals, $360 ; 72$, on the succession of day and night and on the changes of the seasons, with reference to the happiness of animals, 364.

CHAPTER XVIII.

INETINCTE.
Incubation of eggs, 369 ; deposition of egge of ineects, 376 ; solution from sensations considered, 382.

Note 73, on the unchangeableness of animal instincta, 369; 74, on the instinct of the chicken in breaking the shall of its egg, 372; 75, on the natural and instinctive feelings of man, $380 ; 76$, on the arguments of seeptics, and on compensations in animal organs and powers, 385.

CHAPTER XIX.

OP INSECTS.
Elytra of the scarabæus, 393; borer of \#lies, 395; sting, 398; proboscis, 400 ; metamorphosis of insects, 404; care of egga, 408; observations limited to particular species, 409; thread of silk-worm and spider, $i b$.; wax and honey of bee, 412; ating of bee, 414; forceps of the panorpa tribe, $i b$.; brushes of flies, 415 ; glow-worm, $i b$; mution of the larva of the dragon-fly, 417; gossamer spider, 418; shell animals, 420 ; saail shells, $i b$.; univalve shell-fish, 422 ; bivalve, 423 ; lobster shell, 424 ; variety of insects, 425.
Note 77, on the antenum of insects, $392 ; 78$, on the word coleoptera, $39 \pm ; 79$, on the wing-cases of brachelytra, \mathfrak{t}. ; 80, on the wing-cases of the genera molorchut, ib.; 81, on
the genus Hister, 395; 82, on parasitieal insects, 396; 83, on the ovipositors of insects, 397 ; 84, whimble of insects an oriponitor, ib. ; 85, atings of insects used as ovipositors, 398 ; 86, anatomical description of the proboncis of the bee, 400 ; 87, on the indentation in the head to receive the proboscis, $401 ; 88$, on the parts of the mouths of insects, $i b_{0} ; 89$, referring to note $86 ; 90$, on the habits of bees in collecting food, \&e., 402 ; 91 , description of the parts of the mouth of the common flea, 403; 92 , on the structure of the mouths of caterpillars, $404 ; 93$, on the difference between the larva and the perfect insect, $406 ; 94$, on bees' wax, 413 ; 95 , on the construction of the cells of bees, $414 ; 96$, on the genus Trichiws, 414 ; 97, on the mode in which the stag-beetle cleans its antenne, $415 ; 98$, on the glow-worm, $416 ; 99$, on the glow-worm's light, 417; 100, on the manner in which the spider attaches its thread to different bodies, 419 ; 101, on the number of the species of insects, $425 ; 102$, number of the species of butterfly in this country, 426 ; 103, on insects subsisting on carrion, 428 ; 104, on the similarity between the improvements in paper-making and the construction of wasp-paper; and on the migration of birds, 429.

CHAPTER XX.

OF RLANTS.
Preservation, perfecting, and dispersing of seed, 431; germination, 443; tendrils, 445; particular species, 448; vallisneria, ib.; Cuscuta Europera, 449; misseltoe, 451; colchichum autumnale, ib.; dionæa muscipula, 454.

Note 105, on the structure of birds, 435 ; 106, correction of the text, 447; 107, on the Cuscuta Europaea, 450 ; 108, on parasitical plants, 451 ; 109, no attracting syrup on the leaves of the dionea, 455 ; 110, deacription of the pitcher-plant, $i b$.

ILLUSTRATIVE WOOD.CUTS.-VOL. I.

1. The form of the eye, 22.
2. Section of the anterior part of the haman eye, to show the manner in which the images of objects are impressed upon the retina, 29.
3. The iris separated from the eye, and laid out fat, 30.
4. Head of the eel, showing the form of the eye, 38.
5. Plan of the human ear, 52.
6. Bones of the ear, 55.
7. Bones of the ear separated, 56 .
8. Drum of the ear, 59.
9. The eye, showing the transmission of the images of objects, 95.
10. A muscle, 100.
11. The lower surface, or base, of the sknll, 115.
12. Uppermost vertebra, or atlas, 117.
13. Articulation of the first and second vertebre of the neck, 118.
14. Section of the three lower vertebrz, 123.
15. Three views of the knee-joints, 135.
16. Muscle with tendons on different sides, 162.
17. Figure showing how veiocity is acquired by pulling obliquely, 163.
18. Figure of the arm, showing the action of the biceps muscle, 174.
19. The heart and great blood-vessels, 183.
20. The two sides of the heart separated, 194.
21. Section of the ventricle and the artery, 197.
22. Valve of the great artery, 203.
23. Bones of the human foot, 248.
24. Heads of birds, showing the form of the bills, 267.
25. Head and neck of the heron, 269.
26. Head of the spoon-bill, 271.
27. Feet of birds, with and without web, 287.
28. Heads of the wolf and hare, showing the different manner in which the eara are turned, 289.
29. Iris of the lion's eye, 290.
30. Dissected head of the woodpecker, 304.
31. Skull of the babyroussa, 307.
32. Spider suspended from a twig, 338.
33. Ovipositors of insects, 395.
34. Proboscis of the bee dissected, 400.
35. Mouths of beetle and bees dissected, 405 .
36. Silkworm, 410.
37. Garden snail, 420.
38. Prickly oyster, 422.
39. Cock's-comb oyster, 422.
40. Venus' heart cockle, 423.
41. Poppy, 433.
42. Cuscuta Europæa, 449.
43. Autumnal crocus, 452.
44. Pitcher-plant, 455.

NATURAL THEOLOGY.

CHAPTER I.

STATE OF THE ARGUMENT. ${ }^{1}$
In crossing a heath, suppose I pitched my foot against a stone, and were asked how the stone came to be there, I might possibly answer, that, for anything I knew to the contrary, it had lain there for ever; nor would it, perhaps, be very easy to show the absurdity of this answer. But
' The last note of the Appendix describes the mechanism of a watch, and illustrates the elementary principles of mechanics. Coutrasted with the mere mechanism, there is another essay on the mechanism of the animal body. These may be perused either before or after reading the present chapter.
${ }^{2}$ The argument is here put very naturally. But a considerable change has taken place of late years in the knowledge attained even by common readers, and there are few who would be without reflection " how the stone came to be there." The changes which the earth's surface has undergone, and the preparation for its present condition, have become a subject of high interest;
suppose I had found a watch upon the ground,
and there is hardly any one who now would, for an instant, believe that the stone was formed where it lay. On lifting it, he would find it rounded like gravel in a river : he would see that its asperities had been worn off, by being rolled from a distance in water: he would perhaps break it, look to its fructure, and survey the surrounding heights, to discover whence it had been broken off, or from what remote region it had been swept hither: he would consider the place where he stood, in reference to the level of the sea or the waters; and, revolving all these things in his mind, he would be impressed with the conviction, that the surface of the earth had undergone some vast revolution.

Such natural reflections lead an intelligent person to seek for information in the many beautiful and interesting works on geology that have been published in our country of late years. And by these he will be led to infer, that the fair scene before him, so happily adapted for the abode of man, was a condition of the earth remulting from many successive revolutions taking place at periods incalculably remote; and that the variety of mountain and valley, forest and fertile plain, promontory and shallow estuary, formed a world suited to his capacities and enterprise.

- So true is the observation of Sir J. Herschel, " that the situation of a pebble may afford him evidence of the state of the globe he inhabits myriads of ages ago, before his apecies became its denizens."
and it should be inquired how the watch happener to be in that place, I should hardly think of the answer which I had before given-that, for anything I knew, the watch might have always been there. Yet why should not this answer serve for the watch as well as for the stone? why is it not as admissible in the second case as in the first? For this reason, and for no other, viz., that, when we come to inspect the watch, we perceive (what we could not discover in the stone) that its several parts are framed and put together for a purpose, e.g. that they are so formed and adjusted as to produce motion, and that motion so regulated as to point out the hour of the day; that, if the different parts had been differently shaped from: what they are, of a different size from what they are, or placed after any other manner, or in any other order than that in which they are placed, either no motion at all would have been carried on in the machine, or none which would have answered the use that is now served by it. To reckon up a few of the plainest of these parts, and of their offices, all tending to one result. We see a cylindrical box containing a coiled elastic spring, which, by its endeavour to relax itself, turns round: the box. We next observe a flexible chain (arti-: ficially wrought for the sake of flexure) communi- : cating the action of the spring from the box to B 2
the fusee. We then find a series of wheels, the teeth of which catch in, and apply to, each other, conducting the motion from the fusee to the balance, and from the balance to the pointer, and, at the same time, by the size and shape of those wheels, so regulating that motion as to terminate in causing an index, by an equable and measured progression, to pass over a given space in a given time. We take notice that the wheels are made of brass, in order to keep them from rust; the springs of steel, no other metal being so elastic ; that over the face of the watch there is placed a glass, a material employed in no other part of the work, but in the room of which, if there had been any other than a transparent substance, the hour could not be seen without opening the case. This mechanism being observed (it requires indeed an examination of the instrument, and perhaps some previous knowledge of the subject, to perceive and understand it; but being once, as we have said, observed and understood), the inference, we think, is inevitable, that the watch must have had a maker : that there must have existed, at some time, and at some place or other, an artificer or artificers who formed it for the purpose which we find it actually to answer; who comprehended its construction, and designed its use.
I. Nor would it, I apprehend, weaken the con-
clusion, that we had never seen a watch made; that we had never known an artist capable of making one; that we were altogether incapable of executing such a piece of workmanship ourselves, or of understanding in what manner it was performed; all this being no more than what is true of some exquisite remains of ancient art, of some lost arts, and, to the generality of mankind, of the more curious productions of modern manufacture. Does one man in a million know how oval frames are turned ${ }^{2}$? Ignorance of this kind

[^0]exalts our opinion of the unseen and unknown artist's skill, if he be unseen and unknown, but raises no doubt in our minds of the existence and agency of such an artist, at some former time, and in some place or other. Nor can I perceive that it varies at all the inference, whether the question arise concerning a human agent, or concerning an agent of a different species, or an agent possessing, in some respects, a different nature.
II. Neither, secondly, would it invalidate our conclusion, that the watch sometimes went wrong, or that it seldom went exactly right. The purpose of the machinery, the design, and the designer, might be evident, and, in the case supposed, would be evident, in whatever way we accounted for the irregularity of the movement, or whether we could account for it or not. It is not necessary that a machine be perfect, in order to show with what design it was made: still less necessary, where the only question is, whether it were made with any design at all.
III. Nor, thirdly, would it bring any uncertainty into the argument, if there were a few parts of the watch, concerning which we could not discover, or had not yet discovered, in what manner they conduced to the general effect; or even some parts, concerning which we could not ascertain whether they conduced to that effect in any man-
ner whatever. For, as to the first branch of the case, if by the loss, or disorder, or decay of the parts in question, the movement of the watch were found in fact to be stopped, or disturbed, or retarded, no doubt would remain in our minds as to the utility or intention of these parts, although we should be unable to investigate the manner according to which, or the connexion by which; the ultimate effect depended upon their action or assistance; and the more complex is the machine, the more likely is this obscurity to arise. Then, as to the second thing supposed, namely, that there were parts which might be spared without prejudice to the movement of the watch, and that we had proved this by experiment, these super: fuous parts, even if we were completely assured that they were such, would not vacate the reat soning which we had instituted concerning other parts. The indication of contrivance remained, with respect to them, nearly as it was before.
IV. Nor, fourthly, would any man in his senses think the existence of the watch, with its various machinery, accounted for, by being told that it was one out of possible combinations of material forms; that whatever he had found in the place where he found the watch, must have contained some internal configuration or other; and that this configuration might be the structure now ex-
hibited, viz., of the works of a watch, as well as a different structure.
V. Nor, fifthly, would it yield his inquiry more satisfaction, to be answered, that there existed in things a principle of order, which had disposed the parts of the watch into their present form and situation. He never knew a watch made by the principle of order; nor can he even form to himself an idea of what is meant by a principle of order, distinct from the intelligence of the watchmaker.
VI. Sixthly, he would be surprised to hear that the mechanism of the watch was no proof of contrivance, only a motive to induce the mind to think so:
VII. And not less surprised to be informed, that the watch in his hand was nothing more than the result of the laws of metallic nature. It is a perversion of language to assign any law as the efficient, operative cause of anything. A law presupposes an agent ; for it is only the mode according to which an agent proceeds: it implies a power; for it is the order according to which that power acts. Without this agent, without this power, which are both distinct from itself, the law does nothing, is nothing. The expression, "the law of metallic nature," may sound strange and harsh to a philosophic ear; but it seems quite as
justifiable as some others which are more familiar to him, such as "the law of vegetable nature," "the law of animal nature," or, indeed, as "the law of nature" in general, when assigned as the cause of phenomena, in exclusion of agency and power, or when it is substituted into the place of these ${ }^{4}$.
VIII. Neither, lastly, would our observer be driven out of his conclusion, or from his confidence in its truth, by being told that he knew nothing at all about the matter. He knows enough for

[^1]his argument: he knows the utility of the end: he knows the subserviency and adaptation of the means to the end. These points being known, his ignorance of other points, his doubts concerring other points, affect not the certainty of his reasoning. The consciousness of knowing little need not beget a distrust of that which he does know.

CHAPTER II.

STATE OF THE ARGUMENT CONTINUED.
Suppose, in the next place, that the person who found the watch should, after some time, discover that, in addition to all the properties which he had hitherto observed in it, it possessed the unexpected property of producing, in the course of its movement, another watch like itself (the thing is conceivable); that it contained within it a mechanism, a system of parts, a mould, for instance, or a complex adjustment of lathes, files, and other tools, evidently and separately calculated for this purpose; let us inquire what effect ought such a discovery to have upon his former conclusion.
I. The first effect would be to increase his admiration of the contrivance, and his conviction of the consummate skill of the contriver. Whether he regarded the object of the contrivance, the distinct apparatus, the intricate, yet in many parts intelligible mechanism by which it was carried on, he would perceive, in this new observation, nothing but an additional reason for doing what he had already done-for referring the construction of the watch to design, and to supreme art. If that con-
struction without this property, or which is the same thing, before this property had been noticed, proved intention and art to have been employed about it, still more strong would the proof appear, when he came to the knowledge of this further property, the crown and perfection of all the rest.
II. He would reflect, that though the watch before him were, in some sense, the maker of the watch which was fabricated in the course of its movements, yet it was in a very different sense from that in which a carpenter, for instance, is the maker of a chair-the author of its contrivance, the cause of the relation of its parts to their use. With respect to these, the first watch was no cause at all to the second; in no such sense as this was it the author of the constitution and order, either of the parts which the new watch contained, or of the parts by the aid and instrumentality of which it was produced. We might possibly say, but with great latitude of expression, that a stream of water ground corn; but no latitude of expression would allow us to say, no stretch of conjecture could lead us to think, that the stream of water built the mill, though it were too ancient for us to know who the builder was. What the stream of water does in the affair is neither more nor less than this; by the application of an unintelligent
impulse to a mechanism previously arranged, arranged independently of it, and arranged by intelligence, an effect is produced, viz., the corn is ground. But the effect results from the arrangement. The force of the stream cannot be said to be the cause or author of the effect, still less of the arrangement. Understanding and plan in the formation of the mill were not the less necessary for any share which the water has in grinding the corn; yet is this share the same as that which the watch would have contributed to the production of the new watch, upon the supposition assumed in the last section. Therefore,
III. Though it be now no longer probable that the individual watch which our observer had found was made immediately by the hand of an artificer, yet doth not this alteration in anywise affect the inference, that an artificer had been originally employed and concerned in the production. The argument from design remains as it was. Marks of design and contrivance are no more accounted for now than they were before. In the same thing, we may ask for the cause of different properties. We may ask for the cause of the colour of a body, of its hardness, of its heat; and these causes may be all different. We are now asking for the cause of that subserviency to a use, that relation to an end, which we have remarked in the
watch before us. No ansiver is given to this question, by telling us that a preceding wateh produced it. There cannot be design without a designer; contrivance, without a contriver; order, without choice; arrangement; without anything capable of arranging; subserviency and relation to a purpose, without that which could intend a purpose; means suitable to an end, and executing their office in accomplishing that end, without the end ever having been contemplated, or the means accommodated to it. Arrangement, disposition of parts, subserviency of means to an end, relation of instruments to a use, imply the presence of intelligence and mind. No one, therefore, can rationally believe, that the insensible, inanimate watch, from which the watch before us issued, was the proper cause of the mechanism we so much admire in it;-could be truly said to have constructed the instrument, disposed its parts, assigned their office, determined their order, action, and mutual dependency, combined their several motions into one result, and that also a result connected with the utilities of other beings. All these properties, therefore, are as much unaccounted for as they were before.
IV. Nor is anything gained by running the difficulty farther back, i. e., by supposing the watch before us to have been produced from anothex
watch, that from a former, and so on indefinitely: Our going back ever 0 far, brings us no nearer to the least degree of satisfaction upon the subject. Contrivance is still unaccounted for. We still want a epntriver. A designing mind is neither supplied by this supposition, nor dispensed with. If the difficulty were diminished the farther we went back, by going back indefinitely we might exhaust it. And this is the only case to which this sort of reasoning applies. Where there is a tendency, or, as we increase the number of terms, a continual approach towards a limit, there, by supposing the number of terms to be what is called infinite, we may conceive the limit to be attained; but where there is no such tendency or approach, nothing is effected by lengthening the series. There is no difference as to the point in question (whatever there may be as to many points), between one series and another; between a series which is finite, and a series which is infinite. A chain, composed of an infinite number of links, can no more support itself than a chain composed of a finite number of links. And of this we are assured (though we never can have tried the cxperiment), because, by increasing the number of links, from ten for instance to a hundred, from a hundred to a thousand, \&cc., we make not the smallest approach, we observe not the smallest
tendency, towards self-support. There is no difference in this respect (yet there may be a great difference in several respects) between a chain of a greater or less length, between one chain and another, between one that is finite and one that is infinite. This very much resembles the case before us. The machine which we are inspecting demonstrates, by its construction, contrivance and design. Contrivance must have had a contriver; design, a designer; whether the machine immediately proceeded from another machine or not. That circumstance alters not the case. That other machine may, in like manner, have proceeded from a former machine: nor does that alter the case; the contrivance must have had a contriver. That former one from one preceding it : no alteration still; a contriver is still necessary. No tendency is perceived, no approach towards a diminution of this necessity. It is the same with any and every succession of these machines; a succession of ten, of a hundred, of a thousand; with one series, as with another; a series which is finite, as with a series which is infinite. In whatever other respects they may differ, in this they do not. In all, equally, contrivance and design are unaccounted for.

The question is not simply, How came the first watch into existence? which question, it may be
pretended, is done away by supposing the series of watches thus produced from one another to have been infinite, and consequently to have had no such first, for which it was necessary to provide a cause. This, perhaps, would have been nearly the state of the question, if nothing had been before us but an unorganised, unmechanised substance, without mark or indication of contrivance. It might be difficult to show that such substance could not have existed from eternity, either in succession (if it were possible, which I think it is not, for unorganised bodies to spring from one another), or by individual perpetuity. But that is not the question now. To suppose it to be so, is to suppose that it made ne difference whether he had found a watch or a stone. As it is, the metaphysics of that question have no place: for, in the watch which we are examining, are seen contrivance, design; an end, a purpose; means for the end, adaptation to the purpose. And the question which irresistibly presses upon our thoughts, is, Whence this contrivance and design? The thing required is the intending mind, the adapted hand, the intelligence by which that hand was directed. This question, this demand, is not shaken off, by increasing a number or succession of substances, destitute of these properties; nor the more, by increasing that number to
infinity. If it be said, that, upon the supposition of one watch being produced from another in the course of that other's movements, and by means of the mechanism within it, we have a cause for the watch in my hand, viz., the watch from which it proceeded,-I deny, that for the design, the contrivance, the suitableness of means to an end, the adaptation of instruments to a use (all which we discover in the watch), we have any cause whatever. It is in vain, therefore, to assign 2 series of such causes, or to allege that a series may be carried back to infinity; for I do not admit that we have yet any cause at all for the phenomena, still less any series of causes either finite or infinite. Here is contrivance, but no contriver; proofs of design, but no designer.
V. Our observer would further also reflect, that the maker of the watch before him was, in truth and reality, the maker of every watch produced from it: there being no difference (except that the latter manifests a more exquisite skill) between the making of another watch with his own hands, by the mediation of files, lathes, chisels, \&c., and the disposing, fixing, and inserting of these instruments, or of others equivalent to them, in the body of the watch already made in such a manner, as to form a new watch in the course of the movements which he had given to the old one. It is
only working by one set of toods instead of another.

The conclusion which the first examination of the watch, of its works, construction, and movement, suggested, was, that it must have had, for the cause and author of that construction, an artificer who understood its mechanism and designed its use. This conclusion is invincible. A second examination presents us with a new discovery. The watch is found, in the course of its movement, to produce another watch, similar to itself; and not only so, but we perceive in it a system or organisation, separately calculated for that purpose. What effect would this discovery have, or ought it to have, upon our former inference? What, as hath already been said, but to increase, beyond measure, our admiration of the skill which had been employed in the formation of such a machine? Or shall it, instead of this, all at once turn us round to an opposite conclusion, viz., that no art or skill whatever has been concerned in the business, although all other evidences of art and skill remain as they were, and this last and supreme piece of art be now added to the rest? Can this be maintained without absurdity? Yet this is atheism. ${ }^{5}$

[^2]untouched. In this chapter our author is laying the foundation for a course of reasoning on the mechanism displayed in the animal body. The argument in favour of a creating and presiding Intelligence may be drawn from the study of the laws of physical agency :-such as the properties of heat, light, and sound; of gravitation, and chemical combination; the structure of the globe, the divisions of land and sea, the distribution of temperature; nay, the mind may rise to the contemplation of the sun and planets, their mutual dependence, and their revolutions; but, as affording proofs obvious not only to cultivated reason but to plain sense, almost to ignorance, there is nothing to be compared with that for which our author is preparing the reader in this chapter, the mechanism of the animal body, and the adaptations which affect the well-being of living creatures.

CHAPTER III.

APPLICATION OF THE ARGUMENT. ${ }^{\text {E }}$

This is atheism : for every indication of contrivance, every manifestation of design, which existed in the watch, exists in the works of nature; with the difference, on the side of nature, of being greater and more, and that in a degree which exceeds all computation. I mean that the contrivances of nature surpass the contrivances of art, in the complexity, subtilty, and curiosity of the mechanism; and still more, if possible, do they go beyond them in number and variety; yet, in a multitude of cases, are not less evidently mechanical, not less evidently contrivances, not less evidently accommodated to their end, or suited to their office, than are the most perfect productions of human ingenuity.

[^3]

I know no better method of introducing so large a subject, than that of comparing a single thing with a single thing: an eye, for example, with a telescope. As far as the examination of the instrument goes, there is precisely the same proof that the eye was made for vision, as there is that the telescope was made for assisting it. They are made upon the same principles; both being adjusted to the laws by which the transmission and refraction of rays of light are regulated. I speak not of the origin of the laws themselves; but such laws being fixed, the construction in both cases is adapted to them. For instance; these laws require, in order to produce the same effect, that the rays of light, in passing from water into the eye, should be refracted by a more convex surface than when it passes out of air into. the eye. Accordingly we find that the eye of a fish, in that part of it called the crystalline leus, is much rounder than the eye of terrestrial animals, What plainer manifestation of design can there be than this difference? What could a
mathematical instrument maker have done more to show his knowledge of his principle, his appli-' cation of that knowledge, his suiting of his means to his end; I will not say to display the compass or excellence of his skill and art, for in these all comparison is indecorous, but to testify counsel, choice, consideration, purpose ? ${ }^{7}$

[^4]To some it may appear a difference sufficient to destroy all similitude between the eye and the telescope, that the one is a perceiving organ, the other an unperceiving instrument. The fact is that they are both instruments. And, as to the mechanism, at least as to mechanism being employed, and even as to the kind of it, this circumstance varies not the analogy at all. For observe what the constitution of the eye is. It is necessary, in order to produce distinct vision, that an image or picture of the object be formed at the bottom of the eye. Whence this necessity arises, or how the picture is connected with the sensation, or contributes to it, it may be difficult, nay, we will confess, if you please, impossible for us to
transparent cornea, it not only has the power to concentrate the rays of light coming through the water, but by its altered position it increases greatly the sphere of vision. (See the right-hand figure, page 22.) To be critically correct, we may add that it is not exactly the cornea which is deficient in the fish, but the aqueous humour behind it. An aqueous fluid being thus both behind and before the cornea, and that membrane being in a very slight degree thicker in the centre than in the margin, this part of the organ which is so efficient in the atmosphere is rendered useless in water. A man diving, for example, sees imperfectly, being in something worse than the condition of an old man who requires spectacles.
search out. But the present question is not concerned in the inquiry. It may be true, that, in this, and in other instances, we trace mechanical contrivance a certain way; and that then we come to something which is not mechanical, or which is inscrutable. But this affects not the certainty of our investigation, as far as we have gone. The difference between an animal and an automatic statue consists in this,-that, in the animal, we trace the mechanism to a certain point, and then we are stopped; either the mechanism being too subtile for our discernment, or something else beside the known laws of mechanism taking place; whereas, in the automaton, for the comparatively few motions of which it is capable, we trace the mechanism throughout. But, up to the limit, the reasoning is as clear and certain in the one case as in the other. In the example before us, it is a matter of certainty, because it is a matter which experience and observation demonstrate, that the formation of an image at the bottom of the eye is necessary to perfect vision. The image itself can be shown. Whatever affects the distinctness of the image, affects the distinctness of the vision. The formation then of such an image being necessary (no matter how) to the sense of sight, and to the exercise of that sense, the apparatus by which it is formed is constructed
and put together, not only with infinitely more art, but upon the self-same principles of art, as in the telescope or the camera-obscura. The perception arising from the image may be laid out of the question; for the production of the image, these are instruments of the same kind. The end is the same; the means are the same. The purpose in both is alike ; the contrivance for accomplishing that purpose is in both alike. The lenses of the telescopes, and the humours of the eye, bear a complete resemblance to one another, in their figure, their position, and in their power over the rays of light, viz. in bringing each pencil to a point at the right distance from the lens; namely, in the eye, at the exact place where the membrane is spread to receive it. How is it possible, under circumstances of such close affinity, and upder the operation of equal evidence, to exclude contrivance from the one; yet to acknowledge the proof of contrivance having been employed, as the plainest and clearest of all propositions, in the other?

The resemblance between the two cases is still more accurate, and obtains in more points than we have yet represented, or than we are, on the first view of the subject, aware of. In dioptric telescopes there is an imperfection of this nature. Pencils of light, in passing through glass lenses,
are separated into different colours, thereby tinging the object, especially the edges of it, as if it were viewed through a prism. To correct this inconvenience had been long a desideratum in the art. At last it came into the mind of a sagacious optician, to inquire how this matter was managed in the eye : in which there was exactly the same difficulty to contend with as in the telescope. His observation taught him, that, in the eye, the evil was cured by combining lenses composed of different substances, i. e. of substances which possessed different refracting powers. Our artist borrowed thence his hint; and produced a correction of the defect by imitating, in glasses made from different materials, the effects of the different humours through which the rays of light pass before they reach the bottom of the eye. Could this be in the eye without purpose, which suggested to the optician the only effectual means of attaining that purpose ${ }^{8}$?
${ }^{8}$ This is an interesting part of the inquiry, which will be found more fully explained in the Appendix.

It is not, accurately speaking, "glasses of different refracting powers" which are required. Refraction is the new direction which the ray takes in passing from one transparent body into another of different density. Dispersion is the separation of the beam of light into differently coloured rays. A piece of glass may differ c 2.

But farther; there are other points, not so much perhaps of strict resemblance between the two, as of superiority of the eye over the telescope; yet of a superiority which, being founded in the laws that regulate both, may furnish topics of fair and just comparison. Two things were wanted to the cye, which were not wanted (at least in the same degree) to the telescope; and these were the adaptation of the organ, first, to different degrees of light; and secondly, to the vast diversity of distance at which objects are viewed by the naked eye, viz. from a few inches to as many miles. These difficulties present not themselves to the maker of the telescope. He wants all the light he can get; and he never directs his instrument to objects near at hand. In the eye, both these cases were to be provided for ; and for the purpose of providing for them, a subtile and appropriate mechanism is introduced.
[The next figure represents a section of the anterior part of the human eye:-A, A, the iris; B, the object, from which the rays strike off in all directions: a pencil of these enters at the pupil ; a portion is intercepted by the iris A, A. The pencil which enters the eye, passing through the lens, converges to form the image. But the
from another in its power of refracting, and also in its property of dispersing. It is by duly arranging these different properties that the achromatic telescope is formed.

spaces C, C, are deprived of rays by the intervention of the iris A, A. Yet this in no measure affects the size of the image but only diminishes the intensity of its illumination. By the contraction of the iris, and consequent enlargement of the pupil, a larger pencil of rays is admitted. It is remarkable that the image formed on the retina must always be inverted, and yet such is the power of habit and experience, derived from touching objects, that we see things as they-are in reality, and not as they are painted in our eyes-experience thus correcting the errors of sense. It j in the same way that we see single, though we have an image made in each eye. But if we change the ordinary position of our tye, the habit is broken, and we see double.]
I. In order to exclude excess of light, when it is excessive, and to render objects visible tinder obscurer degrees of it, when no more can be had, the hole or aperture in the eye, through which the light enters, is so formed as to contract or dilate itself for the purpose of admitting a greater or less number of rays at the same time. The chamber of the eye is a camera-obscura, which, when the light is too small, can enlarge its open-
ing; when too strong, can again contract it; and that without any other assistance than that of its own exquisite machinery. It is farther also, in the human subject, to be observed, that this hole in the eye, which we call the pupil, under all its different dimensions, retains its exact circular shape. This is a structure extremely artificial. Let an artist only try to execute the same; he will find that his threads and strings must be disposed with great consideration and contrivance, to make a circle which shall continually change its diameter yet preserve its form. This is done in the eye by an application of fibres, i. e. of strings similar, in their position and action, to what an artist would and must employ, if he had the same piece of workmanship to perform.

[This figure represents the iris separated from the eye and laid out flat. We perceive the straight fibres passing towards the inner margin, and the circular fibres running round the margin.]
II. The second difficulty which has been stated was the suiting of the same organ to the perception of objects that lie near at hand, within a few inches, we will suppose, of the eye, and of objects which are placed at a considerable distance from it, that, for example, of as many furlongs (I speak in both cases of the distance at which distinct vision can be exercised). Now this, according to the principles of optics, that is, according to the laws by which the transmission of light is regulated (and these laws are fixed), could not be done without the organ itself undergoing an alteration, and receiving an adjustment, that might correspond with the exigency of the case, that is to say, with the different inclination to one another under which the rays of light reached it. Rays issuing from points placed at a small distance from the eye, and which consequently must enter the eye in a spreading or diverging order, cannot, by the same optical instrument in the same state, be brought to a point, i. e. be made to form an image, in the same place with rays proceeding from objects situated at a much greater distance, and which rays arrive at the eye in directions nearly (and physically speaking) parallel. It requires a rounder lens to do it. The point of concourse behind the lens must fall critically upon the retina, or the vision is confused; yet, other
things remaining the same, this point, by the immutable properties of light, is carried farther back when the rays proceed from a near object than when they are sent from one that is remote. A person who was using an optical instrument would manage this matter by changing, as the occasion required, his lens or his telescope, or by adjusting the distance of his glasses with his hand or his screw : but how is this to be managed in the eye? What the alteration was, or in what part of the eye it took place, or by what means it was effected (for if the known laws which govern the refraction of light be maintained, some alteration in the state of the organ there must be), had long formed a subject of inquiry and conjecture. The change, though sufficient for the purpose, is so minute as to clude ordinary observation. Some very late discoveries, deduced from a laborious and most accurate inspection of the structure and operation of the organ, seem at length to have ascertained the mechanical alteration which the parts of the eye undergo. It is found, that by the action of certain muscles, called the straight muscles, and which action is the most advantageous that could be imagined for the purpose, it is found I say, that whenever the eye is directed to a near object, three changes are produced in it at the same time, all severally contributing to the adjust-
ment required. The cornea, or outermost coat of the eye, is rendered more round and prominent; the crystalline lens underneath is pushed forward; and the axis of vision, as the depth of the eye is called, is elongated. These changes in the eye vary its power over the rays of light in such a manner and degree as to produce exactly the effect which is wanted, viz. the formation of an image upon the retina, whether the rays come to the eye in a state of divergency, which is the case when the object is near to the eye, or come parallel to one another, which is the case when the object is placed at a distance. Can anything be more decisive of contrivance than this is? The most secret laws of optics must have been known to the author of a structure endowed with such a capacity of change. It is as though an optician, when he had a nearer object to view, should rectify his instrument by putting in another glass, at the same time drawing out also his tube to a different length.

[^5]Observe a new-born child first lifting up its eyelids. What does the opening of the curtain dis- cover? The anterior part of two pellucid globes, which, when they come to be examined, are found

That there is something in the sensibility of the nerve, and in the power of attention, there seems no doubt. Birds of prey, it has been noticed, possess a power of vision of which we can hardly form a conception. Where it is the object to snare the falcon, a pigeon is tied, in an exposed situation, with a cord so attached that a person concealed can flutter the bird, or make it extend its wings ; and although no bird of prey be visible in the whole sky, presently the hawk will be seen descending to pounce upon the pigeon. The endowment of the bird's eye must be different from ours, else the bird of prey could not see the most minute object when hovering at a great height; nor, in sweeping down upon his quarry, could he strike it with precision. Nothing of the nture of mere mechanical provision can account for the possession of this superior power. One instance of the power of adjustment which the eye has under the influence of the will, seems to be this. Let a person who cannot read distinctly, or at all, without spectacles, at a given distance, look at a word through a very small aperture, and he will see what he before could not without spectacles. This can hardly be explained by the removal of the lateral light, or by inflexion.
to be construeted upon strict optical principles;
*the self-same principles upon which we ourselves construct optical instruments. We find them perfect for the purpose of forming an image by refraction; composed of parts executing different offices: one part having fulfilled its office upon the pencil of light, delivering it over to the action of another part ; that to a third, and so onward : the progressive action depending for its success upon the nicest and minutest adjustment of the parts concerned : yet these parts so in fact adjusted as to produce, not by a simple action or effect, but by a combination of actions and effects, the result which is, ultimately wanted. And forasmuch as this organ would have to operate under different circumstances, with strong degrees of light and with weak degrees, upon near objects and upon remote ones, and these differences demanded, according to the laws by which the transmission of light is regulated, a corresponding diversity of structure,-that the aperture, for example, through which the light passes should be larger or less-the lenses rounder or flatter-or that their distance from the tablet upon which the pieture is delineated should be shortened or lengthened-this, I say, being the case and the difficulty to which the eye was to be adapted, we find its several parts capable of being occasionally
changed, and a most artificial apparatus provided to produce that change. This is far beyond the common regulator of a watch, which requires the touch of a foreign hand to set it; but it is not altogether unlike Harrison's contrivance for making a watch regulate itself, by inserting within it a machinery which, by the artful use of the different expansion of metals, preserves the equability of the motion under all the various temperatures of heat and cold in which the instrument may happen to be placed. The ingenuity of this last contrivance has been justly praised. Shall, therefore, a structure which differs from it chiefly by surpassing it, be accounted no contrivance at all? or, if it be a contrivance, that it is without a contriver?

But this, though much, is not the whole: by different species of animals the faculty we are describing is possessed in degrees suited to the different range of vision which their mode of life and of procuring their food requires. Birds, for instance, in general, procure their food by means of their beak; and, the distance between the eye and the point of the beak being small, it becomes necessary that they should have the power of seeing very near objects distinctly. On the other hand, from being often elevated much above the ground, living in the air, and moving through it with great velocity, they require for their safety,
as well as for assisting them in descrying their prey, a power of seeing at a great distance; a power of which, in birds of rapine, surprising examples are given. The fact accordingly is, that two peculiarities are found in the eyes of birds, both tending to facilitate the change upon which the adjustment of the eye to different distances depends. The one is a bony, yet, in most species, a flexible rim or hoop, surrounding the broadest part of the eye, which, confining the action of the muscles to that part, increases the effect of their lateral pressure upon the orb, by which pressure its axis is elongated for the purpose of looking at very near objects. The other is an additional muscle, called the marsupium, to draw, on occasion, the crystalline lens back, and to fit the same eye for the viewing of very distant objects. By these means, the cyes of birds can pass from one extreme to another of their scale of adjustment, with more ease and readiness than the eyes of other animals.
The eyes of fishes also, compared with those of terrestrial animals, exhibit certain distinctions of structure, adapted to their state and element. We have already observed upon the figure of the crystalline compensating by its roundness the density of the medium through which their light passes. To which we have to add, that the eyes
of fish, in their natural and indolent state, appear ' to be adjusted to near objects, in this respect differing from the human eye, as well as those of quadrupeds and birds. The ordinary shape of the fish's eye being in a much higher degree convex than that of land animals, a corresponding difference attends its muscular conformation, viz., that it is throughout calculated for flattening the eye.

The iris also in the eyes of fish does not admit of contraction. This is a great difference, of which the probable reason is, that the diminished light in water is never too strong for the retina.

In the eel, which has to work its head through sand and gravel, the roughest and harshest substances, there is placed before the eye, ãnd at some distance from it, a transparent, horny, convex case or covering, which, without obstructing the sight, defends the organ. To such an animal could anything be more wanted or more useful?

Thus, in comparing the eyes of different kinds of animals, we see in their resemblances and dis-
tinctions one general plan laid down, and that plan varied with the varying exigencies to which it is to be applied ${ }^{10}$.

[^6]There is one property, however, common, I believe, to all eyes, at least to all which have been examined*, namely, that the optic nerve enters
all that is porous is penetrated with water, or compressed, and consequently remains where it sunk. So it happened, and the fact goes directly to our purpose, that when, by the entangling of the line of the harpoon, the boat was carried down with the whale, and, being recovered, it required two boats to keep it at the surface. Scoresby.

We may easily conceive, therefore, the pressure which the eye of the whule sustuins when it dives, and why it is formed with the provisions which we are about to describe. When we make a section of the whole eye, cutting through the cornea, the sclerotic coat, which is dense as tanned leather, increases in thickness towards the back part, and is full five times the thickness behind, that it is at the anterior part. The anterior part of the eye sustains the pressure from without, and requires no additional support; but were the back part to yield, the globe would be then distended in that direction, and the whole interior of the eye consequently suffer derangement. We perceive, therefore, the necessity of the coats being thus so remarkably strengthened behind. The natural enemies of the whale are the sword-fish and the shark; and it is stated with some show of reason, that this huge creature, being without means of defence of

[^7]the bottom of the eye, not in the centre or middle, but a little on one side: not in the point where the axis of the eye meets the retina, but between that point and the nose. The difference which this makes is, that no part of an object is unperceived by both eyes at the same time.

In considering vision as achieved by the means of an image formed at the bottom of the eye, we can never reflect without wonder upon the smallness yet correctness of the picture, the subtilty of the touch, the fineness of the lines. A landscape of five or six square leagues is brought into a space of half an inch diameter; yet the multitude of objects which it contains are all preserved, are all discriminated in their magnitudes, positions, figures, colours. The prospect from Hampsteadhill is compressed into the compass of a sixpence, yet circumstantially represented. A stage-coach, travelling at an ordinary speed for half an hour, passes, in the eye, only over one-twelfth of an inch, yet is this change of place in the image distinctly perceived throughout its whole progress; for it is

[^8]only by means of that perception that the motion of the coach itself is made sensible to the eye. If anything can abate our admiration of the smallness of the visual tablet compared with the extent of vision, it is a reflection which the view of nature leads us every hour to make, viz., that, in the hands of the Creator, great and little are nothing.

Sturmius held, that the examination of the eye was a cure for atheism. Besides that conforming to optical principles which its internal constitution displays, and which alone amounts to a manifestation of intelligence having been exerted in the structure; besides this, which forms, no doubt, the leading character of the organ, there is to be seen, in everything belonging to it and about it, an extraordinary degree of care, an anxiety for its preservation, due, if we may so speak, to its value and its tenderness. It is lodged in a strong, deep, bony socket, composed by the junction of seven different bones*, hollowed out at their edges. In some few species, as that of the coatimondit, the orbit is not bony throughout; but whenever this is the case, the upper, which is the deficient part, is supplied by a cartilaginous ligament; a substitution which shows the same care. Within this socket it is embedded in fat, of all animal substances the best

[^9]adapted both to its repose and motion. It is sheltered by the eyebrows-an arch of hair, which, like a thatched penthouse, prevents the sweat and moisture of the forehead from running down into it.

Bnt it is still better protected by its lid. Of the superficial parts of the animal frame, I know none which, in its office and structure, is more deserving of attention than the eyelid. It defends the eye; it wipes it; it closes it in sleep. Are there, in any work of art whatever, purposes more evident than those which this organ fulfils? or an apparatus for exccuting those purposes more intelligible, more appropriate, or more mechanical? If it be overlooked by the observer of nature, it can only be because it is obvious and familiar. This is a tendency to be guarded against. We pass by the plainest instances, whilst we are exploring those which are rare and curious; by which conduct of the understanding, we sometimes neglect the strongest observations, being taken up with others which, though more recondite and scientific, are, as solid arguments, entitled to much less consideration.

In order to keep the eye moist and clean (which qualities are necessary to its brightness and its use), a wash is constantly supplied by a secretion for the purpose; and the superfluous brine is
conveyed to the nose through a perforation in the bone as large as a goose-quill. When once the fluid has entered the nose, it spreads itself upon the inside of the nostril, and is evaporated by the current of warm air which, in the course of respiration, is continually passing over it. Can any pipe or outlet, for carrying off the waste liquor from a dye-house or a distillery, be more mechanical than this is? It is easily perceived that the eye must want moisture: but could the want of the eye generate the gland which produces the tear, or bore the hole by which it is dischargeda hole through a bone?

It is observable that this provision is not found in fish-the element in which they live supplying a constant lotion to the eye ${ }^{11}$.

It were, however, injustice to dismiss the eye as a piece of mechanism, without noticing that most

[^10]exquisite of all contrivances, the nictitating membrane, which is found in the eyes of birds, and of many quadrupeds. Its use is to sweep the eye, which it does in an instant; to spread over it the lachrymal humour; to defend it also from sudden injuries; yet not totally, when drawn upon the pupil, to shut out the light. The commodiousness with which it lies folded up in the upper corner of the eye, ready for use and action, and the quickness with which it executes its purpose, are properties known and obvious to every observer; but what is equally admirable, though not quite so obvious, is the combination of two kinds of substance, muscular and elastic, and of two different kinds of action, by which the motion of this membrane is performed. It is not, as in ordinary cases, by the action of two antagonist muscles, one pulling forward, and the other backward, that a reciprocal change is effected; but it is thus: the membrane itself is an elastic substance, capable of being drawn out by force like a piece of elastic gum, and by its own elasticity returning, when the force is removed, to its former position. Such being its nature, in order to fit it up for its office, it is connected by a tendon or thread with a muscle in the back part of the eye: this tendon or thread, though strong, is so fine as not to obstruct the sight, even when it passes
across it; and the muscle itself, being placed in the back part of the eye, derives from its situation the advantage, not only of being secure, but of being out of the way; which it would hardly have been in any position that could be assigned to it in the anterior part of the orb, where its function lies. When the muscle behind the eye contracts, the membrane, by means of the communicating thread, is instantly drawn over the fore-part of it. When the muscular contraction (which is a positive and, most probably, a voluntary effort) ceases to be exerted, the elasticity alone of the membrane brings it back again to its position*. Does not this, if anything can do it, bespeak an artist, master of his work, acquainted with his materials? "Of a thousand other things," say the French Academicians, "we perceive not the con*ivance, because we understand them only by their effects, of which we know not the causes: but we here treat of a machine, all the parts whereof are visible, and which need only be looked upon to discover the reasons of its motion and action \dagger."

In the configuration of the muscle which, though placed behind the eye, draws the nictitating mem-

[^11]brane over the eye, there is, what the authors just now quoted deservedly call a marvellous mechanism. I suppose this structure to be found in other animals; but, in the memoirs from which this account is taken, it is anatomically demonstrated only in the cassowary. The muscle is passed through a loop formed by another muscle; and is there inflected as if it were round a pulley. This is a peculiarity, and observe the advantage of it. A single muscle with a straight tendon, which is the common muscular form, would have been sufficient, if it had had power to draw far enough. But the contraction necessary to draw the membrane over the whole eye, required a longer muscle than could lie straight at the bottom of the eye. Therefore, in order to have a greater length ina less compass, the cord of the main muscle makes an angle. This so far answers the end; but, still farther, it makes an angle, not round a fixed pivot, but round a loop formed by another muscle, which second muscle, whenever it contracts, of course twitches the first muscle at the point of inflection, and thereby assists the action designed by both ${ }^{19}$.

[^12]One question may possibly have dwelt in the reader's mind during the perusal of these observations, namely, Why should not the Deity have given to the animal the faculty of vision at once? Why this circuitous perception; the ministry of so many means; an element provided for the purpose; reflected from opaque substances, refracted through transparent ones; and both according to precise laws; then, a complex organ, an intricate and artificial apparatus, in order, by the operation of this element, and in
by the oblique direction and junction of the tendons of these muscles. This will be illustrated hereafter.

The membrana nictitans is peculiar to birds: the term is not applicable to the corresponding tructure in quadrupeds, the object being there obtained by a very different-mechanism. The haw is a thin cartilage, which, kying between the eye-ball and the inner part of the orbit, flies rapidly out, and sweeps the surface of the eye in a manner much more perfect than can be performed by the outer eyelids. Every one who has ridden a horse in a dusty road, must have been struck with the superior provision in the horse's eye: he never suffers from the dust, because, this cartilage, being bedewed by the secretion of a peculiar gland, not tears, but a matter more glutinous, sweeps across the eye, and collects and removes every particle of dust.
conformity with the restrictions of these laws, to produce an image upon a membrane communicating with the brain? Wherefore all this? Why make the difficulty in order to surmount it? If to perceive objects by some other mode than that of touch, or objects which lay out of the reach of that sense, were the thing proposed, could not a simple volition of the Creator have communicated the capacity? Why resort to contrivance, where power is omnipotent? Contrivance, by its very definition and nature, is the refuge of imperfection. To have recourse to expedients implies difficulty, impediment, restraint, defect of power. This question belongs to the other senses, as well as to sight ; to the general functions of animal life, as nytrition, secretion, respiration; to the economy of vegetables; and indeed to almost all the operations of nature. The question, therefore, is of very wide extent; and amongst. other answers which may be given to it, besides reasons of which probably we are ignorant, one answer is this : It is only by the display of contrivance that the existence, the agency, the wisdom of the Deity, could be testified to his rational creatures. This is the scale by which we ascend to all the knowledge of our Creator which we possess, so far as it depends upon the phenomena, or the works of nature. Take away this, and you take
away from us every subject of observation, and ground of reasoning; I mean, as our rational faculties are formed at present. Whatever is done, God could have done without the intervention of instruments or means; but it is in the construction of instruments, in the choice and adaptation of means, that a creative intelligence is seen. It is this which constitutes the order and beauty of the universe. God, therefore, has been pleased to prescribe limits to his own power, and to work his ends within those limits. ${ }^{13}$ The general laws of matter have perhaps prescribed the nature of these limits ; its inertia, its reaction; the laws which govern the communication of motion, the refraction and reflection of light, the constitution of fluids non-elastic and elastic, the transmission of sound through the latter; the laws of magnetism, of electricity; and probably others, yet undiscovered. These are general laws; and when a particular purpose is to be effected, it is not by making a new law, nor by the suspension of the old ones, nor by making them wind, and bend, and yield to the occasion (for nature with great steadiness adheres to and supports them) ; but it is, as we have seen in the eye, by the interposition

[^13]of an apparatus, corresponding with these laws, and suited to the exigency which results from them, that the purpose is at length attained. As we have said, therefore, God prescribes limits to his power, that he may let in the exercise and thereby exhibit demonstrations of his wisdom. For then, i. e., such laws and limitations being laid down, it is as though one Being should have fixed certain rules, and, if we may so speak, provided certain materials, and afterwards have committed to another Being, out of these materials, and in subordination to these rules, the task of drawing forth a creation : a supposition which evidently leaves room, and induces indeed a necessity for contrivance. Nay, there may be many such agents, and many ranks of these. Wé do not advance this as a doctrine either of philosophy or of religion; but we say that the subject may safely be represented under this view; because the Deity, acting himself by general laws, will have the same consequences upon our reasoning, as if he had prescribed these laws to another. It has been said, that the problem of creation was, "attraction and matter being given, to make a world out of them;" and, as above explained, this statement perhaps does not convey a false idea.

We have made choice of the eye as an instance upon which to rest the argument of this chapter. Some single example was to be proposed; and the eye offered itself under the advantage of admitting of a strict comparison with optical instruments. The ear, it is probable, is no less artificially and mechanically adapted to its office than the eye. But we know less about it : we do not so well understand the action, the use, or the mutual dependency of its internal parts. ${ }^{14}$ Its
${ }^{14}$ The reader will find a dissertation on the ear in the Appendix. Other authors, as well as Dr. Paley, have said that we do not understand the uses or mutual dependency of the internal parts of the ear: an observation either not very intelligible, or which shows them to have studied it superficially.

general form, however, both external and internal, is sufficient to show that it is an instrument

Explanation of the Plan of the Ear.-A, the tube of the ear, having little glands to secrete the wax, and hairs standing across it to exclude insects, without impeding the vibrations of the atmosphere; B , the membrane of the tympanum drawn into the form of a funnel by the attachment of the malleus; C, the chain of four bones lying in the irregular cavity of the tympanum, and communicating the vibrations of the membrane B to the fluid in the labyrinth; D, Eustachian tube, which forms a communication between the throat and the tympanum, so as to preserve an equilibrium of the air in the cavity of the tympanum and the atmosphere; E, F, the labyrinth, consisting of a central cavity, the vestibule; the three semicircular canals, E , and the cochlea, \mathbf{F}.

Beginning from the left hand we have the malleis, or hammer, the first of the chain of bones; we see the long handle or process which is attached to the membrane of the tympanum, and which moves with the vibrations of that membrane; the other end is enlarged, and has a groove upon it which is articulated with the next bonc. The second bone is the incus, or anvil, to the grooved surface of which the malleus is attached. A long process extends from this bone, which has upon it the os orbiculare; and to this third bone there is attached a fourth, the stapes, which is in shape like a stirrup iron. The base of this bone is of an oval shape,
adapted to the reception of sound; that is to say, already knowing that sound consists in pulses of the air, we perceive, in the structure of the ear, a suitableness to receive impressions from this species of action, and to propagate these impressions to the brain. For of what does this structure consist? An external ear (the concha), calculated, like an ear trumpet, to catch and collect the pulses of which we have spoken; in large quadrupeds, turning to the sound, and possessing a configuration, as well as motion, evidently fitted for the office: of a tube which leads into the head, lying at the root of this outward car, the folds and sinuses thereof tending and conducting the air towards it: of a thin membrane, like the pelt of a drum, stretched across this passage upon a bony rim : of a chain of movable and infinitely curious bones, forming a communication, and the only communication that can be observed, between the membrane last mentioned and the
and rests upon a membrane which closes the hole leading into the labyrinth. This hole is called foraneen ovale. The plan of the cochlea shows that one of its spiral passages, beginning in the vestibule, winds round the pillar till it meets in a point with auother tube. If the eye follow this second spiral tube, it will be found to lead, not into the vestibule, but into the irregular cavity of the tympanum.
interior channels and recesses of the skull: of cavities, similar in shape and form to wind instruments of music, being spiral or portions of circles : of the eustachian tube, like the hole in a drum, to let the air pass freely into and out of the barrel of the ear, as the covering membrane vibrates, or as the temperature may be altered: the whole labyrinth hewn out of a rock; that is, wrought into the substance of the hardest bone of the body. This assemblage of connected parts constitutes together an apparatus plainly enough relative to the transmission of sound, or of the impulses received from sound, and only to be lamented in not being better understood.

The communication within, formed by the small bones of the ear, is, to look upon, more like what we are accustomed to call machinery, than any thing I am acquainted with in animal bodies. It seems evidently designed to continue towards the sensorium the tremulous motions which are excited in the membrane of the tympanum, or what is better known by the name of the "drum of the
ear." The compages of bones consists of four,

[This figure represents the bones which form the chain.]
which are so disposed, and so hinge upon one another, as that if the membrane, the drum of the ear, vibrate, all the four are put in motion together; and, by the result of their action, work the base of that which is the last in the series, upon an aperture which it closes, and upon which it plays, and which aperture opens into the tortuous canals that lead to the brain. This last bone of the four is called the stapes. The office of the drum of the ear is to spread out an extended surface, capable of receiving the impressions of sound, and of being put by them into a state of vibration. The office of the stapes is to repeat these vibrations. It is a repeating frigate, stationed more within the line. From which account of its action may be understood how the sensation of sound will be excited by any thing which communicates a vibratory motion to the stapes, though not, as in all ordinary cases, through the intervention of the membrana tympani. This is
done by solid bodies applied to the bones of the skull, as by a metal bar holden at one end between the teeth, and touching at the other end a tremulous body. It likewise appears to be done, in a considerable degree, by the air itself, even when this membrane, the drum of the ear, is greatly damaged. Either in the natural or preternatural state of the organ, the use of the chain of bones is to propagate the impulse in a direction towards the brain, and to propagate it with the advantage of a lever; which advantage consists in increasing the force and strength of the vibration, and at the same time diminishing the space through which it oscillates; both of which changes may augment or facilitate the still deeper action of the auditory nerves. ${ }^{15}$

The benefit of the eustachian tube to the organ may be made out upon pneumatic principles.

[^14]Behind the drum of the ear is a second cavity, or barrel, called the tympanum. The eustachian tube is a slender pipe, but sufficient for the passage of air, leading from this cavity into the back part of the mouth. Now, it would not have done to have had a vacuum in this cavity; for, in that case, the pressure of the atmosphere from without would have burst the membrane which covered it. Nor would it have done to have filled the cavity with lymph, or any other secretion; which would necessarily have obstructed, both the vibration of the membrane, and the play of the small bones. Nor, lastly, would it have done to have occupied the space with confined air, because the expansion of that air by heat, or its contraction by cold, would have distended or relaxed the covering membrane, in a degree inconsistent with the purpose which it was assigned to execute. The only remaining expedient, and that for which the eustachian tube serves, is to open to this cavity a communication with the external air. In one word, it exactly answers the purpose of the hole in a drum.

The membrana tympani itself, likewise, deserves all the examination which can be made of it. It is not found in the ears of fish; which furnishes an additional proof of what indeed is indicated by every thing about it, that it is appro-
priated to the action of air, or of an elastic medium. It bears an obvious resemblance to the pelt or head of a drum, from which it takes its name. It resembles also a drum-head in this

[This figure represents the membrane of the tympanum of a larger size than natural. It is represented as tucked in by the handle of the malleus. The description of Sir Everard Home, referred to in the text, is altogether fanciful. There is no proof that these fibres ${ }^{-}$ are muscular: they are drawn tight by the small muscle attached to the malleus called tensor tympani; and it would appear that these cords are necessary to produce that variety of motion in the membrane suited to all the variety of sounds which are conveyed through it to the seat of the sense. Sir Everard played to the elephant on the piano-forte. That the animal took some notice of the extraordinary sound cannot surprise us; but the inferences drawn by Sir Everard were equally ingenious and groundless. He supposed that the musical ear was owing to the membrane of the tympanum.]
principal property, that its use depends upon its tension. Tension is the state essential to it. Now we know that, in a drum, the pelt is carried over a hoop, and braced as occasion requires, by the means of strings attached to its circumference. In the membrane of the ear, the same purpose is provided for, more simply, but not less mechanically nor less successfully, by a different expedient, viz. by the end of a bone (the handle of the malleus) pressing upon its centre. It is only in very large animals that the texture of this membrane can be discerned. In the Philosophical Transactions for the year 1800 (vol. i.), Mr. Everard Home has given some curious observations upon the ear, and the drum of the ear of an elephant. He discovered in it what he calls a radiated muscle-that is, straight muscular fibres passing along the membrane from the circumference to the centre-from the bony rim which surrounds it towards the handle of the malleus, to which the central part is attached. This muscle he supposes to be designed to bring the membrane into unison with different sounds; but then he also discovered, that this muscle itself cannot act, unless the membrane be drawn to a stretch, and kept in a due state of tightness, by what may be called a foreign force-viz. the action of the muscles of the malleus. Supposing his explanation of
the use of the parts to be just, our author is well founded in the reflection which he makes upon it-" that this mode of adapting the ear to different sounds, is one of the most beautiful applications of muscles in the body; the mechanism is so simple, and the variety of effects so great."

In another volume of the Transactions above referred to, and of the same year, two most curious cases are related, of persons who retained the sense of hearing, not in a perfect but in a very considerable degree, notwithstanding the almost total loss of the membrane we have been describing. In one of these cases, the use here assigned to that membrane, of modifying the impressions of sound by change of tension, was attempted to be supplied by straining the muscles of the outward ear. "The external ear," we are told, " had acquired a distinct motion upward and backward, which was observable whenever the patient listened to any thing which he did not distinctly hear; when he was addressed in a whisper, the ear was seen immediately to move; when the tone of voice was louder, it then remained altogether motionless."

It appears probable, from both these cases, that a collateral if not principal use of the membrane is to cover and protect the barrel of the ear which lies behind it. Both the patients suf-
fered from cold : one, "a great increase of deafness from catching cold;" the other, "very considerable pain from exposure to a stream of cold air." Bad effects therefore followed from this cavity being left open to the external air; yet, had the Author of Nature shut it up by any other cover than what was capable, by its texture, of receiving vibrations from sound, and, by its connexion with the interior parts, of transmitting those vibrations to the brain, the use of the organ, so far as we can judge, must have been entirely obstructed.

63

CHAPTER IV.

ON THE SUCCESSION OF PLANTS AND ANIMALS.
The generation of the animal no more accounts for the contrivance of the eye or ear, than, upon the supposition stated in a preceding chapter, the production of a watch by the motion and mechanism of a former watch, would account for the skill and attention evidenced in the watch so pro-duced-than it would account for the disposition of the wheels, the catching of their teeth, the relation of the several parts of the works to one another, and to their common end; for the suitableness of their forms and places to their offices, for their connexion, their operation, and the useful result of that operation. I do insist most strenuously upon the correctness of this comparison; that it holds as to every mode of specific propagation; and that whatever was true of the watch, under the hypothesis above mentioned, is true of plants and animals.
I. To begin with the fructification of plants. Can it be doubted but that the seed contains a particular organization? Whether a latent plantule with the means of temporary nutrition, or
whatever else it be, it encloses an organization suited to the germination of a new plant. Has the plant which produced the seed any thing more to do with that organization, than the watch would have had to do with the structure of the watch which was produced in the course of its mechanical movement? I mean-Has it any thing at all to do with the contrivance? The maker and contriver of one watch, when he inserted within it a mechanism suited to the production of another watch, was, in truth, the maker and contriver of that other watch. All the properties of the new watch were to be referred to his agency: the design manifested in it, to his intention: the art, to him as the artist: the collocation of each part, to his placing: the action, effect, and use, to his counsel, intelligence, and workmanship. In producing it by the intervention of a former watch, he was only working by one set of tools instead of another. So it is with the plant, and the seed produced by it. Can any distinction be assigned between the two cases; between the producing watch, and the producing plant; both passive unconscious substances; both, by the organization which was given to them, producing their like, without understanding or design; both, that is, instruments?
II. From plants we may proceed to oviparous
animals: from seeds to eggs. Now I say, that the bird has the same concern in the formation of the egg which she lays, as the plant has in that of the seed which it drops; and no other nor greater. The internal constitution of the egg is as much a secret to the hen as if the hen were inanimate. Her will cannot alter it, or change a single feather of the chick. She can neither foresee nor determine of which sex her brood shall be, or how many of either; yet the thing produced shall be, from the first, very different in its make according to the sex which it bears. So far, therefore, from adapting the means, she is not beforehand apprised of the effect. If there be concealed within that smooth shell a provision and a preparation for the production and nourishment of a new animal, they are not of her providing or preparing; if there be contrivance, it is none of hers. Although, therefore, there be the difference of life and perceptivity between the animal and plant, it is a difference which enters not into the account;-it is a foreign circumstance; it is a difference of properties not employed. The animal function and the vegetable function are alike destitute of any design which can operate upon the form of the thing produced. The plant has no design in producing the seedno comprehension of the nature or use of what it
produces: the bird, with respect to its egg, is not above the plant with respect to its seed. Neither the one nor the other bears that sort of relation to what proceeds from them which a joiner does to the chair which he makes. Now a cause which bears this relation to the effect, is what we want, in order to account for the suitableness of means to an end-the fitness and fitting of one thing to another ; and this cause the parent plant or animal does not supply.

It is further observable concerning the propagation of plants and animals, that the apparatus employed exhibits no resemblance to the thing produced; in this respect, holding an analogy with instruments and tools of art. The filaments, antheræ, and stigmata of flowers, bear no more resemblance to the young plant, or even to the seed which is formed by their intervention, than a chisel or a plane does to a table or chair. What then are the filaments, antheræ, and stigmata of plants but instruments strictly so called?
III. We may advance from animals which bring forth eggs to animals which bring forth their young alive; and of this latter class, from the lowest to the highest; from irrational to rational life, from brutes to the human species; without perceiving, as we proceed, any alteration whatever in the terms of the comparison. The rational
animal does not produce its offspring with more certainty or success than the irrational animal: a man than a quadruped, a quadruped than a bird; nor (for we may follow the gradation through its whole scale) a bird than a plant; nor a plant than a watch, a piece of dead mechanism, would do, upon the supposition which has already so often been repeated. Rationality, therefore, has nothing to do in the business. If an account must be given of the contrivance which we observe; if it be demanded, whence arose either the contrivance by which the young animal is produced, or the contrivance manifested in the young animal itself, it is not from the reason of the parent that any such account can be drawn. He is the cause of his offspring, in the same sense as that in which a gardener is the cause of the tulip which grows upon his parterre, and in no other. We admire the flower; we examine the plant; we perceive the conduciveness of many of its parts to their end and office : we observe a provision for its nourishment, growth, protection, and fecundity; but we never think of the gardener in all this. We attribute nothing of this to his agency; yet it may still be true, that without the gardener we should not have had the tulip. Just so it is with the succession of animals, even of the highest order. For the contrivance discovered in the
structure of the thing produced, we want a contriver. The parent is not that contriver : his consciousness decides that question. He is in total ignorance why that which is produced took its present form rather than any other. It is for him only to be astonished by the effect. We can. no more look therefore to the intelligence of the parent animal for what we are in search of-a cause of relation, and of subserviency of parts to their use, which relation and subserviency we see in the procreated body-than we can refer the internal conformation of an acorn to the intelligence of the oak from which it dropped, or the structure of the watch to the intelligence of the watch which produced it: there being no difference, as far as argument is concerned, between an intelligence which is not exerted, and an intelligence which does not exist. ${ }^{16}$
${ }^{16}$ When we have, in some measure, comprehended the system of an animal body, how the different organs are related to each other, and how the whole exists through a mutual influence of its parts, the wonder is renewed how another creature should grow out of that, which, as far as we have seen, has no tendency to multiply itself. Authors who treat of reproduction, even to the very last, affirm, that with the germ of life in all organized structures are conjoined the seeds of decay and of death : they tell us that the powers of life are
finite, and that the time must come when they shall be expended. Now there are no seeds of decay; and although, according to the law of animal existence, the individual perishes, it is incorreet to say that it is the result of the exhaustion of the powers of vitality, or the deterioration of the material which enters into its composition. We gain nothing by adapting the language of one science to explain another: it is of no advantage, in treating of life and death, to adopt a chemical nomenclature. The term of life in every creature, from the elephant to the ephemeral fly, has its limit; but it is wrong to say that it is by the defect of the material, or of the energy of life: it is a better philosophy to admit that it is in accordance with the system which the Deity has ordained.

Life, in the sense in which it is used here, is continued in the germ that rises from the parent; since out of the old body, that is described as a deteriorated and useless material, a new creation is produced, it suffices to show that there is no necessary decay from the material itself. A leaf or twig of an old tree will strike root into the ground, and vegetate and exhibit youthful vigour. So will the fresh-water polypus furnish a portion which, being cut off, will grow with a perfect resemblance to the original stock. In the reproduction of the higher and the more complex organized bodies there is much that is obscure; but in the simpler, and, as it is termed, the lower examples-vegetables, zoophytes, and infusory animals-we have abundant proofs
that the result does not proceed from the exhausted or deteriorated nature of the material.

Amongst the infusoria, the animals called Monads, of which there is a great variety, exhibit very curious phenomena. They are of a globular form, and this globe is seen first to contract and then divide, each becoming a distinct animal. And something like this may be done artificially by the division of the freshwater polypus, or hydra; and what is deficient in the divided portion is supplied by a new growth, be it head or tail. The thing, however, is not so remarkable, if we consider that those lower animals have abundant resemblance to vegetables; and that in cutting off portions the experimenter is cutting off buds. These buds or tubercles, if left to undergo their natural changes, acquire independent motion, produce tentacula, or feelers, to procure food, and, thus prepared to be independent, fall off from the parent stock.

The microscope exhibits another instance in the Volvox. It is a transparent globule, within which smaller globules may be seen; and when matured the parent bursts, discloses the offspring, and dies.

In all these examples, we see that there is no reason to speak of exhausted or deteriorated matter, or debility in the powers of life.

So in the higher and the more complex animals we find one set of organs decaying and another rising into existence. Contemplating the one, we would say that the powers were decaying; contemplating the other, that
they were fresh and vigorous. We must come to the conclusion, then, that the growth of parts, or the period of their development, the decay of the animal, or of the parts of the animal, is by an ordinance which is very inaccurately expressed by the terms exhaustion of life, or imperfection of the material. Imperfection, in truth, is a relative term, and means failure or insufficiency towards the accomplishment of certain purposes. If the object in view were the duration of animal bodies for a great length of time, we might be justified in saying that the materials they are made of are imperfect; but this is clearly not the design with which they are formed.

CHAPTER V.

APPLICATION OF THE ARGUMENT CONTINUED.

Every observation which was made in our first chapter concerning the watch, may be repeated with strict propriety concerning the eye; concerning animals; concerning plants; concerning, indeed, all the organized parts of the works of nature. As,

1. When we are inquiring simply after the existence of an intelligent Creator, imperfection, inaccuracy, liability to disorder, occasional irregularities, may subsist in a considerable degree, without inducing any doubt into the question: just as a watch may frequently go wrong, seldom perhaps exactly right, may be faulty in some parts, defective in some, without the smallest ground of suspicion from thence arising that it was not a watch, not made, or not made for the purpose ascribed to it. When faults are pointed out, and when a question is started concerning the skill of the artist, or dexterity with which the work is executed, then, indeed, in order to defend these qualities from accusation, we must be able,
either to expose some intractableness and imperfection in the materials, or point out some invincible difficulty in the execution, into which imperfection and difficulty the matter of complaint may be resolved; or, if we cannot do this, we must adduce such specimens of consummate art and contrivance proceeding from the same hand as may convince the inquirer of the existence, in the case before him, of impediments like those which we have mentioned, although, what from the nature of the case is very likely to happen, they be unknown and unperceived by him. This we must do in order to vindicate the artist's skill, or at least the perfection of it; as we must also judge of his intention, and of the provisions employed in fulfilling that intention, not from an instance in which they fail, but from the great plurality of instances in which they succeed. But, after all, these are different questions from the question of the artist's existence ; or, which is the same, whether the thing before us be a work of art or not; and the questions ought always to be kept separate in the mind. So likewise it is in the works of nature. Irregularities and imperfections are of little or no weight in the consideration, when that consideration relates simply to the existence of a Creator. When the argument respects his attributes, they are of weight; but are then to be
taken in conjunction (the attention is not to rest upon them, but they are to be taken in conjunction) with the unexceptionable evidences which we possess of skill, power, and benevolence, displayed in other instances; which evidences may, in strength, number, and variety, be such, and may so overpower apparent blemishes, as to induce us, upon the most reasonable ground, to believe that these last ought to be referred to some cause, though we be ignorant of it, other than defect of knowledge or of benevolence in the author.
II. There may be also parts of plants and animals, as there were supposed to be of the watch, of which, in some instances the operation, in others, the use, is unknown. These form different cases; for the operation may be unknown, yet the use be certain. Thus it is with the lungs of animals. It does not, I think, appear, that we are acquainted with the action of the air upon the blood, or in what manner that action is communicated by the lungs; yet we find that a very short suspension of their office destroys the life of the aaimal ${ }^{17}$. In this case, therefore, we may be said

[^15]to know the use, nay, we experience the necessity, of the organ, though we be ignorant of its operation. Nearly the same thing may be observed of what is called the lymphatic system. We suffer grievous inconveniences from its disorder, without being informed of the office which it sustains inthe economy of our bodies. There may possibly also be some few examples of the second class, in which not only the operation is unknown, but in which experiments may seen to prove that the part is not necessary; or may leave a doubt how far it is even useful to the plant or animal in whichit is found. This is said to be the case with the spleen, which has been extracted from doge without any sensible injury to their vital functions. Instances of the former kind, namely, in which we cannot explain the operation, may be numerous; for they will be so in proportion to our ignorance:They will be more or fewer to different persons, and ${ }^{\text { }}$ in different stages of science. Every improvement of knowledge diminishes their number. There is hardly, perhaps, a year passes that does not, in the works of nature, bring some operation, or
alarm excited when there is danger of suffocation are notso mouctr a direct consequence of the interruption of the function, as an instance of the manner in which the sensibility is bentowed to guard the important aetions of life.
some mode of operation, to light, which was before undiscovered-probably unsuspected. Instances of the second kind, namely, where the part appears to be totally useless, I believe to be extremely rare; compared with the number of those of which the use is evident, they are beneath any assignable proportion, and perhaps have been never submitted to a trial and examination sufficiently accurate, long enough continued, or often enough repeated. No accounts which I have seen are satisfactory. The mutilated animal may live and grow fat (as was the case of the dog deprived of its spleen), yet may be defective in some other of its functions, which, whether they can all, or in what degree of vigour and perfection, be performed, or how long preserved without the extirpated organ, does not seem to be ascertained by experiment. But to this case, even were it fully made out, may be applied the consideration which we suggested concerning the watch, viz., that these superfluous parts do not negative the reasoning which we instituted concerning those parts which are useful, and of which we know the use; the indication of contrivance, with respect to them, remains as it was before ${ }^{18}$.

[^16]III. One atheistic way of replying to our observations upon the works of nature, and to the proofs of a Deity which we think that we perceive in them, is to tell us, that all which we see must necessarily have had some form, and that it might as well be its present form as any other. Let us now apply this answer to the eye, as we did before to the watch. Something or other must have occupied that place in the animal's
digestion, respiration, assimilation, secretion, and growth proceed by means of an apparatus comparatively simple. We must not be surprised, then, that certain parts may be removed from the higher animals without destroying life. But this does not imply that those parts are useless, since they are structures superadded for the finer adjustment of the different functions one to the other, belonging to a higher condition of the economy.

With regard to parts which are thus called useless, we must remember that the varieties of created animals belong to one type. As we have just said, the essential functions are the same in all; and there is much of the structure common to all: when an animal of a particular class has its organization adjusted to a certain condition of existence, we may see the rudiments of parts which, not being in action, are imperfect, and we must look to the individuals of another species or variety to discover them in their full development.
head; mast have filled up, we will say, that sooket: we will say, also, that it must have been of that sort of substance which we call animal substance, as flesh, bone, membrane, or cartilage, \&c. But that it should have been an aye, knowing as we do what an eye comprehends,-via. that it should have consisted, first, of a series of transparent lenses (very different, by-the-by, even in their substance, from the opaque materials of which the rest of the body is, in general at least, composed; and with which the whole of its surface, this single portion of it excepted, is cowered) : secondly, of a black cloth or canvass (the only membrane of the body which is black) spread out behind these lenses, so as to receive the image formed by pencils of light transmitted through them; and placed at the precise geometrical distance, at which, and at which alone, a distinct image could be formed, namely, at the concourse of the refracted rays: thirdly, of a large nerve communicating between this membrane and the brain; without which, the action of light upon the membrane, however modified by the organ, would be lost to the purposes of sensation :-that this fortunate oonformation of parts should have been the lot, not of one individual out of many thousand individuals, like the great prize in a lottery, or like some singularity
in nature, but the happy chance of a whole species.: nor of one species out of many thousand species, with which we are acquainted, but of by far the greatest number of all that exist; and that under varieties, not casual or capricious, but bearing marks of being suited to their respective exigences:--that all this should have taken place, merely because something must have occupied these points on every animal's forehead;-or, that all this should be thought to be accounted for by the short answer, "that whatever was there must have had some form or other," is too absurd to be made more so by any augmentation. We are not contented with this answer; we find no satisfaction in it, by way of accounting for appearances of organization far short of those of the eye, such as we observe in fossil shells, petrified bones, or other substances which bear the vestiges of animal or vegetable recrements, but which, either in respect to utility, or of the situation in which they are discovered, may seem accidental enough. It is no way of accounting even for these things, to say, that the stone, for instance, which is shown to us (supposing the question to he concerning a petrification), must have contained some internal conformation or other. Nor does it mend the answer to add, with respect to the singularity of the conformation, that after the
event, it is no longer to be computed what the chances were against it. This is always to be computed when the question is, whether a useful or imitative conformation be the produce of chance or not: I desire no greater certainty in reasoning than that by which chance is excluded from the present disposition of the natural world. Universal experience is against it. What does chance ever do for us? In the human body, for instance, chance, i. e. the operation of causes without design, may produce a wen, a wart, a mole, a pimple, but never an eye. Amongst inanimate substances, a clod, a pebble, a liquid drop might be; but never was a watch, a telescope, an organised body of any kind, answering a valuable purpose by a complicated mechanism, the effect of chance ${ }^{10}$. In no assignable instance

[^17]hath such a thing existed without intention somewhere.
matter of chance what faces they will turn up; but, if we could accurately observe their position in the box before the shaking, the direction of the force applied, its quantity, the number of turns of the box, and the curve in which the motion was made, the manner of stopping the motion and the line in which the dice were thrown out, the faces turned up would be a matter of certain prediction, after a sufficient number of experiments had been made to correct the theory. It is only because we take no heed of all these things that we are ignorant what will be the event; and the darkness in which we are respecting the circumstances which regulate it, is called by the name of chance. Nor is it correct to say, that this or anything else is done without design. All we can mean by the expression is, that our design stops short at a certain point, and leaves the laws of nature to guide the rest of the operation. But such a position is manifestly quite inapplicable to the operations of nature.

Equally inaccurate is it, if not more so, to speak of a wen or a pimple, \&c., as the result of any cause in the least degree different from that which produced the eye. These are possibly always, certainly sometimes, diseases; but they are the result of contrivance as clearly as the eye itself. The functions of the animal system, though acting in an unusual manner, yet acting according to rule, produce those phenomena. Indeed one of them, a
IV. There is another answer which has the same effect as the resolving of things into chance; which answer would persuade us to believe, that the eye, the animal to which it belongs, every other animal, every plant, indeed every organized body which we see, are only so many out of the possible varieties and combinations of being which the lapse of infinite ages has brought into existence; that the present world is the relic of that variety; millions of other bodily forms and other species having perished, being, by the defect of their constitution, incapable of preservation, or of continuance by generation. Now there is no foundation whatever for this conjecture in any thing which we observe in the works of mature; no such experiments are going on at present; no such energy operates as that which is here supposed, and which should be constantly pushing into existence new varieties of beings.

[^18]Nor are there any appearances to support an opinion, that every possible combination of vegetable or animal structure has formerly been tried. Multitudes of conformations, both of vegetables and animals, may be conceived capable of existence and succession, which yet do not exist. Perhaps almost as many forms of plants might have been found in the fields as figures of plants can be delineated upon paper. A countless variety of animals might have existed which do not exist. Upon the supposition here stated, we should see unicorns and mermaids, sylphs and centaurs, the fancies of painters, and the fables of poets, realised by examples. Or, if it be alleged that these may transgress the bounds of possible life and propagation, we might at least have nations of human beings without nails upon their fingers, with more or fewer fingers and toes than ten, some with one eye, others with one ear, with one nostril, or without the sense of smelling at all. All these, and a thousand other imaginable varieties, might live and propagate. We may modify any one species many different ways, all consistent with life, and with the actions necessary to preservation, although affording different degrees of conveniency and enjoyment to the animal. And if we carry these modifications through the different species which are known to subsist, their number would be incalculable. No reason can be given
why, if these deperdits ever existed, they have now disappeared. Yet, if all possible existences have been tried, they must have formed part of the catalogue ${ }^{20}$.

[^19]But, moreover, the division of organised substances into animals and vegetables, and the distribution and sub-distribution of each into genera and species, which distribution is not an arbitrary act of the mind, but founded in the order which prevails in external nature, appear to me to contradict the supposition of the present world being the remains of an indefinite variety of existences; of a variety which rejects all plan. The hypothesis teaches, that every possible variety of being hath, at one time or other, found its way into existence (by what cause or in what manner is not said), and that those which were badly formed perished; but how or why those which survived should be cast, as we see that plants and animals are cast, into regular classes, the hypothesis does not explain ; or rather the hypothesis is inconsistent with this phenomenon.

The hypothesis, indeed, is hardly deserving of the consideration which we have given to it. What should we think of a man who, because we had never ourselves seen watches, telescopes, stocking-mills, steam-engines, \&c., made, knew not how they were made, nor could prove by testimony when they were made, or by whom, would have us believe that these machines, instead of deriving their curious structures from the thought and design of their inventors and contrivers, in
truth derive them from no ather origin than this: viz., that a mass of metals ànd other materials having run, when melted, into all possible figures, and combined themselves in all possible forms, and shapes, and proportions, these things which we see are what were left from the accident, as best worth preserving, and, as such, are become the remaining stock of a magazine, which, at one time or other, has by this means contained every mechanism, useful and useless, convenient and inconvenient, into which such like materials could be thrown? I cannot distinguish the hypothesis, as applied to the works of nature, from this solution, which no one would accept as applied to a collection of machines.
V. To the marks of contrivance discoverable in animal bodies, and to the argument deduced from them in proof of design and of a designing Creator, this turn is sometimes attempted to be given, namely, that the parts were not intended for the use, but that the use arose out of the parts. This distinction is intelligible. A cabinet-maker rubs his mahogany with fish-skin; yet it would be too much to assert that the skin of the dog-fish was made rough and granulated on purpose for the polishing of wood, and the use of cabinet-makers. Therefore the distinction is intelligible. But I think that there is very little place for it in the
mooks of nature. When roundly and generally affirmed of them, as it hath sometimes been, it amounts to such another stretch of assertion as it would be to say, that all the implements of the cabinet-maker's workshop, as well as his fishskin, were substances accidentally configurated, which he had picked up and converted to his ure; that his adzes, saws, planes, and gimlets, were not made, as we suppose, to hew, cut, smooth, \&hape out, or bore wood with; but that, these things being made, no matter with what design, or whether with any, the cabinet-maker perceived that they were applicable to his purpose, and turned them to account.

But, again. So far as this solution is attempted to be applied to those parts of animals the action of which does not depend upon the will of the animal, it is fraught with still more evident absurdity. Is it possible to believe that the eye was formed without any regard to vision; that it was the animal itself which found out that, though formed with no such intention, it would serve to see with; and that the use of the eye as an organ of sight resulted from this discovery, and the animal's application of it? The same question may be asked of the ear; the same of all the senses. None of the senses fundamentally depend upon the election of the animal; conse-
quently neither upon his sagacity nor his experience. It is the impression which objects make upon them that constitutes their use. Under that impression he is passive. He may bring objects to the sense, or within its reach; he may select these objects; but over the impression itself he has no power, or very little; and that properly is the sense.

Secondly; there are many parts of animal bodies which seem to depend upon the will of the animal in a greater degree than the senses do, and yet with respect to which this solution is equally unsatisfactory. If we apply the solution to the human body, for instance, it forms itself into questions upon which no reasonable mind can doubt; such as, whether the teeth were made expressly for the mastication of food, the feet for walking, the hands for holding? or whether, these things being as they are, being in fact in the animal's possession, his own ingenuity taught him that they were convertible to these purposes, though no such purposes were contemplated in their formation?

All that there is of the appearance of reason in this way of considering the subject is, that, in some cases, the organization seems to determine the habits of the animal, and its choice to a particular mode of life; which, in a certain sense, may be
called "the use arising out of the part"." Now, to all the instances in which there is any place for this suggestion, it may be replied, that the organization determines the animal to habits beneficial and salutary to itself; and that this effect would not be seen so regularly to follow, if the several organizations did not bear a concerted and contrived relation to the substance by which the ani-

[^20]mal was surrounded. They would, otherwise, the capacities without objects; powers without employment. The web-foot determines, you say, the duck to swim; but what would that avail if there were no water to swim in? The strong hooked bill and sharp talons of one species of bird determine it to prey upon animals; the soft straight bill and weak claws of another species determine it to pick up seeds: but neither determination could take effect in providing for the sustenance of the birds, if animal bodies and vegetable seeds did not lie within their reach. The peculiar conformation of the bill and tongue and claws of the woodpecker determines that bird to search for his food amongst the insects lodged behind the bark or in the wood of decayed trees; but what would this profit him if there were no trees, no decayed trees, no insects lodged under their bark, or in their trunk? The proboscis with which the bee is furnished determines him to seek for honey: but what would that signify if flowers supplied none? Faculties thrown down upon animals at random, and without reference to the objects amidst which they are placed, would not produce to them the services and benefits which we see: and if there be that reference, then there is intention.

Lastly; the solution fails entirely when applied to plants. The parts of plants answer their uses
without any concurrenee from the will or chaine of the plant.
VI. Others have chosen to refer everything to a principle of order in nature. A prinoiple of order is the word: but what is meant by a principle of order, as different from an intelligent Creator, has not been explained either by definition or example ; and, without such explanation, it should seem to be a mere substitution of words for reasons, names for causes. Order itself is only the adaptation of means to an end : a principle of order, therefore, can only signify the mind and intention which so adapts them. Or, were it capable of being explained in any other sense, is there any experience, any analogy, to sustain it? Was a watch ever produced by a principle of order? and why might not a watch be so produced as well as an eye?
Furthermore, a principle of order, acting blindly and without choice, is negatived by the observation that order is not universal; which it would be if it issued from a constant and necessary principle : nor indiscriminate, which it would be if it issued from an unintelligent principle. Where crder is wanted, there we find it: where order is mot wanted, i.e. where, if it prevailed, it would be useless, there we do not find it. In the structure of the eye (for we adhere to our example), in the
figure and position of its several parts, the most exact order is maintained. In the forms of rocks and mountains, in the lines which bound the coasts of continents and islands, in the shape of bays and promontories, no order whatever is perceived, because it would have been superfluous. No useful purpose would have arisen from moulding rocks and mountains into regular solids, bounding the channel of the ocean by geometrical curves; or from the map of the world resembling a table of diagrams in Euclid's Elements or Simpson's Conic Sections.
VII. Lastly; the confidence which we place in our observations upon the works of nature, in the marks which we discover of contrivance, choice, and design, and in our reasoning upon the proofs afforded us, ought not to be shaken, as it is sometimes attempted to be done, by bringing forward to our view our own ignorance, or rather the general imperfection of our knowledge of nature. Nor, in many cases, ought this consideration to affect us, even when it respects some parts of the subject immediately under our notice. True fortitude of understanding consists in not suffering what we know to be disturbed by what we do not know. If we perceive a useful end, and means adapted to that end, we perceive enough for our conclusion. If these things be clear, no
matter what is obscure. The argument is finished. For instance: if the utility of vision to the animal which enjoys it, and the adaptation of the eye to this office, be evident and certain (and I can mention nothing which is more so), ought it to prejudice the inference which we draw from these premises, that we cannot explain the use of the spleen? Nay, more : if there be parts of the eye, viz. the cornea, the crystalline, the retina, in their substance, figure, and position, manifestly suited to the formation of an image by the refraction of rays of light, at least as manifestly as the glasses and tubes of a dioptric telescope are suited to that purpose, it concerns not the proof which these afford of design, and of a designer, that there may perhaps be other parts, certain muscles, for instance, or nerves in the same eye, of the agency or effect of which we can give no account, any more than we should be inclined to doubt, or ought to doubt, about the construction of a telescope, viz. for what purpose it was constructed, or whether it were constructed at all, because there belonged to it certain screws and pins, the use or action of which we did not comprehend. I take it to be a general way of infusing doubts and scruples into the mind, to recur to its own ignorance, its own imbecility: to tell us that upon these subjects we know little; that little imper-
fectly; or rather, that we know nothing properly about the matter. These suggestions so fall in with our consciousness as sometimes to produce a general distrust of our faculties and our conclusions. But this is an unfounded jealousy. The uncertainty of one thing does not necessarily: affect the certainty of another thing. Our ignorance of many points need not suspend our as surance of a few. Before we yield, in any particular instance, to the scepticism which this sort of insinuation would induce; we ought accurately to ascertain whether our ignorance or doubt concern those precise points upon which our conclusion vests. Other points are nothing. Our ignorance of other points may be of no consequence to these, though they be points, in various respects; of great importance. A just reasoner removes from his consideration, not only what he knows; but what he does not know, touching matters not: strictly connected with his argument; i : e: not forming the very steps of his deduction : beyand ${ }^{3}$ these; his knowledge and his ignorance are alike relative.

CHAPTER VI.

THE ARGUMENT CUMULATIVE.

Were there no example in the world of contrivance except that of the eye, it would be alone sufficient to support the conclusion which we draw from it, as to the necessity of an intelligent Creator. It could never be got rid of; because it could not be accounted for by any other supposition, which did not contradict all the prineiples we possess of knowledge; the principles according to which things do, as often as they: can be brought to the test of experience, turn out to be true or false. Its coats and humours, con-

[The figure is introduced to remind the reader of the fine adjustment of the eye; a subject explained in the: Appendix:-A, B, is the object, and the lines represent the light reflected from it into the eye. On the surface of the cornea, which is the transparent part of the eye,
the rays are in a certain degree refracted. Passing through the coat called cornea, they enter the aqueous humour. In their transmission through it, they pass into the pupil. They enter the lens or crystalline humour, and by the greater power of refraction in this humour, the rays are drawn to a point and impinge on the bottom of the eye at A, B. It will be further seen that the rays coming from \mathbf{B} are refracted to a, those from \mathbf{A} to b, and that the image is therefore represented inverted.]
structed as the lenses of a telescope are constructed, for the refraction of rays of light to a point, which forms the proper action of the organ; the provision in its muscular tendons for turning its pupil to the object, similar to that which is given to the telescope by screws, and upon which power of direction in the eye the exercise of its office as an optical instrument depends; the further provision for its defence, for its constant lubricity and moisture, which we see in its socket and its lids, in its glands for the secretion of the matter of tears, its outlet or communication with the nose for carrying off the liquid after the eye is washed with it ; these provisions compose altogether an apparatus, a system of parts, a preparation of means, so manifest in their design, so exquisite in their contrivance, so successful in their issue, so precious, and so infinitely beneficial in their use, as, in my opinion, to bear down all
doubt that can be raised upon the subject ${ }^{21}$. And what I wish, under the title of the present chapter, to observe, is, that if other parts of nature were inaccessible to our inquiries, or even if other parts of nature presented, nothing to our examination but disorder and confusion, the validity of this example would remain the same. If there were but one watch in the world, it would not be less certain that it had a maker. If we had never in our lives seen any but one single kind of hydraulic machine, yet, if of that one kind we understood the mechanism and use, we should be as perfectly assured that it proceeded from the hand and thought and skill of a workman, as if we visited a museum of the arts, and saw collected there twenty different kinds of machines for drawing water, or a thousand different kinds for other purposes. Of this point each machine is a proof independently of all the rest. So it is with the evidences of a Divine agency. The proof is not a conclusion which lies at the end of a chain of reasoning, of which chain each instance of contrivance is only a link, and of which, if one link fail, the whole falls; but it is an argument

[^21]separately supplied by every separate example. An error in stating an example affects only that example. The argument is cumulative, in the fullest sense of that term. The eye proves it without the ear; the ear without the eye. The proof in each example is complete; for when the design of the part, and the conduciveness of its structure to that design is shown, the mind may set itself at rest; no future consideration can detract any thing from the force of the example.

CHAPTER VII.

OF THE MECHANICAL AND IMMECHANICAL PARTS AND functions of animals and vegetables.

It is not that every part of an animal or vegetable has not proceeded from a contriving mind; or that every part is not constructed with a view to its proper end and purpose, according to the laws belonging to, and governing the substance or the action made use of in that part; or that each part is not so constructed as to effectuate its purpose whilst it operates according to these laws; but it is because these laws themselves are not in all cases equally understood-or, what amounts to nearly the same thing, are not equally exemplified in more simple processes, and more simple machines, that we lay down the distinction, here proposed, between the mechanical parts of animals and vegetables."

[^22]
[The reader will not be easily convinced that the mass of flesh, with which he is familiar, is easily and almost spontaneously divided into distinet museles. This figure represents a muscle. \mathbf{C} is the belly of the muscle; \mathbf{A} and B the tendons: A being the tendinous origin, as it is termed, attached to a fixed point of bone; B the tendinous insertion, being attached to a part movable by the contraction of the muscle. The belly, C, consists of fibres, which are possessed of the power of contraction or irritability, and through the operation of which the various motions of the body are performed. We shall presently have to remark on the direction of these fibres.]
our admiration. Were we to take a portion of the skin, and contemplate its exquisite eenmibility, mo finely appro-priated-could we penetrate, as it were, into the pores, and daly estimate the power which regulates the secretions and absorption - could we fully underatand the relations of this organ, either with the economy of the body within, or the constitution of the atmosphere with-out-we should have no occasion to draw our argument, for the twentieth time, from the structure of the eye or the ear. Were we to take one cell of the millions of that. substance which, intervening between the more solid textures of the frame, gives elasticity to the whole, and

For instance: the principle of muscular motion, vix., upon what cause the swelling of the belly of the muscle, and oonsequent contraction of its tendons, either by an act of the will, or by involuntary irritation, depends, is wholly unknown to us. The substance employed, whether it be fluid, gaseous, elastic, electrical, or none of these, or nothing resembling these, is also unknown to ns: of course, the laws belonging to that substance, and which regulate its action, are nnknows to us. We see nothing similar to this contraction in any machine which we can make, or any process which we can execute. So far (it is confessed) we are in ignorance, but no farther. This power and principle, from whatever cause it proceeds, being assumed, the collocation of the fibres to receive the principle, the disposition of the muscles for the use and application of the power, is mechanical; and is as intelligible as the adjustment of the wires and strings by which a puppet is moved. We see, therefore, as far as respects the subject before us, what is not neechanical in the animal frame, and what is. The

[^23]nervous influence (for we are often obliged to give names to things which we know little about) -I say the nervous influence, by which the belly or middle of the muscle is swelled, is not mechanical. The utility of the effect we perceive-the means, or the preparation of means, by which it is produced, we do not. But obscurity as to the origin of muscular motion brings no doubtfulness into our observations, upon the sequel of the process : which observations relate-1st, to the constitution of the muscle, in consequence of which constitution, the swelling of the belly or middle part is necessarily and mechanically followed by a contraction of the tendons; 2 dly , to the number and variety of the muscles, and the corresponding number and variety of useful powers which they supply to the animal, which is astonishingly great ; 3dly, to the judicious (if we may be permitted to use that term in speaking of the Author, or of the works, of Nature), to the wise and well-contrived disposition of each muscle for its specific purpose; for moving the joint this way, and that way, and the other way; for pulling and drawing the part to which it is attached in a determinate and particular direction : which is a mechanical operation exemplified in a multitude of instances. To mention only one: The tendon of the trochlear muscle of the eye, to the end
that it may draw in the line required, is passed through a cartilaginous ring, at which it is reverted, exactly in the same manner as a rope in a ship is carried over a block, or round a stay, in order to make it pull in the direction which is wanted. All this, as we have said, is mechanical, and is as accessible to inspection, as capable of being ascertained, as the mechanism of the automaton in the Strand. Supposing the automaton to be put in motion by a magnet (which is probable), it will supply us with a comparison very apt for our present purpose. Of the magnetic effluvium we know perhaps as little as we do of the nervous fluid. But, magnetic attraction being assumed (it signifies nothing from what cause it proceeds), we can trace, or there can be pointed out to us, with perfect clearness and certainty, the mechanism, viz., the steel bars, the wheels, the joints, the wires, by which the motion so much admired is communicated to the fingers of the image ; and to make any obscurity, or difficulty, or controversy in the doctrine of magnetism, an objection to our knowledge or our certainty, concerning the contrivance, or the marks of contrivance, displayed in the automaton, would be exactly the same thing as it is to make our ignorance (which we acknowledge) of the cause of nervous agency, or even of the substance and
structure of the nerves themselves, a grownd of question or suspicion as to the reasoming which we institute concerning the mechanical part of our frame. That an animal is a machine is a proposition neither correctly true nor wholly false. The distinction which we have been discussing will serve to show how far the comparison, which this expression implies, holds; and wherein it fails. And whether the distinction be thought of importance or not, it is certainly of importance to remember, that there is neither truth nor justice in endeavouring to bring a cloud over our understandings, or a distrust into our reasomings upon this subject, by suggesting that we know nothing of voluntary motion, of irritability, of the principle of life, of sensation, of animal heat, upon all which the animal functions depend; for, our igrorance of these parts of the animal frame concerns not at all our knowledge of the mechanical parts of the same frame. I contend, therefore, that there is mechanism in animals; that this mechanism is as properly such, as it is in machines made by art; that this mechanism is intelligible and certain; that it is not the less so, because it often begins or terminates with something which is not mechanical ; that whenever it is intelligible and certain it demonstrates intention and contrivance, as woll in the works of nature, as in those of art; and
that it is the best demonstration which either can afford.

But whilst I contend for these propositions, I do not exclude myself from asserting, that there may be, and that there are, other cases in which, although we cannot exhibit mechanism, or prove indeed that mechanism is employed, we want not sufficient evidence to conduct us to the same conclusion.

There is what may be called the chemical part of our frame; of which, by reason of the imperfection of our chemistry, we can attain to no distinct knowledge; I mean, not to a knowledge, either in degree or kind, similar to that which we possess of the mechanical part of our frame. It does not, therefore, afford the same species of argument as that which mechanism affords; and yet it may afford an argument in a high degree satisfactory. The gastric juice, or the liquor which digests the food in the stomachs of animals, is of this class. Of all the menstrua it is the most active, the most universal. In the human stomach, for instance, consider what a variety of strange substances, and how widely different from one another, it in a few hours reduces to a uniform pulp, milk, or mucilage. It seizes upon everything; it dissolves the texture of almost everything that comes in its way. The flesh of perhaps all animals; the seeds and
fruits of the greatest number of plants; the roots, and stalks, and leaves of pany, hard and tough as they are, yield to its powerful pervasion. The change wrought by it is different from any chemical solution which we can produce, or with which we are acquainted, in this respect as well as many others, that, in our chemistry, particular menstrua act only upon particular substances. Consider, moreover, that this fluid, stronger in its operation than a caustic alkali or mineral acid, than red precipitate, or aqua-fortis itself, is nevertheless as mild, and bland, and inoffensive to the touch or taste as saliva or gum-water, which it much resembles. Consider, I say, these several properties of the digestive organ, and of the juice with which it is supplied, or rather with which it is made to supply itself, and you will confess it to be entitled to a name which it has sometimes received, that of " the chemical wonder of animal nature."

Still we are ignorant of the composition of this fluid, and of the mode of its action; by which is meant, that we are not capable, as we are in the mechanical part of our frame, of collating it with the operations of art. And this I call the imperfection of our chemistry; for, should the time ever arrive, which is not, perhaps, to be despaired of, when we can compound ingredients so as to form
a solvent which will act in the manner in which the gastric juice acts, we may be able to ascertain the chemical principfes upon which its efficacy depends, as well as from what part, and by what concoction, in the human body these principles are generated and derived.

In the mean time, ought that, which is in truth the defect of our chemistry, to hinder us from acquiescing in the inference which a production of nature, by its place, its properties, its action, its surprising efficacy, its invaluable use, authorizes us to draw in respect of a creative design ${ }^{28}$?

Another most subtle and curious function of animal bodies is secretion. This function is semi-
${ }^{23}$ After this enumeration of the things dissolved by the gastric juice, the most extraordinary fact remains to be stated, that the delicate surface of the stomach itself, softer and finer than the surface of the eye, remains untouched by this humour, which our author, somewhat quaintly, describes as more powerful to dissolve than aqua-fortis. John Hunter showed us that it was the property of life that protected the coats of the stomach. This fact is a most singular proof of the power bestowed through life on the membranes and vessels; and it is as important as it is curious: for as the stomach in the dead body no longer resists this menstruum, it may become dissolved, if the person has died with the fluid already
chemical and semi-mechanical; exceedingly important and diversified in its effects, but obscure in its process and in its apparatus. The importance of the secretory organs is but too well attested by the diseases which an excessive, a deficient, or a vitiated secretion is almost sure of producing. A single secretion being wrong is enough to make life miserable, or sometimes to destroy it. Nor is the variety less than the importance. From one and the same blood (I speak of the human body) about twenty different fluids are separated; in their sensible properties, in taste, smell, colour, and consistency, the most unlike one another that is possible; thick, thin, salt, bitter, sweet : and if from our own we pass to other species of animals, we find amongst their secretions not only the most various but the most opposite properties; the most nutritious aliment, the deadliest poison; the sweetest perfumes, the most fœetid odours. Of these the greater part, as the gastric juice, the saliva, the bile, the slippery mucilage which lubricates the joints, the tears
secreted into the stomach. And so it has happened that persons have been supposed to be poisoned, and relations have been falsely accused, from the stomach being found eroded as if some acrid poison had been taken before death.
which moisten the eye, the wax which defends the ear, are, after they are secreted, made use of in the animal economy, are evidently subservient, and are actually contributing to the utilities of the animal itself. Other fluids seem to be separated only to be rejected. That this also is necessary (though why it was originally necessary we cannot tell) is shown by the consequence of the separation being long suspended, which consequence is disease and death. Akin to secretion, if not the same thing, is assimilation, by which one and the same blood is converted into bone, muscular flesh, nerves, membranes, tendons; things as different as the wood and iron, canvass and cordage, of which a ship with its furniture is composed. We have no operation of art wherewith exactly to compare all this, for no other reason, perhaps, than that all operations of art are exceeded by it. No chemical clection, no chemical analysis or resolution of a substance into its constituent parts, no mechanical sifting or division that we are acquainted with, in perfection or variety come up to animal secretion. Nevertheless, the apparatus and process are obscure, not to say absolutely concealed from our inquiries. In a few and only a few instances, we can discern a little of the constitution of a gland. In the kidneys of large animals, we can trace the emulgent
artery dividing itself into an infinite number of branches; their extremities every where communicating with little round bodics, in the substance of which bodies the secret of the machinery seems to reside, for there the change is made. We can discern pipes laid from these round bodies towards the pelvis, which is a basin within the solid of the kidney. We can discern these pipes joining and collecting together into larger pipes; and, when so collected, ending in innumerable papillæ, through which the secreted fluid is continually oozing into its receptacle. This is all we know of the mechanism of a gland, even in the case in which it seems most capable of being investigated. Yet to pronounce that we know nothing of animal secretion, or nothing satisfactorily, and with that concise remark to dismiss the article from our argument, would be to dispose of the subject very hastily and very irrationally. For the purpose which we want, that of evincing intention, we know a great deal. And what we know is this. We see the blood carried by a pipe, conduit, or duct, to the gland. We sce an organised apparatus, be its construction or action what it will, which we call that gland. We see the blood, or part of the blood, after it has passed through and undergone the action of the gland, coming from it by an emul-
gent vein or artery, i.e., by another pipe or conduit. And we see also at the same time a new and specific fluid issuing from the same gland by its excretory duct, i.e., by a third pipe or conduit; which new fluid is in some cases discharged out of the body, in more cases retained within it, and there executing some important and intelligent office. Now supposing, or admitting, that we know nothing of the proper internal constitution of a gland, or of the mode of its acting upon the blood, then our situation is precisely like that of an unmechanical looker-on, who stands by a stocking-loom, a corn-mill, a carding-machine, or a thrashing-machine, at work, the fabric and mechanism of which, as well as all that passes within, is hidden from his sight by the outside case; or, if scen, would be too complicated for his uninformed, uninstructed understanding to comprehend. And what is that situation? This spectator, ignorant as he is, sees at one end a material enter the machine, as unground grain the mill, raw cotton the carding-machine, sheaves of unthrashed corn the thrashing-machine; and, when he casts his eye to the other end of the apparatus, he sees the material issuing from it in a new state; and, what is more, in a state manifestly adapted to future uses; the grain in meal fit for the making of bread, the wool in rovings
ready for spinning into threads, the sheaf in corr dressed for the mill. Is it necessary that this man, in order to be convinced that design, that intention, that contrivance has been employed about the machine, should be allowed to pull it to pieces; should be enabled to examine the parts separately; explore their action upon one another, or their operation, whether simultaneous or successive, upon the material which is presented to them? He may long to do this to gratify his curiosity; he may desire to do it to improve his theoretic knowledge; or he may have a more substantial reason for requesting it, if he happen, instead of a common visitor, to be a millwright by profession, or a person sometimes called in to repair such-like machines when out of order; but for the purpose of ascertaining the existence of counsel and design in the formation of the machine, he wants no such intromission or privity. What he sees is sufficient. The effect upon the material, the change produced in it, the utility of that change for future applications, abundantly testify, be the concealed part of the machine or of its construction what it will, the hand and agency of a contriver.

If any confirmation were wanting to the evidence which the animal secretions afford of design, it may be derived, as has been already
hinted, from their variety, and from their appropriation to their place and use. They all come from the same blood; they are all drawn off by glands; yet the produce is very different, and the difference exactly adapted to the work which is to be done, or the end to be answered. No account can be given of this, without resorting to appeintment. Why, for instance, is the saliva, which is diffused over the seat of taste, insipid, whilst so many others of the secretions, the urine, the tears, and the sweat, are salt? Why does the gland within the ear separate a viscid substance, which defends that passage; the gland in the upper angle of the eye a thin brine, which washes the ball? Why is the synovia of the joints mucilaginous; the bile bitter, stimulating, and soapy? Why does the juice which flows into the stomach contain powers which make that bowel the great laboratory, as it is by its situation the recipient, of the materials of future nutrition? These are all fair questions; and no answer can be given to them but what calls in intelligence and intention.

My object in the present chapter has been to teach three things : first, that it is a mistake to suppose that, in reasoning from the appearances of nature, the imperfection of our knowledge proportionably affects the certainty of our conclusion;

114

NATURAL THEOLOGY.
for in many cases it does not affect it at all : secondly, that the different parts of the animal frame may be classed and distributed according to the degree of exactness with which we compare them with works of art: thirdly, that the mechanical parts of our frame, or those in which this comparison is most complete, although constituting, probably, the coarsest portions of nature's workmanship, are the most proper to be alleged as proofs and specimens of design.

CHAPTER VIII.

OF MECHANICAL ARRANGEMENT IN THE HUMAN FRAME.

[This figure represents the lower surface or base of the skull. The hole is the foramen magnum through which the spinal marrow descends into the spine; and on each side of the hole are the articulating processes, called the condyles.]
W_{E} proceed, therefore, to propose certain examples taken out of this class; making choice of such as, amongst those which have come to our
knowledge, appear to be the most striking and the best understcod; but obliged, perhaps, to postpone both these recommendations to a third: that of the example being capable of explanation without plates, or figures, or technical language.

OF THE BONES.
I.-I challenge any to produce in the joints and pivots of the mont complicated or the 'most flexible mesine that was ever contrived, a construction more artificial, or more evidently artificial, than thet which is moen in the vertebre of the human neek. Twe thinge were to be done: the head was to hawe the power of bending forward and backwaurd, in the act of nodding, stooping, looking upward or downward; and, at the same time, of turning itself rowd upon the body to a certain extent-the quadrant, we will say, or rather, perhaps, a husudred-and-twenty degrees of a circle. For these two purposes, two distinct contrivances are employed: first, the head rests immediately upon the uppermost part of the vertebre, and is united to it by a hingejoint ; upon which joint the head plays freely forward and backward, as far either way as is necessary, or as the ligaments allow; which was the first thing required. But then the rotatory motion is umprovided for: therefore, secondly, to

[This figne represento the uppermost vertebra, or atlas; and the comdyles, mentioned ia the former figure, sink into the artieulating surfaces of this vertebra, permitting the nodding motions. a amd b are the articulating surfaces; c in a surface which receives the tooth of the vertebra below; d the circle through which the spinal marrow pasaes.]
make the head capable of this, a further mechanism is introduced: not between the head and the uppermost bone of the neck, where the hinge is, but between that bone and the bone next underneath it. It is a mechanism resembling a tenon and mortise. This second, or uppermost bone but one, has what anatomists call a process, viz., a projection, somewhat similar, in size and shape, to a tooth; which tooth, entering a corresponding hole or socket in the bone above it, forms a pivot or axle, upon which that upper bone, together with the head which it supports, turns freely in a circle; and as far in the circle as the attached muscles permit the head to turn. Thus are both motions perfect without interfering with each other. When we nod the head, we use the
hinge-joint, which lies between the head and the first bone of the neck. When we turn the head round, we use the tenon and mortise, which runs between the first bone of the neck and the second. ${ }^{24}$

[Here the tooth-like process of the second vertebra, which is called dentata, is passed through the ring of the first, and is held there by a transverse ligament, like a spindle in the bush. No doubt the object of this complexity is to permit the free motion of the head, without too great a laxity at any one joining, and thereby to protect the most vital organ of the body, the medulla oblongata, or spinal marrow, which passes from the head into the tube of the spine.]

We see the same contrivance and the same principle employed in the frame or mounting of a tele-

[^24]scope. It is occasionally requisite that the objectend of the instrument be moved up and down, as well as horizontally, or equatorially. For the vertical motion, there is a hinge, upon which the telescope plays; for the horizontal or equatorial motion, an axis upon which the telescope and the hinge turn round together. And this is exactly the mechanism which is applied to the motion of the head; nor will any one here doubt of the existence of counsel and design, except it be by that debility of mind, which can trust to its own reasonings in nothing.

We may add, that it was, on another account, also expedient that the motion of the head backward and forward should be performed upon the upper surface of the first vertebra; for, if the first vertebra itself had bent forward, it would have brought the spinal marrow, at the very beginning of its course, upon the point of the tooth.
II. Another mechanical contrivance, not unlike the last in its object, but different and original in its means, is seen in what anatomists call the fore-arm-that is, in the arm between the elbow and the wrist. Here, for the perfect use of the limb, two motions are wanted: a motion at the elbow, backward and forward, which is called a reciprocal motion; and a rotatory motion, by which the palm of the hand, as occasion requires,
may be turned upward. How is this managed? The fore-arm, it is well known, consists of two bones, lying alongside each other, but touching only towards the ends. One, and only one, of these bones is joined to the cubit, or upper part of the arm, at the elbow; the other alone to the
[Since it has been our author's pleasure to take this instance, the figure will illustrate his description. A is the lower part of the arm-bone, or humerus; B is the ulna and \mathbf{C} the radius, the two bones of the forearm. It will be understood how these bones, being tied together by ligaments, hinge and move upon the humerus A ; c being the process of the ulna, on whieh we rest when leaning on the elbow. By applying our hand to the arm, we at once feel the freedom with which the bone moves in bending and extending the arm.When we turn the key in a lock, or make the guards in fencing by the motion of the wrist, the ulna \mathbf{B} is stationary, and the radius C turns round upon the head of the bone at d and e, carrying the hand with it. The rest is abundantly well explained in the text.]

hand at the wrist. The first, by means, at the elbow, of a hinge-joint (which allows only of motion in the same plane), swings backward and forward, carrying along with it the other bone, and the whole fore-arm. In the mean time, as often as there is occasion to turn the palm upward, that other bone to which the hand is attached rolls upon the first, by the help of a groove or hollow near each end of one bone, to which is fitted a corresponding prominence in the other. If both bones had been joined to the cubit, or upper arm, at the elbow, or both to the hand at the wrist, the thing could not have been done. The first was to be at liberty at one end, and the second at the other; by which means the two actions may be performed together. The great bone which carries the fore-arm may be swinging upon its hinge at the elbow, at the very time that the lesser bone, which carries the hand, may be turning round it in the grooves. The management, also, of these grooves, or rather of the tubercles and grooves, is very observable. The two bones are called the radius and the ulna. Above, i. e., towards the elbow, a tubercle of the radius plays into a socket of the ulna; whilst below, i. e., towards the wrist, the radius finds the socket, and the ulna the tubercle. A single bone in the fore-arm, with a ball-and-socket joint at the
elbow, which admits of motion in all directions, might, in some degree, have answered the purpose of both moving the arm and turning the hand. But how much better it is accomplished by the present mechanism any person may convince himself who puts the ease and quickness with which he can shake his hand at the wrist circularly (moving likewise, if he pleases, his arm at the elbow at the same time) in competition with the comparatively slow and laborious motion with which his arm can be made to turn round at the shoulder by the aid of a ball and socket joint.
III. The spine, or back-bone, is a chain of joints of very wonderful construction. Various, difficult, and almost inconsistent offices were to be executed by the same instrument. It was to be firm, yet flexible (now, I know no chain made by art which is both these; for by firmness I mean, not only strength but stability) ; firm, to support the erect position of the body; flexible, to allow of the bending of the trunk in all degrees of curvature. It was further also (which is another and quite a distinct purpose from the rest) to become a pipe or conduit for the safe conveyance from the brain of the most important fluid of the animal frame, that, namely, upon which all voluntary motion depends, the spinal marrow; a substance not only of the first necessity to action, if not to life, but
of a nature so delicate and tender, so susceptible and so impatient of injury, as that any unusual pressure upon it, or any considerable obstruction. of its course, is followed by paralysis or death.

[This represents a section of three of the lower vertebre. The subject being by no means exhausted in the text, the reader will find it taken up in the Appendix.]

Now the spine was not only to furnish the main trunk for the passage of the medullary substance from the brain, but to give out, in the course of its progress, small pipes therefrom, which, being aftervards indefinitely subdivided, might, under the name of merves, distribate this exquisite supply to every part of the body. The same spine was also to serve another use not less wanted than
c 2
the preceding, viz., to afford a fulcrum, stay, or basis (or, more properly speaking, a series of these) for the insertion of the muscles which are spread over the trunk of the body ; in which trunk there are not, as in the limbs, cylindrical bones to which they can be fastened : and likewise, which is a similar use, to furnish a support for the ends of the ribs to rest upon.

Bespeak of a workman a piece of mechanism which shall comprise all these purposes, and let him set about to contrive it; let him try his skill upon it; let him feel the difficulty of accomplishing the task, before he be told how the same thing is effected in the animal frame. Nothing will enable him to judge so well of the wisdom which has been employed; nothing will dispose him to think of it so truly. First, for the firmness, yet flexibility, of the spine; it is composed of a great number of bones (in the human subject, of twentyfour) joined to one another, and compacted by broad bases. The breadth of the bases upon which the parts severally rest, and the closeness of the junction, give to the chain its firmness and stability; the number of parts, and consequent frequency of joints, its flexibility. Which flexibility, we may also observe, varies in different parts of the chain; is least in the back, where strength more than flexure is wanted; greater in the loins,
which it was necessary should be more supple than the back; and greatest of all in the neck, for the free motion of the head. Then, secondly, in order to afford a passage for the descent of the medullary substance, each of these bones is bored through in the middle, in such a manner as that, when put together, the hole in one bone falls into a line and corresponds with the holes in the two bones contiguous to it. By which means the perforated pieces, when joined, form an entire, close, uninterrupted channel, at least while the spine is upright and at rest. But as a settled posture is inconsistent with its use, a great difficulty still remained, which was to prevent the vertebræ shifting upon one another, so as to break the line of the canal as often as the body moves or twists, or the joints gaping externally whenever the body is bent forward and the spine thereupon made to take the form of a bow. These dangers, which are mechanical, are mechanically provided against. The vertebræ, by means of their processes and projections, and of the articulations which some of these form with one another at their extremities, are so locked in and confined as to maintain, in what are called the bodies or broad surfaces of the bones, the relative position nearly unaltered, and to throw the change and the pressure produced by flexion almost entirely upon the inter-
vening cartilages, the springiness and yielding nature of whose substance admits of all the motion which is necessary to be performed upon them, without any chasm being produced by 2 separation of the parts. I say, of all the motion which is necessary; for, although we bend our backs to every degree almost of inclination, the motion of each vertebra is very small : such is the advantage we receive from the chain being composed of so many links, the spine of so many bones. Had it consisted of three or four bones only, in bending the body the spinal marrow must have been bruised at every angle. The reader need not be told that these intervening cartilages are gristles, and he may see them in perfection in a loin of veal. Their form also favours the same intention. They are thicker before than behind; so that, when we stoop forward, the compressible substance of the cartilage, yielding in its thicker and anterior part to the force which squeezes it, brings the surface of the adjoining vertebre nearer to the being parallel with one another than they were before, instead of increasing the inclination of their planes, which must have occasioned a fissure or opening between them. Thirdly, for the medullary canal giving out in its course, and in a convenient order, a supply of nerves to different parts of the body, notches are
made in the upper and lower edge of every vertebra, two on each edge, equidistant on each side from the middle line of the back. When the vertebræ are put together, these notches, exactly fitting, form small holes, through which the nerves at each articulation issue out in pairs, in order to send their branches to every part of the body, and with an equal bounty to both sides of the body. The fourth purpose assigned to the same instrument is the insertion of the bases of the muscles, and the support of the ends of the ribs; and for this fourth purpose, especially the former part of it, a figure, specifically suited to the design, and unnecessary for the other purposes, is given to the constituent bones. Whilst they are plain, and round, and smooth towards the front; where any roughness or projection might have wounded the adjacent viscera, they run out, behind, and on each side, into long processes, to which processes the muscles necessary to the motions of the trunk are fixed, and fixed with such art, that, whilst the vertebræ supply a basis for the muscles, the muscles help to keep these bones in their position, or by their tendons to tie them together.

That most important, however, and general property, viz., the strength of the compages, and the security against luxation, was to be still more
specially consulted; for, where. so many joints were concerned, and where, in cvery one, derangement would have been fatal, it became a subject of studious precaution. For this purpose the vertebræ are articulated, that is, the moveable joints between them are formed by means of those projections of their substance which we have mentioned under the name of processes, and these so lock in with and overwrap one another as to secure the body of the vertebra not only from accidentally slipping, but even from being pushed out of its place by any violence short of that which would break the bone. I have often remarked and admired this structure in the chine of a hare. In this, as in many instances, a plain observer of the animal economy may spare himself the disgust of being present at human dissections, and yet learn enough for his information and satisfaction, by even examining the bones of the animals which come upon his table. Let him take, for example, into his hands a piece of the clean-picked bone of a hare's back, consisting, we will suppose, of three vertebræ. He will find the middle bone of the three so implicated, by means of its projections or processes, with the bone on each side of it, that no pressure which he can use will force it out of its place between them. It will give way neither forward nor backward, nor on either side. In
whichever direction he pushes, he perceives, in the form, or junction, or overlapping of the bones, an impediment opposed to his attempt, a check and guard against dislocation. In one part of the spine he will find a still further fortifying expedient, in the mode according to which the vertebræ are annexed to the spine. Each rib rests upon two vertebre. That is the thing to be remarked, and any one may remark it in carving a neck of mutton. The manner of it is this: the end of the rib is divided by a middle ridge into two surfaces, which surfaces are joined to the bodies of two contiguous vertebræ, the ridge applying itself to the intervening cartilage. Now this is the very contrivance which is employed in the famous iron bridge at my door at Bishop-Wearmouth, and for the same purpose of stability, viz., the cheeks of the bars which pass between the arches ride across the joints by which the pieces composing each arch are united. Each cross-bar rests upon two of these pieces at their place of junction, and by that position resists, at least in one direction, any tendency in either piece to slip out of its place. Thus perfectly, by one means or the other, is the danger of slipping laterally, or of being drawn aside out of the line of the back, provided against; and, to withstand the bones being pulled asunder longitudinally, or in the direction of that line, a c 3
strong membrane runs from one end of the chain to the other, sufficient to resist any force which is ever likely to act in the direction of the back or parallel to it, and consequently to secure the whole combination in their places. The general result is, that not only the motions of the human body necessary for the ordinary offices of life are performed with safety, but that it is an accident hardly ever heard of that even the gesticulations of a harlequin distort his spine.

Upon the whole, and as a guide to those who may be inclined to carry the consideration of this subject farther, there are three views under which the spine ought to be regarded, and in all which it cannot fail to excite our admiration. These views relate to its articulations, its ligaments, and its perforation; and to the corresponding advantages which the body derives from it, for action, for strength, and for that which is essential to every part, a secure communication with the brain.

The structure of the spine is not in general different in different animals.s In the serpent

[^25]tribe, however, it is considerably varied; but with a strict reference to the conveniency of the
tion, whilst the central parts of the system are the most unvarying. Entertaining such a view, we lose much of the interest that is attached to the subject; and the inference which it is important to draw is forgotten, the accommodation not of parts only, but of the whole framework of the animal body, to the peculiar condition or necessities of the creature. The teeth vary because the food is different; the feet vary, because the mode of progression is different; the claws vary in connexion with the teeth, and the mode of procuring food, by digging, or scraping, or by holding and tearing. So does the eye, and so does the ear. But with these adaptations of parts, we must not lose sight of the fact which is the most important to our conclusions-that the whole is accommodated, as well as the individual organs.

The spine in all vertebrated animals holds its office in perpetuity ; it contains and protects the spinal marrow; and so far as its office is permanent, there will be an uniformity in its appearance in all creatures. But even in man it varies in its structure, in the different portions or divisions of it, as these portions are required to admit of more or less freedom of motion. In the hare, as mentioned in the text, the spine is beautifully accommodated to the motion in running. In the cat-kind, as the leopard or tiger, it has a lateral mobility, quite different from its structure in the horse or the stag. In the boar, the vertebre are unusually firm, and the processes enormously
animal. For, whereas in quadrupeds the number of vertebre is from thirty to forty, in the serpent it is nearly one hundred and fifty: whereas in men and quadrupeds the surfaces of the bones are flat, and these flat surfaces laid one against the other, and bound tight by sinews; in the serpent, the bones play one within another, like a ball and socket,* so that they have a free motion upon one another in every direction : that is to say, in men and quadrupeds, firmness is more consulted; in serpents, pliancy. Yet even pliancy is not obtained at the expense of safety. The back-bone of a serpent, for coherence and flexibility, is one of the most curious pieces of animal mechanism with which we are acquainted. The chain of a watch (I mean the chain which passes between the spring-barrel and the fusec), which aims at the same properties, is but a bungling piece of workmanship in comparison with that of which we speak.
extended, to give strength to the union with the head, and to direct the action of the muscles upon the head, so that he may tear up strong roots and possess his defence in his powerful tusks. In short, as far as the spine is required to accommodate itself to the motions of the trunk, it is varied with as fine an adjustment as the furthest bone of the toe or finger.

[^26]IV. The reciprocal enlargement and contraction of the chest to allow for the play of the lungs, depends upon a simple yet beautiful mechanical contrivance, referable to the structure of the bones which enclose it. The ribs are articulated to the back-bone, or rather to its side projections, obliquely : that is, in their natural position they bend or slope from the place of articulation downwards. But the basis upon which they rest at this end being fixed, the consequence of the obliquity, or the inclination downwards, is, that when they come to move, whatever pulls the ribs upwards, necessarily, at the same time, draws them out; and that, whilst the ribs are brought to a right angle with the spine behind, the sternum, or part of the chest to which they are attached in front, is thrust forward. The simple action, therefore, of the elevating muscles does the business; whereas, if the ribs had been articulated with the bodies of the vertebræ at right angles, the cavity of the thorax could never have been further enlarged by a change of their position. If each rib had been a rigid bone, articuculated at both ends to fixed bases, the whole ehest had been immoveable. Keill has observed that the breast-bone, in an easy inspiration, is thrust out one-tenth of an inch; and he calculates that this, added to what is gained to the space
within the chest by the flattening or descent of the diaphragm, leaves room for forty-two cubic inches of air to enter at every drawing-in of the breath. When there is a necessity for a deeper and more laborious inspiration, the enlargement of the capacity of the chest may be so increased by effort, as that the lungs may be distended with seventy or a hundred such cubic inches.* The thorax, says Schelhammer, forms a kind of bellows, such as never have been, nor probably will be, made by any artificer. ${ }^{\text {T }}$
V. The patella, or knee-pan, is a curious little bone: in its form and office unlike any other bone in the body. It is circular; the size of a crown-piece; pretty thick; a little convex on both sides, and covered with a smooth cartilage. It lies upon the front of the knee: and the powerful tendons, by which the leg is brought forward, pass through it (or rather it makes a part of their continuation), from their origin in the thigh to their insertion in the tibia. It pro-

[^27]tects both the tendon and the joint from any injury which either might suffer, by the rubbing of one against the other, or by the pressure of

[Three views of the kuee-joints.]
unequal surfaces. It also gives to the tendons a very considerable mehanical advantage, by altering the line of their direction, and by advancing it farther out from the centre of motion; and this upon the principles of the resolution of force, upon which principles all machinery is founded. These are its uses. But what is most observable in it is, that it appears to be supplemental, as it were, to the frame: added, as it should almost seem, afterward; not quite necessary, but very convenient. It is separate from the other bones : that is, it is not connected with any other bones by the common mode of union. It is soft, or hardly formed, in infancy; and produced by an ossification, of the inception, or
progress of which no account can be given from the structure or exercise of the part.
VI. The shoulder-blade is, in some material respects, a very singular bone: appearing to be made so expressly for its own purpose, and so independently of every other reason. In such quadrupeds as have no collar-bones, which are by far the greater number, the shoulder-blade has no bony communication with the trunk, either by a joint, or process, or in any other way. It does not grow to, or out of, any other bone of the trunk. It does not apply to any other bone of the trunk-(I know not whether this be true of any second bone in the body, except perhaps the os hyoides) : in strictness, it forms no part of the skeleton. It is bedded in the flesh, attached only to the muscles. It is no other than a foundation bone for the arm, laid in, separate as it were, and distinct, from the general ossification. The lower limbs connect themselves at the hip with bones which form part of the skeleton ; but this connexion, in the upper limbs, being wanting; a basis, whereupon the arm might be articulated, was to be supplied by a detached ossification for the purpose. ${ }^{\text {m }}$

[^28]
OF THE JOINTS.

I. The above are a few examples of bones made remarkable by their configuration; but to
lower part of the neck, the collar-bone, is properly a process of the shoulder-blade. (See the figure in the Appendix, No. 7, c, c.) Its purpose is to hold the shoulders apart, and to give strength to the arms, by throwing upon the arm the action of the muscles of the chest. Accordingly, we find it in climbing animals, in those which require to swing themselves by the upper extremities, as the monkeys; but in animals that have a solid hoof, which implies that the anterior extremity is for the particular purpose of running or bounding upon the ground, not only is there no occasion for that variety in the motions of the extremity, which is produced by the introduction of this bone into the skeleton of the arm, but it would be injurious-it would deprive the animal of that elasticity with which it alights upon the ground. Where there is no clavicle-in the horse and deer, for example, the shoulder-blade, or scapula, is attached to the trunk by muscles alone. Hence when the animal makes a leap, it comes down upon the fore-legs with an clastic rebound, the trunk hanging upon the muscles, the muscles supported by the scapula, and the scapula sustained upon the bones of the extremity. There is no solid substance to receive the shock. Were the collarbone introduced here, it would be snapped across by the percussion, as happens to a man when he is thrown upon his shoulder.
almost all the bones belong joints ; and in these, still more clearly than in the form or shape of the bones themselven, are seen both contrivance and contriving wisdom. Every joint is a curiosity, and is also strictly mechanical. There is the hinge-joint and the mortice-and-tenon joint; each as manifestly such, and as accurately defined, as any which can be produced out of a cabinet-maker's shop; and one or the other prevails, as either is adapted to the motion which is wanted-e.g., a mortice and tenon, or ball and socket joint, is not required at the knec, the leg standing in need only of a motion backward and forward in the same plane, for which a hingejoint is sufficient; a mortice and tenon, or ball and socket joint, is wanted at the hip, that not only the progressive step may be provided for, but the interval between the limbs may be enlarged or contracted at pleasure. Now observe what would have been the inconveniency-i. e., both the superfluity and the defect of articulation, if the case had been inverted: if the ball and socket joint had been at the knee, and the hinge-joint at the hip. The thighs must have been kept constantly together, and the legs had been loose and straddling. There would have been no use, that we know of, in being able to turn the calves of the legs before; and there
would have been great confinement by restraining the motion of the thighs to one plane. The disadvantage would not have been less, if the joints at the hip and the knee had been both of the same sort; both balls and sockets, or both hinges : yet why, independently of utility, and of a Creator who consulted that utility, should the same bone (the thigh-bone) be rounded at one end, and channelled at the other?

The hinge-joint is not formed by a bolt passing through the two parts of the hinge, and thus keeping them in their places, but by a different expedient. A strong, tough, parchment-like membrane, rising from the receiving bones, and inserted all round the received bones a little below their heads, encloses the joint on every side. This membrane ties, confines, and holds the ends of the bones together, keeping the corresponding parts of the joints-i.e., the relative convexities and concavities-in close application to each other.

For the ball and socket joint, beside the membrane already described, there is in some important joints, as an additional security, a short, strong, yet flexible ligament, inserted by one end into the head of the ball, by the other into the bottom of the cup, which ligament keeps the two parts of the joint so firmly in their place, that none of the
motions which the limb naturally performs, none of the jerks and twists to which it is ordinarily liable, nothing less indeed than the utmost and the most unnatural violence, can pull them asunder. It is hardly imaginable, how great a force is necessary, even to stretch, still more to break, this ligament: yet so flexible is it, as to oppose no impediment to the suppleness of the joint. By its situation also it is inaccessible to injury from sharp edges. As it cannot be ruptured (such is its strength), so it cannot be cut, except by an accident which would sever the limb. If I had been permitted to frame a proof of contrivance, such as might satisfy the most distrustful inquirer, I know not whether I could have chosen an example of mechanism more unequivocal, or more free from objection, than this ligament. Nothing can be more mechanical; nothing, however subservient to the safety, less capable of being generated by the action of the joint. I would particularly solicit the reader's attention to this provision, as it is found in the head of the thigh-bone : to its strength, its structure, and its use. It is an instance upon which I lay my hand. One single fact, weighed by a mind in carnest, leaves oftentimes the deepest impression. For the purpose of addressing different understandings and different apprehen-
sions-for the purpose of sentiment-for the purpose of exciting admiration of the Creator's works, we diversify our views, we multiply our examples: but for the purpose of strict argument, one clear instance is sufficient; and not only sufficient, but capable perhaps of generating a firmer assurance than what can arise from a divided attention. ${ }^{20}$

The ginglymus, or hinge-joint, does not, it is manifest, admit of a ligament of the same kind with that of the ball and socket joint; but it is always fortified by the species of ligament of which it does admit. The strong, firm, investing membrane, above described, accompanies it in every part; and in particular joints, this membrane, which is properly a ligament, is considerably stronger on the sides than either before or behind, in order that the convexities may play true in their concavities, and not be subject to slip sideways, which is the chief danger; for the muscular tendons generally restrain the parts
${ }^{20}$ This ligament is absent in the orang-outang; and in the lower extremity of this animal, there are other points of resemblance to the structure of the arm; and certainly the use of the hinder extremity corresponds with this structure, since he grasps and swings equally well with either extremity.
from going farther than they ought to go in the plane of their motion. In the knee, which is a joint of this form, and of great importance, there are superadded to the common provisions for the stability of the joint, two strong ligaments, which cross each other-and cross each other in such a manner, as to secure the joint from being displaced in any assignable direction. "I think," says Cheselden, "that the knee cannot be completely dislocated without breaking the cross ligaments."* We can hardly help comparing this with the binding up of a fracture, where the fillet is almost wholly strapped across, for the sake of giving firmness and strength to the bandage.

Another no less important joint, and that also of the ginglymus sort, is the ankle; yet though important (in order, perhaps, to preserve the symmetry and lightness of the limb), small, and, on that account, more liable to injury. Now this joint is strengthened-i. e., is defended from dislocation, by two remarkable processes or prolongations of the bones of the leg, which processes form the protuberances that we call the inner and outer ankle. It is part of each bone going down lower than the other part, and thereby overlapping the joint: so that if the joint be in danger of slipping outward, it is curbed by the

[^29]inner projection-i.e., that of the tibia; if inward, by the outer projection-i.e., that of the fibula. Between both, it is locked in its position. I know no account that can be given of this structure, except its utility. ${ }^{00}$ Why should the tibia terminate, at its lower extremity, with a double end, and the fibula the same-but to barricade the joint on both sides by a continuation of part of the thickest of the bone over it? The joint at the shoulder, compared with the joint at the hip, though both ball and socket joints, discovers a difference in their form and proportions,

[^30]well suited to the different offices which the limbs have to execute. The cup or socket at the shoulder is much shallower and flatter than it is at the hip, and is also in part formed of cartilage set round the rim of the cup. The socket, into which the head of the thigh-bone is inscrted, is decper, and made of more solid materials. This agrees with the duties assigned to each part. The arm is an instrument of motion, principally, if not solely. Accordingly, the shallowness of the socket at the shoulder, and the yieldingness of the cartilaginous substance with which its edge is set round, and which in fact composes a considerable part of its concavity, are excellently adapted for the allowance of a free motion and a wide range, both which the arm wants. Whereas, the lower limb, forming a part of the column of the body-having to support the body, as well as to be the means of its locomotion-firmness was to be consulted as well as action. With a capacity for motion, in all directions indeed, as at the shoulder, but not in any direction to the same extent as in the arm, was to be united stability, or resistance to dislocation. Hence the deeper excavation of the socket, and the presence of 2 less proportion of cartilage upon the edge.

The suppleness and pliability of the joints we every moment experience; and the firmness of
animal articulation, the property we have hitherto been considering, may be judged of from this single observation, that, at any given moment of time, there are millions of animal joints in complete repair and use, for one that is dislocated; and this, notwithstanding the contortions and wrenches to which the limbs of animals are continually subject.
II. The joints, or rather the ends of the bones which form them, display also, in their configuration, another use. The nerves, blood-vessels, and tendons, which are necessary to the life, or for the motion, of the limbs, must, it is evident, in their way from the trunk of the body to the place of their destination, travel over the movable joints; and it is no less evident that, in this part of their course, they will have, from sudden motions, and from abrupt changes of curvature, to encounter the danger of compression, attrition, or laceration. To guard fibres so tender against consequences so injurious, their path is in those parts protected with peculiar care; and that by a provision in the figure of the bones themselves. The nerves which supply the forearm, especially the inferior cubital nerves, are at the elbow conducted, by a kind of covered way, between the condyls, or rather under the inner extuberances of the bone which composes the
upper part of the arm.* At the knee, the extremity of the thigh-bone is divided by a sinus, or cliff, into two heads or protuberances; and these heads on the back-part stand out beyond the cylinder of the bone. Through the hollow which lies between the hind-parts of these two heads-that is to say, under the ham, between the ham-strings, and within the concave recess of the bone formed by the extuberances on each side-in a word, along a defile, between rocks, pass the great vessels and nerves which go to the leg. \dagger Who led these vessels by a road so defended and secured? In the joint at the shoulder, in the edge of the cup which receives the head of the bone, is a notch, which is joined or covered at the top with a ligament. Through this hole, thus guarded, the blood-vessels steal to their destination in the arm, instead of mounting over the edge of the concavity. \ddagger
III. In all joints, the end of the bones, which work against each other, are tipped with gristle. In the ball and socket joint, the cup is lined and the ball capped with it. The smooth surface, the elastic and unfriable nature of cartilage, render it of all substances the most proper for the place and purpose. I should, therefore, have pointed

[^31]\[

+ Ibid. p. 35 . \quad \ddagger Ibid. p. 30 .
\]

this out amongst the foremost of the provisions which have been made in the joints for the facilitating of their action, had it not been alleged, that cartilage in truth is only nascent or imperfect bone; and that the bone in these places is kept soft and imperfect, in consequence of a more complete and rigid ossification being prevented from taking place by the continual motion and rubbing of the surfaces : which being so, what we represent as a designed advantage is an unavoidable effect. I am far from being convinced that this is a true account of the fact; or that, if it were so, it answers the argument. ${ }^{31}$ To me

[^32]the surmounting of the bones with gristle looks more like a plating with a different metal, than like the same metal kept in a different state by the action to which it is exposed. At all events, we have a great particular benefit, though axising from a general constitution; but this last, not being quite what my argument requires, lest I should seem by applying the instance to overrate its value, I have thought it fair to state the question which attends it.
IV. In some joints, very particularly in the knees, there are loose cartilages or gristles between the bones, and within the joint, so that the ends of the bones, instead of working upon one another, work upon the intermediate cartilages. Cheselden has observed ${ }^{*}$, that the contrivance of a loose ring is practised by mechanics where the friction of the joints of any of their machines is great, as between the parts of crook-hinges of large gates, or under the head of the male screw of large vices. The cartilages of which we speak have very much of the form of these rings. The comparison, moreover, shows the reason why we find them in the knees rather than in other joints. It is an expedient, we have seen, which a mechanic resorts to only when some strong and heavy work

[^33]is to be done. So here the thigh-bone has to achieve its motion at the knee, with the whole weight of the body pressing upon it, and often, as in rising from our scat, with the whole weight of the body to lift. It should seem also, from Cheselden's account, that the slipping and sliding of the loose cartilages, though it be probably a small and obscurechange, humoured the motion at the end of the thigh-bone, under the particular configuration which was necessary to be given to it for the commodious action of the tendons (and which configuration requires what he calls a variable socket, that is, a concavity, the lines of which assume a different curvature in different inclinations of the bones ${ }^{\text {w }}$).

[^34]V. We have now done with the configuration: but there is also in the joints, and that common to them all, another exquisite provision manifestly adapted to their use, and concerning which there can, I think, be no dispute, namely, the regular supply of a mucilage, more emollient and slippery than oil itself, which is constantly softening and lubricating the parts that rub upon each other, and thereby diminishing the effect of attrition in the highest possible degree. For the continual secretion of this important liniment, and for the feeding of the cavities of the joint with it, glands are fixed near each joint, the excretory ducts of which glands, dripping with their balsamic contents, hang loose like fringes within the cavity of the joints. A late improvement in what are called friction wheels, which consist of a mechanism so ordered as to be regularly dropping oil into a box which encloses the axis, the nave, and certain balls upon which the nave revolves, may be said, in some sort, to represent the contrivance in the animal joint, with this superiority, however, on

[^35]the part of the joint, viz., that here the oil is not only dropped, but made.

In considering the joints, there is nothing, perhaps, which ought to move our gratitude more than the reflection, how well they wear. A limb shall swing upon its hinge, or play in its socket, many hundred times in an hour, for sixty years together, without diminution of its agility, which is a long time for anything to last-for anything so much worked and exercised as the joints are. This durability I should attribute in part to the provision which is made for the preventing of wear and tear, first, by the polish of the cartilaginous surfaces; secondly, by the healing lubrication of the mucilage, and, in part, to that astonishing property of animal constitutions, assimilation, by which, in every portion of the body, let it consist of what it will, substance is restored, and waste repaired ${ }^{2 s}$.

[^36]Movable joints, I think, compose the curiosity of bones; but their union, even where no motion is intended or wanted, carries marks of mechanism and of mechanical wisdom. • The teeth, especially the front teeth, are one bone fixed in another, like a peg driven into a board. The sutures of the skull are like the edges of two saws clapped together in such a manner as that the teeth of one enter the intervals of the other. We have
ments which ought to hold the bones together become loose and relaxed; and what the surgeon calls consecutive dislocation may take place-that is, the bones will actually shift their place, from the defect of those attachments which ought to keep them together. Now, let us suppose the inflammation to have subsided: by due attention all may be restored; and by no other mode than moving the joint-the only precaution necessary being, that it shall be moved with a care and gentleness corresponding to its weakened condition. By this simple means the ligaments will acquire firmness, the cartilages smoothness, and the synovia, or lubricating mucilage, will be again poured out: from all which we see, that in the living animal textures, wear and tear do not take place upon continued motion; but, on the contrary, that exercise is made the stimulus to improvement. All other proofs of design, as adjustment, relation, compensation; prospective contrivance, are weak in comparison with this.
sometimes one bone lapping over another, and planed down at the edges; sometimes also the thin lamella of one bone received into a narrow furrow of another. In all which varieties we seem to discover the same design, viz., firmness of juncture without clumsiness in the seam.

CHAPTER IX.

OF THE MUSCLES.
Muscles, with their tendons, are the instruments by which animal motion is performed. It will be our business to point out instances in which, and properties with respect to which, the disposition of these muscles is as strictly mechanical as that of the wires and strings of a puppet.
I. We may observe, what I believe is universal, an exact relation between the joint and the muscles which move it. Whatever motion the joint, by its mechanical construction, is capable of performing, that motion the annexed muscles, by their position, are capable of producing. For example, if there be, as at the knee and elbow, a hinge-joint, capable of motion only in the same plane, the leaders, as they are called, i.e., the muscular tendons, are placed in directions parallel to the bone, so as, by the contraction or relaxation of the muscles to which they belong, to produce that motion and no other. If these joints were capable of a freer motion, there are no
muscles to produce it. Whereas, at the shoulder and the hip, where the ball and socket joint allows by its construction of a rotatory or sweeping motion, tendons are placed in such a position, and pull in such a direction, as to produce the motion of which the joint admits. For instance, the sartorius or tailor's muscle, rising from the spine, running diagonally across the thigh, and taking hold of the inside of the main bone of the leg a little below the knee, enables us, by its contraction, to throw one leg and thigh over the other, giving effect, at the same time, to the ball and socket joint at the hip, and the hinge-joint at the knee. There is, as we have seen, a specific mechanism in the bones for the rotatory motions of the head and hands: there is, also, in the oblique direction of the muscles belonging to them, a specific provision for the putting of this mechanism of the bones into action. And mark the consent of uses : the oblique muscles would have been inefficient without that particular articulation; that particular articulation would have been lost without the oblique muscles. It may be proper, however, to observe, with respect to the head, although I think it does not vary the case, that its oblique motions and inclinations are often motions in a diagonal produced by the joint action of muscles lying in straight directions. But
whether the pull be single or combined, the articulation is always such as to be capable of obeying the action of the muscles. The oblique muscles attached to the head are likewise so disposed as to be capable of steadying the globe as well as of moving it. The head of a new-born infant is often obliged to be filleted up. After death the head drops and rolls in every direction. So that it is by the equilibre of the muscles, by the aid of a considerable and equipollent muscular force in constant exertion, that the head maintains its erect posture. The muscles here supply what would otherwise be a great defect in the articulation; for the joint in the neck, although admirably adapted to the motion of the head, is insufficient for its support. It is not only by the means of a most curious structure of the bones that a man turns his head, but by virtue of an adjusted muscular power that he even holds it up.

As another example of what we are illustrating, viz., conformity of use between the bones and the muscles, it has been observed of the different vertebræ, that their processes are exactly proportioned to the quantity of motion which the other bones allow of, and which the respective muscles are capable of producing.
II. A muscle acts only by contraction. Its force is exerted in no other way. When the ex-
ertion ceases, it relaxes itself, that is, it returns by relaxation to its former state, but without energy ${ }^{34}$. This is the nature of the musculare

[^37]fibre; and being so, it is evident that the reciprocal energetic motion of the limbs, by which we mean motion with force in opposite directions, can only be produced by the instrumentality of opposite or antagonist muscles-of flexors and extensors answering to each other. For instance, the biceps and brachialis internus muscles placed in the front part of the upper arm, by their contraction, bend the elbow, and with such degree of force as the case requires or the strength admits of. The relaxation of these muscles after the effort would merely let the fore-arm drop down. For the back stroke, therefore, and that the arm may not only bend at the elbow, but also extend and straighten itself with force, other muscles, the longus and brevis brachialis externus, and the anconæus, placed on the hinder part of the arms, by their contractile twitch, fetch back the forearm into a straight line with the cubit, with no less force than that with which it was bent out of it. The same thing obtains in all the limbs, and in every movable part of the body. A finger is not bent and straightened without the contraction of two muscles taking place. It is evident, therefore, that the animal functions require that particular disposition of the muscles which we describe by the name of antagonist muscles. And they are accordingly so disposed. Every muscle is
provided with an adversary. They act like two sawyers in a pit, by an opposite pull; and nothing, surely, can more strongly indicate design and attention to an end than their being thus stationed, than this collocation. The nature of the muscular fibre being what it is, the purposes of the animal could be answered by no other. And not only the capacity for motion, but the aspect and symmetry of the body is preserved by the muscles being marshalled according to this order-e.g., the mouth is holden in the middle of the face, and its angles kept in a state of exact correspondency, by two muscles drawing against and balancing each other. In a hemiplegia, when the muscle on one side is weakened, the muscle on the other side draws the mouth awry.
III. Another property of the muscles, which could only be the result of care, is, their being almost universally so disposed as not to obstruct or interfere with one another's action. I know but one instance in which this impediment is perceived. We cannot easily swallow whilst we gape. This, I understand, is owing to the muscles employed in the act of deglutition being so implicated with the muscles of the lower jaw, that whilst these last are contracted, the former cannot act with freedom. The obstruction is, in this instance,
attended with little inconvenience; but it shows what the effect is where it does exist; and what loss of faculty there would be if it were more frequent. Now, when we reflect upon the number of muscles, not fewer than four hundred and fortysix, in the human body, known and named*, how contiguous they lie to each other, in layers, as it were, over one another, crossing one another, sometimes embedded in one another, sometimes perforating one another-an arrangement which leaves to each its liberty, and its full play, must necessarily require meditation and counsel.
IV. The following is oftentimes the case with the muscles. Their action is wanted where their situation would be inconvenient. In which case the body of the muscle is placed in some commodious position at a distance, and made to communicate with the point of action by slender strings or wires. If the muscles which move the fingers had been placed in the palm or back of the hand, they would have swelled that part to an awkward and clumsy thickness. The beauty, the proportions of the part, would have been destroyed. They are therefore disposed in the arm, and even up to the elbow, and act by long tendons strapped down at the wrist, and passing under the liga-

[^38]ments to the fingers, and to the joints of the fingers which they are severally to move. In like manner, the muscles which move the toes and many of the joints of the foot, how gracefully are they disposed in the calf of the leg, instead of forming an unwieldy tumefaction in the foot itself! The observation may be repeated of the muscle which draws the nictitating membrane over the eye. Its office is in the front of the eye; but its body is lodged in the back part of the globe, where it lies safe, and where it encumbers nothing.
V. The great mechanical variety in the figure of the muscles may be thus stated. It appears to be a fixed law that the contraction of a muscle shall be towards its centre. Therefore the subject for mechanism on each occasion is, so to modify the figure and adjust the position of the muscle as to produce the motion required agreeably with this law. This can only be done by giving to different muscles a diversity of configuration suited to their several offices, and to their situation with respect to the work which they have to perform. On which account we find them under a multiplicity of forms and attitudes; sometimes with double, sometimes with treble tendons, sometimes with none: sometimes one tendon to several muscles, at other times one mr sile to
several tendons. The shape of the organ is susceptible of an incalculable variety, whilst the original property of the muscle, the law and line of its contraction, remains the same, and is simple. Herein the muscular system may be said to bear a perfect resemblance to our works of art. An artist does not alter the native quality of his materials, or their laws of action. He takes these as he finds them. His skill and ingenuity are employed in turning them, such as they are, to his account, by giving to the parts of his machine a form and relation in which these unalterable properties may operate to the production of the effects intended ${ }^{35}$.

[^39]VI. The ejaculations can never too often be repeated-How many things must go right for us
stand, that if we pull obliquely upon a weight we sacrifice a great deal of power. For what advantage, then, is power resigned in the muscle? "If you wish to draw

a thing towards any place with the least force, you must pull directly in the line between the thing and the place; but if you wish to draw it as quickly as possible, and do not regard the loss of force, you must pull it obliquely, by drawing it in two directions at once. Tie a string to a stone A, and draw it straight towards you at \mathbf{C} with one hand ; then make a loop on another string, and running the first through it, draw one string in each hand at $B \mathrm{~B}$, not towards you, in the line A C, but sideways, till both strings are stretched in a straight line: you will see how much swifter the stone moves than it did before when pulled straightforward. Now this is
to be an hour at ease! how many more for us to be vigorous and active! Yet vigour and activity are, in a vast plurality of instances, preserved in human bodies, notwithstanding that they depend upon so great a number of instruments of motion, and notwithstanding that the defect or disorder sometimes of a very small instrument, of a single pair, for instance, out of the four hundred and forty-six muscles which are employed, may be attended with grievous inconveniency. There is piety and good sense in the following observation taken out of the 'Religious Philosopher:' " With much compassion," says this writer, "as well as astonishment at the goodness of our loving Creator, have I considered the sad state of a certain gentleman, who, as to the rest, was in pretty good health, but only wanted the use of these two little
proved by mathematical reasoning to be the necessary consequence of forces applied obliquely; there is a loss of power, but a great increase of velocity. The velocity is the thing required to be gained*."

By the liberal employment of muscular power, quickness and variety of motion are obtained, and with the advantages which are so well described in the succeeding part of this chapter

[^40]muscles that serve to lift up the eyelids, and so had almost lost the use of his sight, being forced, as long as this defect lasted, to shove up his eyelids every moment with his own hands!" In general we may remark in how small a degree those who enjoy the perfect use of their organs know the comprehensiveness of the blessing, the variety of their obligation. They perceive a result, but they think little of the multitude of concurrences and rectitudes which go to form it.

Besides these observations, which belong to the muscular organ as such, we may notice some advantages of structure which are more conspicuous in muscles of a certain class or description than in others. Thus:
I. The variety, quickness, and precision of which muscular motion is capable are seen, I think, in no part so remarkably as in the tongue. It is worth any man's while to watch the agility of his tongue, the wonderful promptitude with which it executes changes of position, and the perfect exactness. Each syllable of articulated sound requires for its utterance a specific action of the tongue, and of the parts adjacent to it. The disposition and configuration of the mouth appertaining to every letter and word, is not only peculiar, but, if nicely and accurately attended to, perceptible to the sight; insomuch, that curious
persons have availed themselves of this circumstance to teach the deaf to speak, and to understand what is said by others. In the same person, and after his habit of speaking is formed, one, and only one, position of the parts will produce a given articulate sound correctly. How instantaneously are these positions assumed and dismissed ! how numerous are the permutations, how various, yet how infallible! Arbitrary and antic variety is not the thing we admire; but variety obeying a rule, conducing to an effect, and commensurate with exigencies infinitely diversified. I believe also that the anatomy of the tongue corresponds with these observations upon its activity. The muscles of the tongue are so numerous, and so implicated with one another, that they cannot be traced by the nicest dissection; nevertheless (which is a great perfection of the organ) neither the number, nor the complexity, nor what might seem to be the entanglement of its fibres, in anywise impede its motion, or render the determination or success of its efforts uncertain.

I here entreat the reader's permission to step a little out of my way, to consider the parts of the mouth in some of their other properties. It has
been said, and that by an eminent physiologist, that, whenever nature attempts to work two or more purposes by one instrument, she does both or all imperfectly. Is this true of the tongue regarded as an instrument of speech and of taste, or regarded as an instrument of speech, of taste, and of deglutition? So much otherwise, that many persons, that is to say, nine hundred and ninety-nine persons out of a thousand, by the instrumentality of this one organ, talk, and taste, and swallow very well. In fact, the constant warmth and moisture of the tongue, the thinness of the skin, the papillæ upon its surface, qualify this organ for its office of tasting, as much as its inextricable multiplicity of fibres do for the rapid movements which are necessary to speech. Animals which feed upon grass have their tongues covered with a perforated skin, so as to admit the dissolved food to the papillæ underneath, which, in the meantime, remain defended from the rough action of the unbruised spiculæ.

There are brought together within the cavity of the mouth more distinct uses, and parts executing more distinct offices, than I think can be found lying so near to one another, or within the same compass, in any other portion of the body : viz., teeth of different shape, first for cutting, secondly for grinding; muscles, most artificially
disposed for carrying on the compound motion of the lower jaw, half lateral and half vertical, by which the mill is worked: fountains of saliva, springing up in different parts of the cavity for the moistening of the food, whilst the mastication is going on : glands, to feed the fountains; a muscular constriction of a very peculiar kind in the back part of the cavity, for the guiding of the prepared aliment into its passage towards the stomach, and in many cases for carrying it along that passage; for, although we may imagine this to be done simply by the weight of the food itself, it in truth is not so, even in the upright posture of the human neck; and most evidently is not the case with quadrupeds-with a horse, for instance, in which, when pasturing, the food is thrust upward by muscular strength instead of descending of its own accord.

In the mean time, and within the same cavity, is going on another business, altogether different from what is here described-that of respiration and speech. In addition, therefore, to all that has been mentioned, we have a passage opened from this cavity to the lungs, for the admission of air exclusively of every other substance: we have muscles, some in the larynx, and without number in the tongue, for the purpose of modulating that air in its passage, with a variety, a compass, and
precision, of which no other musical instrument is capable. And lastly, which, in my opinion, crowns the whole as a piece of machinery, we have a specific contrivance for dividing the pneumatic part from the mechanical, and for preventing one set of actions interfering with the other. Where various functions are united, the difficulty is to guard against the inconveniences of a too great complexity. In no apparatus put together by art and for the purposes of art, do I know such multifarious uses so aptly combined, as in the natural organization of the human mouth; or where the structure, compared with the uses, is so simple. The mouth, with all these intentions to serve, is a single cavity; is one machine; with its parts neither crowded nor confused, and each unembarrassed by the rest: each at least at liberty in a degree sufficient for the end to be attained. If we cannot eat and sing at the same moment, we can eat one moment and sing the next: the respiration proceeding freely all the while.

There is one case, however, of this double office, and that of the earliest necessity, which the mouth alone could not perform; and that is, carrying on together the two actions of sucking and breathing. Another route therefore is opened for the air-namely, through the nose-which
lets the breath pass backward and forward, whilst the lips, in the act of sucking, are necessarily shut close upon the body from which the nutriment is drawn. This is a circumstance which always appeared to me worthy of notice. The nose would have been. necessary, although it had not been the organ of smelling. The making it the seat of a sense was superadding a new use to a part already wanted; was taking a wise advantage of an antecedent and a constitutional necessity. ${ }^{\circ}$

[^41]But to return to that which is the proper subject of the present section-the celerity and precision of muscular motion. These qualities may be particularly observed in the execution of many species of instrumental music, in which the changes produced by the hand of the musician are exceedingly rapid; are exactly measured, even when most minute; and display, on the part of the muscles, an obedience of action alike wonderful for its quickness and its correctness.

Or let a person only observe his own hand whilst he is writing; the number of muscles which are brought to bear upon the pen; how the joint and adjusted operation of several ten-

[^42]dons is concerned in every stroke, yet that five hundred such strokes are drawn in a minute. Not a letter can be turned without more than one, or two, or three tendinous contractions, definite, both as to the choice of the tendon, and as to the space through which the contraction moves; yet how currently does the work proceed! and when we look at it, how faithful have the muscles been to their duty-how true to the order which endeavour or habit hath inculcated! For let it be remembered, that, whilst a man's hand-writing is the same, an exactitude of order is preserved, whether he write well or ill. These two instances of music and writing show not only the quickness and precision of muscular action, but the docility.
II. Regarding the particular configuration of muscles, sphincter or circular muscles appear to be admirable pieces of mechanism. It is the muscular power most happily applied; the same quality of the muscular substance, but under a new modification. The circular disposition of the fibres is strictly mechanical; but, though the most mechanical, is not the only thing in sphincters which deserves our notice. The regulated degree of contractile force with which they are endowed, sufficient for retention, yet vincible when requisite, together with their ordinary state of
actual contraction, by means of which their dependence upon the will is not constant but occasional, gives to them a constitution of which the conveniency is inestimable. This their semivoluntary character is exactly such as suits with the wants and functions of the animal.
III. We may also, upon the subject of muscles, observe, that many of our most important actions are achieved by the combined help of different muscles. Frequently, a diagonal motion is produced by the contraction of tendons pulling in the direction of the sides of the parallelogram. This is the case, as hath been already noticed, with some of the oblique nutations of the head. Sometimes the number of co-operating muscles is very great. Dr. Nieuentyt, in the Leipsic Transactions, reckons up a hundred muscles that are employed every time we breathe; yet we take in, or let out, our breath, without reflecting what a work is thereby performed; what an apparatus is laid in of instruments for the service, and how many such contribute their assistance to the effect. Breathing with ease is a blessing of every moment; yet of all others it is that which we possess with the least consciousness. A man in an asthma is the only man who knows how to estimate it.
IV. Mr. Home has observed,* that the most important and the most delicate actions are performed in the body by the smallest muscles; and he mentions, as his examples, the muscles which have been discovered in the iris of the eye, and the drum of the ear. The tenuity of these muscles is astonishing: they are microscopic hairs; must be magnified to be visible; yet are they real effective muscles : and not only such, but the grandest and most precious of our faculties, sight and hearing, depend upon their health and action.

[The figure here represents the action of the biceps muscle which lies on the arm, and is inserted upon the radius of the fore-arm in sustaining a weight in the hand.]
V. The muscles act in the limbs with what is called a mechanical disadvantage. The muscle at the shoulder, by which the arm is raised, is fixed nearly in the same manner as the load is

[^43]fixed upon a steelyard, within a few decimals, we will say, of an inch from the centre upon which the steelyard turns. In this situation, we find that a very heavy draught is no more than sufficient to countervail the force of a small lead plummet, placed upon the long arm of the steelyard, at the distance of perhaps fifteen or twenty inches from the centre and on the other side of it. . And this is the disadvantage which is meant; and an absolute disadvantage, no doubt, it would be, if the object were to spare the force of muscular contraction. But observe how conducive is this constitution to animal conveniency. Mechanism has always in view one or other of these two purposes-either to move a great weight slowly, and through a small space, or to move a light weight rapidly, through a considerable sweep. For the former of these purposes, a different species of lever, and a different callocation of the muscles, might be better than the present; but for the second, the present structure is the true one. Now so it happens, that the second, and not the first, is that which the occasions of animal life principally call for. In what concerns the human body, it is of mueh more consequence to any man to be able to carry his hand to his head with due expedition, than it would be to have the power of raising from the ground a heavier load
(of two or three more hundred weight, we will suppose) than he can lift at present.

This last is a faculty, which, on some extraordinary occasions, he may desire to possess; but the other is what he wants and uses every hour or minute. In like manner, a husbandman or a gardener will do more execution, by being able to carry his scythe, his rake, or his flail, with a sufficient despatch through a sufficient space, than if, with greater strength, his motions were proportionably more confined and slow. It is the same with a mechanic in the use of his tools. It is the same also with other animals in the use of their limbs. In general, the vivacity of their motions would be ill exchanged for greater force under a clumsier structure.

We have offered our observations upon the structure of muscles in general; we have also noticed certain species of muscles; but there are also single muscles which bear marks of mechanical contrivance appropriate as well as particular. Out of many instances of this kind we select the following :-
I. Of muscular actions, even of those which are well understood, some of the most curious are incapable of popular explanation; at least, without the aid of plates and figures. This is in a great measure the case with a very familiar,
but, at the same time, a very complicated motion, that of the lower jaw; and with the muscular structure by which it is produced. One of the muscles concerned may, however, be described in such a manner as to be, I think, sufficiently comprehended for our present purpose. The problem is to pull the lower jaw down. The obvious method should seem to be, to place a straight muscle-viz., to fix a string from the chin to the breast, the contraction of which would open the mouth, and produce the motion required at once. But it is evident that the form and liberty of the neck forbid a muscle being laid in such a position ; and that, consistently with the preservation of this form, the motion which we want must be effectuated by some muscular mechanism disposed farther back in the jaw. The mechanism adopted is as follows:-A certain muscle, called the digastric, rises on the side of the face, considerably above the insertion of the lower jaw, and comes down, being converted in its progress into a round tendon. Now it is manifest that the tendon, whilst it pursues a direction descending towards the jaw, must, by its contraction, pull the jaw up instead of down. What then was to be done? This, we find, is done: The descending tendon, when it is got low enough, is passed through a loop, or ring, or pulley, in the os
hyoides, and then made to ascend; and having thus changed its line of direction, is inserted into the inner part of the chin : by which device, viz., the turn at the loop, the action of the muscle (which in all muscles is contraction) that before would have pulled the jaw up, now as necessarily draws it down. "The mouth," says Heister, " is opened by means of this trochlea in a most wonderful and elegant manner."
II. What contrivance can be more mechanical than the following, viz., a slit in one tendon to let another tendon pass through it? This structure is found in the tendons which move the toes and fingers. The long tendon, as it is called, in the foot, which bends the first joint of the toe, passes through the short tendon which bends the second joint, which course allows to the sinew more liberty, and a more commodious action than it would otherwise have been capable of exerting.* There is nothing, I believe, in a silk or cotton mill, in the belts, or straps, or ropes, by which motion is communicated from one part of the machine to another, that is more artificial, or more evidently so, than this perforation. -
III. The next circumstance which I shall mention under this head of muscular arrangement is

[^44]so decisive a mark of intention, that it always appeared to me to supersede, in some measure, the necessity of seeking for any other observation upon the subject; and that circumstance is, the tendons which pass from the leg to the foot, being bound down by a ligament to the ankle. The foot is placed at a considerable angle with the leg. It is manifest, therefore, that flexible strings, passing along the interior of the angle, if left to themselves, would, when stretched, start from it. The obvious preventive is to tie them down. And this is done in fact. Across the instep, or rather just above it, the anatomist finds a strong ligament, under which the tendons pass to the foot. The effect of the ligament as a bandage can be made evident to the senses; for if it be cut, the tendons start up. The simplicity, yet the clearness of this contrivance, its exact resemblance to established resources of art, place it amongst the most indubitable manifestations of design with which we are acquainted.

There is also a further use to be made of the present example, and that is, as it precisely contradicts the opinion that the parts of animals may have been all formed by what is called appetency, i. e., endeavour perpetuated and imperceptibly working its effect through an incalculable series of generations. We have here no endeavour, but
the reverse of it-a constant renitency and reluctance. The endeavour is all the other way. The pressure of the ligament constrains the tendons; the tendons re-act upon the pressure of the ligament. It is impossible that the ligament should ever have been generated by the exercise of the tendon, or in the course of that exercise, forasmuch as the force of the tendon perpendicularly resists the fibre which confines it, and is constantly endeavouring, not to form, but to rupture and displace, the threads of which the ligament is composed.

Keill has reckoned up in the human body four hundred and forty-six muscles, dissectible and describable; and hath assigned a use to every one of the number. This cannot be all imagination.

Bishop Wilkins hath observed from Galen, that there are at least ten several qualifications to be attended to in each particular muscle-viz., its proper figure; its just magnitude; its fulcrum; its point of action, supposing the figure to be fixed; its collocation with respect to its two ends, the upper and the lower; the place; the position of the whole muscle; the introduction into it of nerves, arteries, veins. How are things including
so many adjustments to be made ; or, when made, how are they to be put together, without intelligence?

I have sometimes wondered why we are not struck with mechanism in animal bodies as readily and as strongly as we are struck with it, at first sight, in a watch or a mill. One reason of the difference may be, that animal bodies are, in a great measure, made up of soft flabby substances, such as muscles and membranes; whereas we have been accustomed to trace mechanism in sharp lines, in the configuration of hard materials, in the moulding, chiseling, and filing into shapes of such articles as metals or wood. There is something therefore of habit in the case; but it is sufficiently evident that there can be no proper reason for any distinction of the sort. Mechanism may be displayed in the one kind of substance as well as in the other.
Although the few instances we have selected, even as they stand in our description, are nothing short, perhaps, of logical proofs of design, yet it must not be forgotten, that, in every part of anatomy, description is a poor substitute for inspection. It is well said by an able anatomist*, and said in reference to the very part of the sub-

[^45]ject which we have been treating of:-"Imperfecta hæc musculorum descriptio non minùs arida est legentibus quàm inspectantibus fuerit jucunda eorundem præparatio. Elegantissima enim mechanicês artificia, creberrimè in illis obvia; verbis nonnisi obscurè exprimuntur: carnium autem ductu, tendinum colore, insertionum proportione, et trochlearium distributione, oculis exposita, omnem superant admirationem."

CHAPTER X.

OF THE VESSELS OF ANIMAL BODIES.

[The figure represents the heart and great blood-vessels, and may convey some idea of the circulation of the blood. We understand A to be the great vein returning the blood from the body; B the right sinus or auricle.

From this cavity of the heart, the blood is carried into C, the ventricle; and from this ventricle the pulmonary artery goes off. This great artery of the lungs is for the conveyance of the blood which is returned from the body into the lungs. Now the great vein A, the auricle B, the ventricle \mathbf{C}, and the pulmonary artery $\mathrm{D} D$, belong to the right side of the heart ; or, to take a more important distinction, they convey dark-coloured blood, which is unfit for the uses of the system. But when this blood reaches the lungs, and is exposed to the atmosphere we breathe, it throws off the carbon, becomes bright in colour, and is called arterial blood. It returns to the heart, not to the cavities which we have enumerated, but by the veins of the lungs to the other side of the heart, the left-that is, to another auricle and another ventricle. From this left ventricle there ascends the aorta, the great artery of the body, EE. This great vessel conveys the blood to every part that has life. From all the parts of the body the blood is gathered again by the extremities of the veins, and so returns to the point of the auricle from which we began to trace it. This short preface may make the observations of the author easily intelligible.]

The circulation of the blood through the bodies of men and quadrupeds, and the apparatus by which it is carried on, compose a system, and testify a contrivance, perhaps the best understood of any part of the animal frame. The lymphatic system,
or the nervous system, may be more subtle and intricate-nay, it is possible that in their structure they may be even more artificial than the sangui-ferous-but we do not know so much about them.

The utility of the circulation of the blood I assume as an acknowledged point. One grand purpose is plainly answered by it-the distributing to every part, every extremity, every nook and corner of the body, the nourishment which is received into it by one aperture. What enters at the mouth finds its way to the fingers' ends. A more difficult mechanical problem could hardly, I think, be proposed, than to discover a method of constantly repairing the waste, and of supplying an accession of substance to every part of a complicated machine at the same time ${ }^{87}$.

This system presents itself under two views: first, the disposition of the blood-vessels, i.e., the laying of the pipes; and, secondly, the construction of the engine at the centre, viz., the heart, for driving the blood through them.
I. The disposition of the blood-vessels, as far as regards the supply of the body, is like that of the water-pipes in a city, viz., large and main trunks branching off by smaller pipes (and these

[^46]again by still narrower tubes) in every direction, and towards every part in which the fluid whieh they convey can be wanted. So far the waterpipes which serve a town may represent the vessels which carry the blood from the heart. But there is another thing necessary to the blood, which is not wanted for the water; and that is, the carrying of it back again to its source. For this office, a reversed system of vessels is prepared, which, uniting at their extremities with the extremities of the first system, collects the divided and subdivided streamlets, first, by capillary ramifications into larger branches, secondly, by these branches into trunks ; and thus returns the blood (almost exactly inverting the order in which it went out) to the fountain whence its motion proceeded. All which is evident mechanism.

The body, therefore, contains two systems of blood-vessels, arteries and veins. Between the constitution of the systems there are also two differences, suited to the functions which the systems have to execute. The blood, in going out, passing always from wider into narrower tubes; and, in coming back, from narrower into wider, it is evident that the impulse and pressure upon the sides of the blood-vessel will be much greater in one case than the other. Accordingly, the arteries which carry out the blood are formed of much
tougher and stronger coats than the veins which bring it back. That is one difference: the other is still more. artificial, or, if I may so speak, indicates still more clearly the care and anxiety of the artificer. Forasmuch as, in the arteries, by reason of the greater force with which the blood is urged along them, a wound or rupture would be more dangerous than in the veins, these vessels are defended from injury, not only by their texture, but by their situation, and by every advantage of situation which can be given to them. They are buried in sinuses, or they creep along grooves made for them in the bones; for instance, the under edge of the ribs is sloped and furrowed solely for the passage of these vessels. Sometimes they proceed in channels, protected by stout parapets on each side, which last description is remarkable in the bones of the fingers, these being hollowed out, on the under-side, like a scoop, and with such a concavity, that the finger may be cut across to the bone, without hurting the artery which runs along it. At other times, the arteries pass in canals wrought in the substance, and in the very middle of the substance, of the bone. This takes place in the lower jaw; and is found where there would, otherwise, be danger of compression by sudden curvature. All this care is wonderful, yet not more than what the importance
of the case required. To those who venture their lives in a ship, it has been often said, that there is only an inch-board between them and death; but in the body itself, especially in the arterial system, there is, in many parts, only a membrane, a skin, a thread. For which reason, this system lies deep under the integuments; whereas the veins, in which the mischief that ensues from injuring the coats is much less, lie in general above the arteries; come nearer to the surface; are more exposed.

It may be further observed concerning the two systems taken together, that though the arterial, with its trunk and branches and small twigs, may be imagined to issue or proceed-in other words, to grow from the heart, like a plant from its root, or the fibres of a leaf from its foot-stalk (which however, were it so, would be only to resolve one mechanism into another); yet the venal, the returning system, can never be formed in this manner. The arteries might go on shooting out from their extremities-i.e., lengthening and subdividing indefinitely; but an inverted system, continually uniting its streams, instead of dividing, and thus carrying back what the other system carried out, could not be referred to the same process.
II. The next thing to be considered is the
engine which works this machinery-viz., the heart. For our purpose it is unnecessary to ascertain the principle upon which the heart acts: Whether it be irritation excited by the contact of the blood, by the influx of the nervous fluid, or whatever else be the cause of its motion, it is something which is capable of producing, in a living muscular fibre, reciprocal contraction and relaxation. This is the power we have to work with; and the inquiry is, how this power is applied in the instance before us. There is provided, in the central part of the body, a hollow muscle, invested with spiral fibres, running in both directions, the layers intersecting one another; in some animals, however, appearing to be semicircular rather than spiral. By the contraction of these fibres, the sides of the muscular cavities are necessarily squeezed together, so as to force out from them any fluid which they may at that time contain: by the relaxation of the same fibres, the cavities are in their turn dilated, and, of course, prepared to admit every fluid which may be poured into them. Into these cavities are inserted the great trunks, both of the arteries which carry out the blood, and of the veins which bring it back. This is a general account of the apparatus; and the simplest idea of its action is, that by each contraction a portion of blood is forced by a syringe into the arteries;
and, at each dilatation, an equal portion is received from the veins. This produces, at each pulse, a motion, and change in the mass of blood, to the amount of what the cavity contains, which in a full-grown human heart I understand is about an ounce, or two table-spoons full. How quickly these changes succeed one another, and by this succession how sufficient they are to support a stream or circulation throughout the system, may be understood by the following computation, abridged from Keill's Anatomy, p. 117, ed. 3.: "Each ventricle will at least contain one ounce of blood. The heart contracts four thousand times in one hour: from which it follows, that there pass through the heart, every hour, four thousand ounces, or three hundred and fifty pounds of blood. Now the whole mass of blood is said to be about twenty-five pounds: so that a quantity of blood, equal to the whole mass of blood, passes through the heart fourteen times in one hour, which is about once in every four minutes."

Consider what an affair this is, when we come to very large animals. The aörta of a whale is larger in the bore than the main pipe of the water-works at London Bridge; and the water roaring in its passage through that pipe is inferior, in impetus and velocity, to the blood gushing from the whale's heart. Hear Dr. Hunter's account of the dissection of a whale : "The aörta
measured a foot diameter. Ten or fifteen gallons of blood are thrown out of the heart at a stroke with an immense velocity, through a tube of a foot diameter. The whole idea fills the mind with wonder."*

The account which we have here stated, of the injection of blood into the arteries by the contraction, and of the corresponding reception of it from the veins by the dilatation, of the cavities of the heart, and of the circulation being thereby maintained through the blood-vessels of the body, is true, but imperfect. The heart performs this office, but it is in conjunction with another of equal curiosity and importance. It was necessary that the blood should be successively brought into contact, or contiguity, or proximity with the air. I do not know that the chemical reason, upon which this necessity is founded, has been yet sufficiently explored. It seems to be made appear, that the atmosphere which we breathe is a mixture of two kinds of air: one pure and vital, the other, for the purposes of life, effete, foul, and noxious; ${ }^{\text {so }}$ that when we have drawn in our breath
${ }^{3}$ The atmosphere contains, in every 100 parts, of oxygen 21 parts; nitrogen or azote, 79 parts; carbonic acid gas, a fractional part.

[^47]the blood in the lungs imbibes from the air thus brought into contiguity with it a portion of its pure ingredient, and at the same time gives out the effete or corrupt air which it contained, and which is carried away, along with the halitus, every time we expire. At least, by comparing the air which is breathed from the lungs with the air which enters the lungs, it is found to have lost some of its pure part, and to have brought away with it an addition of its impure part. Whether these experiments satisfy the question as to the need which the blood stands in of being visited by continual accesses of air, is not for us to inquire into, nor material to our argument: it is sufficient to know, that, in the constitution of most animals, such a necessity exists, and that the air, by some means or other, must be introduced into a near communication with the blood. ${ }^{\text {º }}$

[^48]The lungs of animals are constructed for this purpose. They consist of blood-vessels and airvessels, lying close to each other; and whenever there is a branch of the trachea or windpipe, there is a branch accompanying it of the vein and artery, and the air-vessel is always in the middle between the blood-vessels.* The internal surface of these vessels, upon which the application of the air to the blood depends, would, if collected and expanded, be, in a man, equal to a superficies of fifteen feet square. Now, in order to give the blood in its course the benefit of this organization (and this is the part of the subject with which we are chiefly concerned), the following operation takes place. As soon as the blood is received by the heart from the veins of the body, and before that is sent out again into its arteries, it is carried, by the force of the contrac-
the coats of the minute vessels which contain the blood, nor the fine membrane of the cells which contain the air, prevents the influence of the atmosphere upon the blood. The carbon of the blood meeting the oxygen in the atmosphere, forms carbonic acid gas; and the air expelled in expiration, thus loaded, carries away, of course, a portion of moisture by exhalation. (See the dissertation entitled-On the Circulation. Appendix.)

[^49]K

[The figure represents the two sides of the heart separated : that to the left of the figure, but on the right side of the body, containing the venous blood which must pass through the lungs to serve the purposes of the economy; and that on the left side, containing arterial blood, which is sent out into the body. Man, and all animals of warm blood, have the whole mass of blood passing through the lungs, and a double heart, as here represented, each consisting of a vein, an auricle, a ventricle, and an artery. The arrows point out the course of the circulation.]
tion of the heart, and by means of a separate and supplementary artery, to the lungs, and made to enter the vessels of the lungs; from which, after it has undergone the action, whatever it be, of that viscus, it is brought back by a large vein once more to the heart, in order, when thus concocted and prepared, to be thence distributed anew into the system. This assigns to the heart a double office. The pulmonary circulation is a system within a system; and one action of the heart is the origin of both.

For this complicated function four cavities become necessary, and four are accordingly provided: two called ventricles, which send out the blood, viz., one into the lungs, in the first instance; the other into the mass, after it has returned from the lungs; two others also, called auricles, which receive the blood from the veins, viz., one, as it comes immediately from the body; the other, as the same blood comes a second time after its circulation through the lungs. So that there are two receiving cavities, and two forcing cavities. The structure of the heart has reference to the lungs; for without the lungs, one of each would have been sufficient. The translation of the blood in the heart itself is after this manner. The receiving cavities respectively communicate к 2
with the forcing cavities, and, by their contraction, unload the received blood into them. The forcing cavities, when it is their turn to contract, compel the same blood into the mouths of the arteries.

The account here given will not convey to a reader ignorant of anatomy any thing like an accurate notion of the form, action, or use of the parts (nor can any short and popular account do this); but it is abundantly sufficient to testify contrivance; and although imperfect, being true as far as it goes, may be relied upon for the only purpose for which we offer it-the purpose of this conclusion.
"The wisdom of the Creator," saith Hamburgher, "is in nothing seen more gloriously than in the heart." And how well doth it execute its office! An anatomist, who understood the structure of the leart, might say beforehand that it would play; but he would expect, I think, from the complexity of its mechanism, and the delicacy of many of its parts, that it should always be liable to derangement, or that it would soon work itself out. Yet shall this wonderful machine go, night and day, for eighty years together, at the rate of a hundred thousand strokes every twenty-four hours, having, at every stroke, a great
resistance to overcome; and shall continue this action for this length of time, without disorder and without weariness!

[This figure will assist the explanation of the following pages. It presents a section of the ventricle and the artery. Suppose that the blood enters in the direction of the arrow, it passes between two valves, of very particular construction. They are of a triangular shape, and held out by little cords, which are called the cordee tendinea. These cords are attached to muscles, which, from their appearance, are called columnee carnece; and these fibres are continuous with the fibrous substance of the heart itself. Now when the ventricle is distended with blood, the valves are drawn by their tendons in such a manner as almost to close the orifice; and certainly so to dispose them, that the instant the blood takes a direc-
tion backward into the vein by the contraction of the ventricle, they fall together, and like a flood-gate atop the current in that direction. Were there no corde tendinese or columnee carnea, these valves would be floated back into the anricle, and lose their office. But the most admirable part of the contrivance is, that the columnex carnece receiving the same impulse to contract as the walls of the heart itself, act at the same instant with it; and by contracting in proportion as the walls approach each other, they hold the margins of the valves like the leeches of a sail when bagged by the wind. The blood being prevented passing backward is urged into the great artery still in the direction of the arrow. And now it will be observed that the artery must be dilated when the heart contracts. And the artery itself being both elastic and muscular, reacting upon this impulee, it will contract while the rentricle is dilating. The blood would fall back from the great artery into the ventricle, were it not again prevented by the mechanical intervention of valves. a represents the semilunar valve of the aorta at the root of that great artery; and it is a nurprising thing to see how offices so nearly alike are performed by a mechanism entirely different. This valve consists of three little bags, which are driven up by the force of the blood in the natural courne of the circulation; but when, by the action of the aorta, the blood makes a motion backwards, it fills these three little bags, and they fall together, and prevent the blood flowing back into the heart.]

But further: from the account which has been given of the mechanism of the heart, it is evident that it must require the interposition of valves; that the success indeed of its action must depend upon these ; for when any one of its cavities contracts, the necessary tendency of the force will be to drive the enclosed blood, not only into the mouth of the artery where it ought to go, but also back again into the mouth of the vein from which it flowed. In like manner, when by the relaxation of the fibres the same cavity is dilated, the blood would not only run into it from the vein, which was the course intended, but back from the artery, through which it ought to be moving forward. The way of preventing a reflux of the fluid, in both these cases, is to fix valves, which, like flood-gates, may open a way to the stream in one direction, and shut up the passage against it in another. The heart, constituted as it is, can no more work without valves than a pump can. When the piston descends in a pump, if it were not for the stoppage by the valve beneath, the motion would only thrust down the water which it had before drawn up. A similar consequence would frustrate the action of the heart. Valves, therefore, properly disposed, i.e., properly with respect to the course of the blood which it is necessary to promote, are essential to
the contrivance. And valves so disposed are accordingly provided. A valve is placed in the communication between each auricle and its ventricle, lest, when the ventricle contracts, part of the blood should get back again into the auricle, instead of the whole entering, as it ought to do; the mouth of the artery. A valve is also fixed at the mouth of each of the great arteries which take: the blood from the heart; leaving the passage free, so long as the blood holds its proper course forward; closing it, whenever the blood, in consequence of the relaxation of the ventricle, would attempt to flow back. There is some variety in the construction of these valves, though all the valves of the body act nearly upon the same principle, and are destined to the same use. In general they consist of a thin membranc, lying close to the side of the vessel, and consequently allowing an open passage while the stream runs one way, but thrust out from the side by the fluid getting behind it, and opposing the passage of the blood, when it would flow the other way. Where more than one membrane is employed, the different membranes only compose one valve. Their joint action fulfils the office of a valve: for instance; over the entrance of the right auricle of the heart into the right ventricle, three of these skins or membranes are fixed, of a triangular
figure, the bases of the triangles fastened to the flesh; the sides and summits loose; but, though loose, connected by threads of a determinate length, with certain small fleshy prominences adjoining. The effect of this construction is, that, when the ventricle contracts, the blood endeavouring to escape in all directions, and amongst other directions pressing upwards, gets between these membranes and the sides of the passage ; and thereby forces them up into such a position, as that together they constitute, when raised, a hollow cone (the strings before spoken of hindering them from proceeding or separating farther); which cone, entirely occupying the passage, prevents the return of the blood into the auricle. A shorter account of the matter may be this: so long as the blood proceeds in its proper course, the membranes which compose the valve are pressed close to the side of the vessel, and occasion no impediment to the circulation: when the blood would regurgitate, they are raised from the side of the vessel, and, meeting in the middle of its cavity, shut up the channel. Can any one doubt of contrivance here; or is it possible to shat our eyes against the proof of it?*

[^50]This valve, also, is not more curious in its structure, than it is important in its office. Upon the

A sail distended with the wind would be torn up, were not the margins secured : accordingly, the canvass is folded over a strong cord, which is called the bolt-rope. So the margins of these semi-lunar valves are as finely finished as any sheet from the dock-yard. There is a ligament which runs along the margin, and strengthens it to sustain the impulse of the back-stroke of the artery. And were those corde tendinea, which we have described as like the leeches of a sail, attached to the corner of the mitral valve without further security, they would be torn off on the first pulsation. But as the leeches are secured to the bolt-ropes of the sail, so are the corda tendinea continued into firm ligamentous cords which strengthen the valves.

Our author says well, that the valve is thrown down on the side of the artery when the blood is in its course. But were this really the case, the refluent blood would not easily catch the edge of the valve to throw it up. Now this difficulty is met very curiously, and in two different modes. The corde tendinea prevent the margins of the mitral valve within the ventricle from flapping close against the side of the cavity; and as to the semi-lunar valves, at the root of the great artery, they are prevented falling against the walls in another mode: the section of the artery at its root is not a regular circle; but it is formed into three little bags or sinuses, and as each of the three valves has a little sinus behind it, its
play of the valve, even upon the proportional length of the strings or fibres which check the
margin never reaches the wall of the artery. The consequence of which is, that in the instant that the column of blood takes a retrograde direction, the margins of the valve are caught, and they are thrown up to close the passage. Nothing can be more admirably mechanical.

Since our author has so properly insisted upon the mechanism of the heart as the very strength of his argument, we shall mention one circumstance more as showing what may be called the perfection of the workmanship. It has been explained that the valves of the great artery consist of three semicircular membranes. Now if we consider the effect of these three semicircles meeting, there must be a triangular space in their centre, an imperfection in the point of their union as it were. To remedy this defect, on the centre of the margin of each valve, there is a little body like a small excrescence or tongue: and when these three bodies meet, they exactly fill up the triangular space which is left in the centre of
ascent of the membranes, depends, as it should seem, nothing less than the life itself of the animal. We may here likewise repeat, what we before observed concerning some of the ligaments of the body, that they could not be formed by any action of the parts themselves. There are cases in which, although good uses appear to arise from the shape or configuration of a part, yet that shape or configuration itself may seem to be produced by the action of the part, or by the action or pressure of adjoining parts. Thus the bend and the internal smooth concavity of the ribs may be attributed to the equal pressure of the soft bowels; the particular shape of some bones and joints, to the traction of the annexed muscles, or to the position of contiguous muscles. But valves could not be so formed. Action and pressure are all against them. The blood, in its proper course, has no tendency to produce such things; and in its improper or reflected current has a tendency to prevent their production. Whilst we see, thercfore, the use and necessity of this machinery, we can look to no other account of its origin or formation than the intending mind of a Creator.
the three semicircles. It is as if an ingenious workman had contrived a thing the most apposite to remedy a defect.

Nor can we without admiration reflect, that such thin membranes, such weak and tender instruments, as these valyes are, should be able to hold out for seventy or eighty years.

Here also we cannot consider but with gratitude, how happy it is that our vital motions are involuntary. We should have enough to do, if we had to keep our hearts beating and our stomachs at work. Did these things depend, we will not say upon our effort, but upon our bidding, our care, or our attention, they would leave us leisure for nothing else. We must have been continually upon the watch, and continually in fear; nor would this constitution have allowed of sleep.

It might perhaps be expected, that an organ so precious, of such central and primary importance as the heart is, should be defended by a case. The fact is, that a membranous purse or bag, made of strong, tough materials, is provided for it; holding the heart within its cavity; sitting loosely and easily about it; guarding its substance, without confining its motion; and containing likewise a spoonful or two of water, just sufficient to keep the surface of the heart in a state of suppleness and moisture. How should such a loose covering be generated by the action of the heart? Does not the enclosing of it in a
sack, answering no other purpose but that enclosure, show the care that has been taken of its preservation?

One use of the circulation of the blood probably (amongst other uses) is, to distribute nourishment to the different parts of the body. How minute and multiplied the ramifications of the blood-vessels for that purpose are; and how thickly spread over at least the superficies of the body, is proved by the single observation, that we cannot prick the point of a pin into the flesh without drawing blood, i.e., without finding a blood-vessel. Nor internally is their diffusion less universal. Blood-vessels run along the surface of membranes, pervade the substance of muscles, penetrate the bones. Even into every tooth we trace, through a small hole in the root, an artery to feed the bone, as well as a vein to bring back the spare blood from it; both which, with the addition of an accompanying nerve, form a thread only a little thicker than a horsehair.

Wherefore, when the nourishment taken in at the mouth has once reached and mixed itself with the blood, every part of the body is in the way of being supplied with it. And this introduces another grand topic, namely, the manner in which the aliment gets into the blood; which
is a subject distinct from the preceding, and brings us to the consideration of another entire system of vessels.
III. For this necessary part of the animal economy an apparatus is provided in a great measure capable of being what anatomists call demonstrated, that is, shown in the dead body; and a line or course of conveyance, which we can pursue by our examinations.

First, the food descends by 2 wide passage into the intestines, undergoing two great preparations on its way: one in the mouth by mastication and moisture- (can it be doubted with what design the teeth were placed in the road to the stomach, or that there was choice in fixing them in this situation?)-the other by digestion in the stomach itself. Of this last surprising dissolution I say nothing; because it is chemistry, and I am endeavouring to display mechanism. The figure and position of the stomach (I speak all along with a reference to the human organ) are calculated for detaining the food long enough for the action of its digestive juice. It has the shape of the pouch of a bagpipe; lies across the body; and the pylorus, or passage by which the food leaves it, is somewhat higher in the body than the cardia or orifice by which it enters; so that it is by the contraction of the muscular coat of the
stomach that the contents, after having undergone the application of the gastric menstruum, are gradually pressed out. In dogs and cats, this action of the coats of the stomach has been displayed to the eye. It is a slow and gentle undulation, propagated from one orifice of the stomach to the other. For the same reason that I omitted, for the present, offering any observation upon the digestive fluid, I shall say nothing concerning the bile or the pancreatic juice, further than to observe upon the mechanism, viz., that from the glands in which these secretions are elaborated pipes are laid into the first of the intestines, through which pipes the product of each gland flows into that bowel, and is there mixed with the aliment as soon almost as it passes the stomach ; adding also as a remark, how grievously this same bile offends the stomach itself, yet cherishes the vessel that lies next to it.

Secondly. We have now the aliment in the intestines converted into pulp; and though lately consisting of ten different viands, reduced to nearly a uniform substance, and to a state fitted for yielding its essence, which is called chyle, but which is milk, or more nearly resembling milk than any other liquor with which it can be compared. For the straining off this fluid from the digested aliment in the course of its long progress
through the body, myriads of capillary tubes, i.e., pipes as small as hairs, open their orifices into the cavity of every part of the intestines. These tubes, which are so fine and slender as not to be visible unless when distended with chyle, soon unite into larger branches. The pipes formed by this union terminate in glands, from which other pipes, of a still larger diameter, arising, carry the chyle from all parts into a common reservoir or receptacle. This receptacle is a bag of size enough to hold about two table-spoons full; and from this vessel a duct or main pipe proceeds, climbing up the back part of the chest, and afterwards creeping along the gullet till it reach the neck. Here it meets the river; here it discharges itself into a large vein, which soon conveys the chyle, now flowing along with the old blood, to the heart. This whole route can be exhibited to the cye; nothing is left to be supplied by imagination or conjecture. Now, besides the subserviency of this structure, collectively considered, to a manifest and necessary purpose, we may remark two or three separate particulars in it, which show, not only the contrivance, but the perfection of it. We may remark, first, the length of the intestines, which, in the human subject, is six times that of the body. Simply for a passage, these voluminous bowels, this prolixity of gut, seems in no-
wise necessary; but in order to allow time and space for the successive extraction of the chyle from the digestive aliment, namely, that the chyle which eseapes the lacteals of one part of the guts may be taken up by those of some other part, the length of the canal is of evident use and conduciveness. Secondly, we must also remark their peristaltic motion, which is made up of contractions following one another like waves upon the surface of a fluid, and not unlike what we observe in the body of an earthworm crawhing along the ground, and which is effected by the joint action of longitudinal and of spiral, or rather perhaps of a great number of separate semicircular fibres. This curious action pushes forward the grosser part of the aliment, at the same time that the more subtile parts, which we call chyle, are, by a series of gentle compressions, squeezed into the narrow orifices of the lacteal veins. Thirdly, it was necessary that these tubes, which we denominate lacteals, or their mouths at least, should be made as narrow as possible, in order to deny admission into the blood to any particle which is of size enough to make a lodgment afterwards in the small arteries, and thereby to obstruct the circulation; and it was also necessary that this extreme tenuity should be compensated by multitude; for a large quantity of chyle (in ordinary
conatitutions not less, it has been computed, than two or three quarts in a day) is, by some means or other, to be passed through them. Accordingly, we find the number of the lacteals exceeding all powers of computation, and their pipes so fine and slender as not to be visible, unless filled, to the naked eye, and their orifices, which open into the intestines, so small as not to be discernible even by the best microscope. Fourthly, the main pipe, which carries the chyle from the reservoir to the blood, viz., the thoracic duct, being fixed in an almost upright position, and wanting that advantage of propulsion which the arteries possess, is furnished with a succession of valves to check the ascending fluid, when once it has passed them, from falling back. These valves look upwards, so as to leave the ascent free, but to prevent the return of the chyle, if, for want of sufficient force to push it on, its weight should at any time cause it to descend. Fifthly, the chyle enters the blood in an odd place, but perhaps the most commodious place possible, viz., at a large vein in the neck, so situated with respect to the circulation as speedily to bring the mixture to the heart. And this seems to be a circumstance of great moment; for had the chyle entered the blood at an artery, or at a distant vein, the fluid composed of the old and the new materials must have performed a consi-
derable part of the circulation before it received that churning in the lungs which is probably necessary for the intimate and perfect union of the old blood with the recent chyle. Who could have dreamt of a communication between the cavity of the intestines and the left great vein of the neck ? Who could have suspected that this communication should be the medium through which all nourishment is derived to the body, or this the place where, by a side inlet, the important junction is formed between the blood and the material which feeds it?

We postponed the consideration of digestion, lest it should interrupt us in tracing the course of the food to the blood; but in treating of the alimentary system, so principal a part of the process cannot be omitted.

Of the gastric juice, the immediate agent by which that change which food undergoes in our stomachs is effected, we shall take our account from the numerous, careful, and varied experiments of the Abbs Spallanzani.

1. It is not a simple diluent, but a real solvent. A quarter of an ounce of beef had scarcely touched the stomach of a crow, when the solution began.
2. It has not the nature of saliva; it has not the nature of bile; but is distinct from both. By experiments out of the body, it appears that nei-
ther of these secretions acts upon alimentary substances in the same manner as the gastric juice acts.
3. Digestion is not putrefaction; for the digesting fluid resists putrefaction most pertinaciously; nay, not only checks its farther progress, but restores putrid substances.
4. It is not a fermentative process; for the solution begins at the surface, and proceeds towards the centre, contrary to the order in which fermentation acts and spreads.
5. It is not the digestion of heat; for the cold maw of a cod or sturgeon will dissolve the shells of crabs or lobsters, harder than the sides of the stomach which contains them.

In a word, animal digestion carries about it the marks of being a power and a process completely sui generis, distinct from every other, at least from every chemical process with which we are acquainted. And the most wonderful thing about it is its appropriation-its subserviency to the particular economy of each animal. The gastric juice of an owl, falcon, or kite will not touch grain; no, not even to finish the macerated and half-digested pulse which is left in the crops of the sparrows that the bird devours. In poultry, the trituration of the gizzard, and the gastric juice, conspire in the work of digestion. The
gastric juice will not dissolve the grain whilst it is whole. Entire grains of barley, enclosed in tubes or spherules, are not affected by it. But if the same grain be by any means broken or ground, the gastric juice immediately lays hold of it. Here then is wanted, and here we find, a combination of mechanism and chemistry ${ }^{4}$. For the preparatory grinding the gizzard lends its mill; and as all mill-work should be strong, its structure is so beyond that of any other muscle belonging to the animal. The internal coat also, or lining of the gizzard, is, for the same purpose, hard and cartilaginous. But, forasmuch as this is not the sort of animal substance suited for the reception of glands, or for secretion, the gastric juice, in this family, is not supplied, as in membranous stomachs, by the stomach itself, but by the gullet, in which the feeding-glands are placed, and from which it trickles down into the stomach.

In sheep, the gastric fluid has no effect in digesting plants, unless they have been previously masticated. It only produces a slight maceration, nearly such as common water would produce, in 2

[^51]degree of heat somewhat exceeding the medium temperature of the atmosphere. But, provided that the plant has been reduced to pieces by chewing, the gastric juice then proceeds with it, first, by softening its substance; next, by destroying its natural consistency; and, lastly, by dissolving it so completely as not even to spare the toughest and most stringy parts, such as the nerves of the leaves.

So far our accurate and indefatigable Abbé. Dr. Stevens, of Edinburgh, in 1777, found, by experiments tried with perforated balls, that the gastric juice of the sheep and the ox speedily dissolved vegetables, but made no impression upon beef, mutton, and other animal bodies. Mr. Hunter discovered a property of this fluid, of a most curious kind-viz., that in the stomachs of animals which feed upon flesh, irresistibly as this fluid acts upon animal substances, it is only upon the dead substance that it operates at all. The living fibre suffers no injury from lying in contact with it. Worms and insects are found alive in the stomachs of such animals. The coats of the human stomach, in a healthy state, are insensible to its presence; yet in cases of sudden death (wherein the gastric juice, not having been weakened by disease, retains its activity), it has been known to eat a hole through the bowel which
contains it*. How nice is this discrimination of action, yet how necessary!

But to return to our hydraulics.
IV. The gall-bladder is a very remarkable contrivance. It is the reservoir of a canal. It does not form the channel itself-i.e., the direct communication between the liver and the intestine, which is by another passage-viz., the ductus hepaticus, continued under the name of the ductus communis; but it lies adjacent to this channel, joining it by a duct of its own, the ductus cysticus: by which structure it is enabled, as occasion may require, to add its contents to and increase the flow of bile into the duodenum. And the position of the gall-bladder is such as to apply this structure to the best advantage. In its natural situation, it touches the exterior surface of the stomach, and consequently is compressed by the distention of that vessel : the effect of which compression is to force out from the bag, and send into the duodenum, an extraordinary quantity of bile, to meet the extraordinary demand which the repletion of the stomach by food is about to occasiont. Cheselden describes + the gall-bladder as seated against the duodenum, and thereby liable to have its fluid pressed out by the passage

[^52]of the aliment through that cavity, which likewise will have the effect of causing it to be received into the intestine at a right time and in a due proportion.

There may be other purposes answered by this contrivance, and it is probable that there are. The contents of the gall-bladder are not exactly of the same kind as what passes from the liver through the direct passage*. It is possible that the gall may be changed, and for some purposes meliorated, by keeping ${ }^{\text {s }}$.

The entrance of the gall-duct into the duodenum furnishes another observation. Whenever either smaller tubes are inserted into larger tubes, or tubes into vessels and cavities, such receiving tubes, vessels, or cavities, being subject to muscular constriction, we always find a contrivance to prevent regurgitation. In some cases valves are used; in other cases, amongst which is that now before us, a different expedient is resorted to, which may be thus described: the gall-duct enters the duodenum obliquely; after it has pierced

* On this passage some remarks on the absence of the gall-bladder in certain animals might be required; but the reader may turn to the note in the Appendix on the stomach of the horse.

[^53]the first coat, it runs near two fingers' breadth between the coats before it opens into the cavity of the intestine*. The same contrivance is used in another part, where there is exactly the same occasion for it, viz., in the insertion of the ureters in the bladder. These enter the bladder near its neck, running obliquely for the space of an inch between its coats \dagger. It is, in both cases, sufficiently evident that this structure has a necessary mechanical tendency to resist regurgitation; for whatever force acts in such a direction as to urge the fluid back into the orifices of the tubes, must, at the same time, stretch the coats of the vessels, and thereby compress that part of the tube which is included between them.
V. Amongst the vessels of the human body, the pipe which conveys the saliva from the place where it is made to the place where it is wanted deserves to be reckoned amongst the most intelligible pieces of mechanism with which we are acquainted. The saliva, we all know, is used in the mouth; but much of it is produced on the outside of the cheek by the parotid gland, which lies between the ear and the angle of the lower jaw. In order to carry the secreted juice to its destination, there is laid from the gland on the outside a pipe about the

[^54]thickness of a wheat straw, and about three fingers' breadth in length, which, after riding over the masseter muscle, bores for itself a hole through the very middle of the cheek, enters by that hole, which is a complete perforation of the buccinator muscle, into the mouth, and there discharges its fluid very copiously.
VI. Another exquisite structure, differing, indeed, from the four preceding instances in that it does not relate to the conveyance of fluids, but still belonging, like these, to the class of pipes or conduits of the body, is seen in the larynx. We all know that there go down the throat two pipes, one leading to the stomach, the other to the lungs -the one being the passage for the food, the other for the breath and voice: we know also, that both these passages open into the bottom of the mouth-the gullet, necessarily, for the conveyance of food, and the wind-pipe, for speech and the modulation of sound, not much less so : therefore the difficulty was, the passages being so contiguous, to prevent the food, especially the liquids, which we swallow into the stomach from entering the wind-pipe, i. e., the road to the lungs-the consequence of which error, when it does happen, is perceived by the convalsive throes that are instantly produced. This business, which is very nice, is managed in this manner. The gullet (the
passage for food) opens into the mouth like the cone or upper part of a funnel, the capacity of which forms indeed the bottom of the mouth. Into the side of this funnel, at the part which lies the lowest, enters the wind-pipe by a chink or slit, with a lid or flap, like a little tongue, accurately fitted to the orifice. The solids or liquids which we swallow pass over this lid or flap as they descend by the funnel into the gullet. Both the weight of the food and the action of the muscles concerned in swallowing contribute to keep the lid close down upon the aperture whilst anything is passing ; whereas, by means of its natural cartilaginous spring, it raises itself a little as soon as the food is passed, thereby allowing a free inlet and outlet for the respiration of air by the lungs. Such is its structure; and we may here remark the almost complete success of the expedient, viz., how seldom it fails of its purpose compared with the number of instances in which it fulfils it. Reflect how frequently we swallow, how constantly we breathe. In a city-feast, for example, what deglutition, what anhelation! yet does this little cartilage, the epiglottis, so effectually interpose its office, so securely guard the entrance of the wind-pipe, that whilst morsel after morsel, draught after draught, are coursing one another over it, an accident of a crumb or a drop slipping into
this passage (which, nevertheless, must be opened for the breath every second of time), excites in the whole company, not only alarm by its danger, but surprise by its novelty. Not two guests are choked in a century.

There is no room for pretending that the action of the parts may have gradually formed the epiglottis: I do not mean in the same individual, but in a succession of generations. Not only the action of the parts has no such tendency, but the animal could not live, nor consequently the parts act, either without it or with it in a half-formed state. The species was not to wait for the gradual formation or expansion of a part which was from the first necessary to the life of the individual.

Not only is the larynx curious, but the whole wind-pipe possesses a structure adapted to its peculiar office. It is made up (as any one may perceive by putting his fingers to his throat) of stout cartilaginous ringlets, placed at small and equal distances from one another. Now this is not the case with any other of the numerous conduits of the body. The use of these cartilages is to keep the passage for the air constantly open, which they do mechanically. A pipe with soft membranous coats, liable to collapse and close when empty, would not have answered here;
although this be the general vascular structure, and a structure which serves very well for those tubes which are kept in a state of perpetual distention ly the fuid they enclose, or which afford a passage to solid and protruding substances.

Nevertheless (which is another particularity well worthy of notice), these rings are not com-plete-that is, are not cartilaginous and stiff all round; but their hinder part, which is contiguous to the gullet, is membranous and soft, easily yielding to the distentions of that organ occasioned by the descent of solid food. The same rings are also bevelled off at the upper and lower edges, the better to close upon one another when the trachea is compressed or shortened.

The constitution of the trachea may suggest likewise another reflection. The membrane which lines its inside is perhaps the most sensible, irritable membrane of the body. It rejects the touch of a crumb of bread, or a drop of water, with a spasm which convulses the whole frame; yet, left to itself and its proper office, the intromission of air alone, nothing can be so quiet. It does not even make itself felt; a man does not know that he has a trachea. This capacity of perceiving with such acuteness, this impatience of offence, yet perfect rest and ease when let alone, are properties, one would have thought, not likely to reside in
the same subject. It is to the junction, however, of these almost inconsistent qualities, in this, as well as in some other delicate parts of the body, that we owe our safety and our comfort-our safety to their sensibility, our comfort to their repose ${ }^{\text {as }}$.
> ${ }^{*}$ Our author touches bere upon the sensibilities which govern the motions of the chest-a subject which might be enlarged upon to fill a volume. But considering the object of this wort, we ought not to omit the occasion of observing the union of a property of life with the most complex mechanical structure imaginable We have seen, in former notes, that for the grand and vital purpose of decarbonizing the blood, the atmospheric air must be drawn deep into the lungs; and the problem is, to permit the vital air to pass, and yet prevent foreign matter from finding access. On this subject there is a note in the Appendix. But the more remarkable circumstance in connexion with the statement in the text is, that the whole of this apparatus for respiration is taken from the governance of the will, and placed under a power more constantly vigilant and more absoletely peremptory. The seasibility about the glottis holds in control an hundred muscles; and whilst it excites the action, directs the force of the stream of expired air with extraordinary exactneas to the very point where the irritating matter lodges, be it in the passages of the throat, or in the cavities of the nose.

The larynx, or rather the whole wind-pipe taken together (for the larynx is only the upper part of the wind-pipe), besides its other uses, is also a musical instrument-that is to say, it is mechanism expressly adapted to the modulation of sound; for it has been found upon trial, that, by relaxing or tightening the tendinous bands at the extremity of the wind-pipe, and blowing in at the other end, all the cries and notes might be produced of which the living animal was capable. It can be sounded just as a pipe or flute is sounded.

Birds, says Bonnet, have, at the lower end of the windpipe, a conformation like the reed of a hautboy, for the modulation of their notes. A tuneful bird is a ventriloquist. The seat of the song is in the breast.

The use of the lungs in the system has been said to be obscure; one use, however, is plain, though, in some sense, external to the system,

There are many instances of the same kind in the economy of the frame, where actions are excited by sensibilities seated in certain spots, some of them attended with suffering, by which our voluntary efforts are brought in aid, and others where there is neither sensation nor volition, and yet the muscles are controlled and regulated, and the offices performed, with undeviating precision.
and that is, the formation, in conjunction with the larynx, of voice and speech. They are, to animal utterance, what the bellows are to the organ. ${ }^{4}$

For the sake of method, we have considered animal bodies under three divisions: their bones, their muscles, and their vessels; and we have stated our observations upon these parts separately. But this is to diminish the strength of the argument. The wisdom of the Creator is seen, not in their separate but their collective action; in their mutual subserviency and dependence; in their contributing together to one effect and one use. It has been said, that a man cannot lift his hand to his head without finding enough to convince him of the existence of a God. And it is well said; for he has only to reflect, familiar as this action is, and simple as it seems to be, how many things are requisite for the performing of it; how many things which we understand, to say nothing of many more, probably, which we do not: viz., first, a long, hard, strong

[^55]$$
\text { L } 3
$$
cylinder, in order to give to the arm its firmness and tension ; but which, being rigid, and, in its substance, inflexible, can only turn upon joints; secondly, therefore, joints for this purpose; one at the shoulder to raise the arm, another at the elbow to bend it; these joints continually fed with a soft mucilage to make the parts slip easily upon one another, and holden together by strong braces, to keep them in their position: then, thirdly, strings and wires-i. e., muscles and ten-dons-artificially inserted, for the purpose of drawing the bones in the directions in which the joints allow them to move. Hitherto we seem to understand the mechanism pretty well; and, understanding this, we possess enough for our con+ clusion: Nevertheless, we have hitherto only a machine standing still-a dead organization-an apparatus. To put the system in a state of activity, to set it at work, a further provision is necessary-viz., a communication with the brain by means of nerves. We know the existence of this communication, because we can see the communicating threads, and can trace them to the brain : its necessity we also know, because if the thread be cut, if the communication be intercepted, the muscle becomes paralytic; but beyond this we know little, the organization being too minute and subtile for our inspection.

To what has been enumerated, as officiating in the single act of a man's raising his hand to his head, must be added likewise all that is necessary and all that contributes to the growth, nourishment, and sustentation of the limb, the repair of its waste, the preservation of its health : such as the circulation of the blood through every part of it ; its lymphatics, exhalents, absorbents; its excretions and integuments.: All these share in the result-join in the effect; and how all these, or any of them, come together without a designing, disposing intelligenee, it is impossible to conceive.

CHAPTER XI.

OF THE ANIMAL STRUCTURE REGARDED AS A MASS.
Contemplatina an animal body in its collective capacity, we cannot forget to notice what a num. ber of instruments are brought together, and often within how small a compass. It is a cluster of contrivances. In a canary-bird, for instance, and in the single ounce of matter which composes his body (but which seems to be all employed), we have instruments for eating, for digesting, for nourishment, for breathing, for generation, for running, for flying, for seeing, for hearing, for smelling: each appropriate-each entirely different from all the rest.

The human or indeed the animal frame, considered as a mass or assemblage, exhibits in its composition three properties, which have long struck my mind as indubitable evidences not only of design, but of a great deal of attention and accuracy in prosecuting the design.
I. The first is, the exact correspondency of the two sides of the same animal: the right hand answering to the left, leg to leg, eye to eye, one side of the countenance to the other; and with a
precision, to imitate which in any tolerable degree forms one of the difficulties of statuary, and requires, on the part of the artist, a constant attention to this property of his work, distinct from every other.

It is the most difficult thing that can be to get a wig made even; yet how seldom is the face awry! And what care is taken that it should not be so, the anatomy of its bones demonstrates. The upper part of the face is composed of thirteen bones, six on each side, answering each to each, and the thirteenth, without a fellow, in the middle. The lower part of the face is in like manner composed of six bones, three on each side, respectively corresponding, and the lower jaw in the centre. In building an arch, could more be done in order to make the curve true-i.e., the parts equidistant from the middle, alike in figure and position?

The exact resemblance of the eyes, considering how compounded this organ is in its structure, how various and how delicate are the shades of colour with which its iris is tinged; how differently, as to effect upon appearance, the eye may be mounted in its socket, and how differently in different heads eyes actually are set-is a property of animal bodies much to be admired. Of ten thousand eyes, I do not know that it would
be possible to match one, except with its own fellow; or to distribute them into suitable pairs by any other selection than that which obtains.

This regularity of the animal structure is rendered more remarkable by the three following considerations:-

1. The limbs, separately taken, have not thin correlation of parts, but the contrary of it. A knife drawn down the chine cuts the human body into two parts, externally equal and alike; you cannot draw a straight line which will divide 2 hand, a foot, the leg, the thigh, the cheek, the eye, the ear, into two parts equal and alike. Those parts which are placed upon the middle or partition line of the body, or which traverse that line-as the nose, the tongue, and the lips-may the so divided, or, more properly speaking, are double organs; but other parts cannot. This shows that the correspondency which we have been describing does not arise by any necessity in the nature of the subject; for, if necessary, it would be universal; whereas it is observed only in the system or assemblage. It is not true of the separate parts: that is to say, it is found where it conduces to beauty or'utility; it is not found where it would subsist at the expense of both. The two wings of a bird always corrempond: the two sides of a feather frequently do
not. In centipedes, millepedes, and the whole tribe of insects, no two legs on the same side ane alike; yet there is the most exact parity between the legs opposite to one another.
2. The next circumstance to be remarked is, that, whilst the cavities of the body are so configurated, as externally to exhibit the most exact correspondency of the opposite sides, the contents of these cavities have no such correspondency. A line drawn down the middle of the breast divides the thorax into two sides exactly similar; yet these two sides enclose very different contents. The heart lies on the left side; a lobe of the lungs on the right; balancing each other neither in size nor shape. The same thing holds of the abdomen. The liver lies on the right side, without any similar viscus opposed to it on the left. The spleen indeed is situated over-against the liver; but agreeing with the liver neither in balk nor form. There is no equipollency between these. The stomach is a vessel, both irregular in its shape, and oblique in its position. The foldings and doublings of the intentines do not present a parity of sides. Yet that symmetry which depends upon the correlation of the sides is externally preserved throughout the whole trunk; and is the more remarkable in the lower 'parts of it, as the integuments are soft; and the
shape, consequently, is not, as the thorax is by its ribs, reduced by natural stays. It is evident, therefore, that the external proportion does not arise from any equality in the shape or pressure of the internal contents. What is it, indeed, but a correction of inequalities?-an adjustment, by mutual compensation, of anomalous forms into a regular congeries?-the effect, in a word, of artful, and, if we might be permitted so to speak, of studied collocation?
3. Similar also to this is the third observation : that an internal inequality in the feeding vessels is so managed as to produce no inequality of parts which were intended to correspond. The right arm answers accurately to the left, both in size and shape; but the arterial branches which supply the two arms do not go off from their trunk, in a pair, in the same manner, at the same place, or at the same angle. Under which want of similitude, it is very difficult to conceive how the same quantity of blood should be pushed through each artery; yet the result is right; the two limbs which are nourished by them perceive no difference of supply-no effects of excess or deficiency.

Concerning the difference of manner in which the subclavian and carotid arteries, upon the different sides of the body, separate themselves from
the aörta, Cheselden seems to have thought, that the advantage which the left gain by going off at an angle much more acute than the right, is made up to the right by their going off together in one branch*. It is very possible that this may be the compensating contrivance; and if it be so, how curious-how hydrostatical!
II. Another perfection of the animal mass is the package. I know nothing which is so surprising. Examine the contents of the trunk of any large animal. Take notice how soft, how tender, how intricate they are; how constantly in action, how necessary to life! Reflect upon the danger of any injury to their substance, any derangement of their position; any obstruction to their office. Observe the heart pumping at the centre, at the rate of eighty strokes in a minute; one set of pipes carrying the stream away from it, another set bringing, in its course, the fluid back to it again; the lungs performing their elaborate office, viz., distending and contracting their many thousand vesicles by a reciprocation which cannot cease for a minute; the stomach exercising its powerful chemistry; the bowels silently propelling the changed aliment; collecting from it, as it proceeds, and transmitting to the blood an incessant supply of prepared and assimilated nou* Ches. Anat. p. 184. ed. 7.
rishment; that blood parsuing its course; the liver, the kidneys, the pancreas, the parotid, with many other known and distinguishable glands, drawing off from it, all the while, their proper secretions. These several operations, together with others more subtile but less capable of being investigated, are going on within us at one and the same time. Think of this; and then observe how the body itself, the case which holds this machinery, is rolled, and jolted, and tossed about; the mechanism remaining unhart, and with very little molestation even of its nicest motions. Observe a rope-dancer, a tumbler, or a monkey; the sudden inversions and contortions which the internal parts sustain by the postures into which their bodies are thrown; or rather observe the shocks which these parts, even in ordinary subjects, sometimes receive from falls and bruises, or by abrupt jerks and twists, without sensible or with soon-recovered damage. Observe this, and then reflect how firmly every part must be secured, how carefully surrounded, how well tied down and packed together.

This property of animal bodies has never, I think, been considered under a distinct head, or so fully as it deserves. I may be allowed therefore, in order to verify my observation concerning it, to set forth a short anatomical detail, though
it oblige me to use more technical language than I should wish to introduce into a work of this kind.

1. The heart (such care is taken of the centre of life) is placed between two soft lobes of the lungs; is tied to the mediastinum and to the pericardium; which pericardium is not only itself an exceedingly strong membrane, but adheres firmly to the duplicature of the mediastinum, and, by its point, to the middle tendon of the diaphragm. The heart is also sustained in its place by the great blood-vessels which issue from it *.
2. The lungs are tied to the sternum by the mediastinum before; to the vertebra. by the pleura behind. It seems indeed to be the very use of the mediantinum (which is a membrane that goes straight through the middle of the thorax, from the breast to the back) to keep the contents of the thorax in their places; in particular to hinder one lobe of the lungs from incommoding another, or the parts of the lungs from pressing upon each other when we lie on one side \dagger.
3. The liver is fastened in the body by two ligaments : the first, which is large and strong, comes from the covering of the diaphragm, and penetrates the substance of the liver; the second

[^56]is the umbilical vein, which, after birth, degenerates into a ligament. The first, which is the principal, fixes the liver in its situation whilst the body holds an erect posture; the second prevents it from pressing upon the diaphragm when we lie down; and both together sling or suspend the liver when we lie upon our backs, so that it may not compress or obstruct the ascending vena cava*, to which belongs the important office of returning the blood from the body to the heart.
4. The bladder is tied to the navel by the urachus, transformed into a ligament: thus, what was a passage for urine to the foetus, becomes, after birth, a support or stay to the bladder. The peritonæum also keeps the viscera from confounding themselves with, or pressing irregularly upon, the bladder; for the kidneys and bladder are contained in a distinct duplicature of that membrane, being thereby partitioned off from the other contents of the abdomen.
5. The kidneys are lodged in a bed of fat.
6. The pancreas, or sweetbread, is strongly tied to the peritonæum, which is the great wrapping sheet, that encloses all the bowels contained in the lower belly \dagger.
7. The spleen also is confined to its place by an adhesion to the peritonæum and diaphragm, and

[^57]by a connexion with the omentum *. It is possidle, in my opinion, that the spleen may be merely a stuffing, a soft cushion to fill up a vacanty or hollow, which, unless occupied, would leave the package loose and unsteady : for, supposing that it answers no other purpose than this, it must be vascular, and admit of a circulation through it, in order to be kept alive, or be a part of a living body.s
8. The omen
tucked up omentum, epiplöon, or cawl, is an apron part. The or doubling upon itself, at its lowest the stomach upper edge is tied to the bottom of observed, to the spleen, as hath already been reflected and to part of the duodenum. The comes up edge also, after forming the doubling, colon and behind the front flap, and is tied to the colon and adjoining viscera \dagger.

${ }^{4}$ Our author has not failed to fall into the snare which lies in the path of the adventurous theorist. We have here a new theory of the spleen. The spleen in truth has a double office: it is ever found attached to the digesting part of the intestinal canal ; and is reasontimon to the stomach, and to supply blood to the liver of

[^58]9. The septa of the brain probably prevent one part of the organ from pressing with too great a weight upon another part. The processes of the dura mater divide the cavity of the skull, like so many inner partition walls, and thereby confine each hemisphere and lobe of the brain to the chamber which is assigned to it, without its being liable to rest upon or intermix with the neighbouring parts. The great art and caution of packing is to prevent one thing hurting another. This, in the head, the chest, and the abdomen, of an animal body, is, amongst other methods, provided for by membranous partitions and wrappings, which keep the parts separate.

The above may serve as a short account of the manner in which the principal viscera are sentained in their places. But of the provisions for this purpose, by far, in my opinion, the most curious, and where also such a provision was most wanted, is in the guts. It is pretty evident, that a long narrow tube (in man, about five times the length of the body) laid from side to side in folds upon one another, winding in oblique and cirenitous directions, composed also of a soft and yiedding substance, must, without some extracrdinary precaution for its safety, be continually displaced by the various, sudden, and abrupt motions of the body which contains it. I should
expect that, if not braised or wounded by every fall, or leap, or twist, it would be entangled, or be involved with itself; or, at the least, slipped and shaken out of the order in which it is disposed, and which order is necessary to be preserved for the carrying on of the important functions which it has to execute in the animal economy. Let us see, therefore, how a danger so serious, and yet so natural to the length, narrowness, and tubular form of the part, is provided against. The expedient is admirable; and it is this. The intestinal canal, throughout its whole process, is knit to the edge of a broad fat membrane called the mesentery. It forms the margin of this mesentery, being stitched and fastened to it like the edging of a ruffle: being fonr times as long as the mesentery itself, it is what a sempstress would call "puckered or gathered on" to it. This is the nature of the comexion of the gut with the mesentery; and being thus joined to, or rather made a part of, the mesentery, it is folded and wrapped up together with it. Now the mesentery, having a considerable dimension in breadth, being in its substance withal both thick and suety, is capable of a close and safe folding, in comparison of what the intestinal tube would admit of, if it had remained loose. The mesentery likewise not only keeps the intestinal canal in its proper place and
position under all the turns and windings of its course, but sustains the numberless small vessels, the arteries, the veins, the lympheducts, and, above all, the lacteals, which lead from or to almost every point of its coats and cavity. This membrane, which appears to be the great support and security of the alimentary apparatus, is itself strongly tied to the first three vertebræ of the loins*.
III. A third general property of animal forms is beauty. I do not mean relative beauty, or that of one individual above another of the same species, or of one species compared with another species; but I mean, generally, the provision which is made in the body of almost every animal to adapt its appearance to the perception of the animals with which it converses. In our own species, for example, only consider what the parts and materials are of which the fairest , body is composed; and no further observation will be necessary to show how well these things are wrapped up, so as to form a mass which shall be capable of symmetry in its proportion, and of beauty in its aspect; how the bones are covered, the bowels concealed, the roughnesses of the muscle smoothed and softened; and how over the whole is drawn an integument, which converts the dis-

[^59]gusting materials of a dissecting-room into an object of attraction to the sight, or one upon which it rests at least with ease and satisfaction. Much of this effect is to be attributed to the intervention of the cellular or adipose menibrane, which lies immediately under the skin; is a kind of lining to it ; is moist, soft, slippery, and compressible; everywhere filling up the interstices of the muscles, and forming thereby their roundness and flowing line, as well as the evenness and polish of the whole surface.

All which seems to be a strong indication of design, and of a design studiously directed to this purpose. And it being once allowed that such a purpose existed with respect to any of the productions of nature, we may refer, with a considerable degree of probability, other particulars to the same intention; such as the tints of flowers, the plumage of birds, the furs of beasts, the bright scales of fishes, the painted wings of butterflies and beetles, the rich colours and spotted lustre of many tribes of insects.

There are parts also of animals ornamental, and the properties by which they are so not subservient, that we know of, to any other purpose. The irides of most animals are very beautiful, without conducing at all, by their beauty, to the perfection of vision ; and nature could in no part
have employed her pencil to so much advantage, because no part presents itself so conspicuously to the observer, or communicates so great an effect to the whole aspect.

In plants, especially in the flowers of plants, the principle of beauty holds a still more considerable place in their composition; is still more confessed than in animals. Why, for one instance out of a thousand, does the corolla of the tulip, when advanced to its size and maturity, change its colour? The purposes, so far as we can see, of vegetable nutrition might have been carried on as well by its continuing green. Or, if this could not be, consistently with the progress of vegetable life, why break into such a variety of colours? This is no proper effect of age, or of declension in the ascent of the sap; for that, like the autumnal tints, would have produced one colour on one leaf, with marks of fading and withering. It seems a lame account to call it, as it has been called, a disease of the plant. Is it not more probable that this property, which is independent, as it should seem, of the wants and utilities of the plant, was calculated for beauty, intended for display?

A ground, I know, of objection has been taken against the whole topic of argument, namely, that there is no such thing as beauty at all; in
other words, that whatever is useful and familiar comes of course to be thought beautiful; and that things appear to be so, only by their alliance with these qualities. Our idea of beauty is eapable of being in so great a degree modified by habit, by fashion, by the experience of advantage or pleasure, and by associations arising out of that experience, that a question has been made, whether it be not altogether generated by these causes, or would have any proper existence without them. It seems, however, a carrying of the conclusion too far, to deny the existence of the principle, viz., a native capacity of perceiving beauty, on account of an influence, or of varieties proceeding from that influence, to which it is subject, seeing that principles the most acknowledged are liable to be affected in the same manner. I should rather argue thus:-The question respects objects of sight Now every other sense hath its distinction of agreeable and disagreeable. Some tastes offend the palate, others gratify it. In brutes and insects, this distinction is stronger and more regular than in man. Every horse, ox, sheep, swine, when at liberty to choose, and when in a natural atate, that is, when not vitiated by habits foreed upon it, eats and rejects the same plants. Many insects which feed upon particular plants, will rather die than change their appro-
priate leaf. All this looks like a determination in the sense itself to particular tastes. In like manner, smells affect the nose with sensations pleasurable or disgusting. Some sounds, or compositions of sound, delight the ear: others torture it. Habit can do much in all these cases (and it is well for us that it can; for it is this power which reconciles us to many necessities): but has the distinction, in the mean time, of agreeable and disagreeable, no foundation in the sense itself? What is true of the other senses is most probably true of the eye (the analogy is irresistible), viz., that there belongs to it an original constitution, fitted to receive pleasure from some impressions, and pain from others.

I do not however know, that the argument which alleges beauty as a final cause rests upon this concession. We possess a sense of beauty, however we come by it. It in fact exists. Things are not indifferent to this sense; all objects do not suit it ; many, which we see, are agreeable to it : many others disagreeable. It is certainly not the effect of habit upon the particular object, because the most agreeable objects are often the most rare ; many which are very common, continue to be offensive. If they be made supportable by habit, it is all which habit can do; they never become agreeable. If this sense, therefore,
be acquired, it is a result; the produce of numerous and complicated actions of external objects upon the senses, and of the mind upon its sensations. With this result, there must be a certain congruity to enable any particular object to please; and that congruity, we contend, is consulted in the aspect which is given to animal and vegetable bodies.
IV. The skin and covering of animals is that upon which their appearance chiefly depends; and it is that part which, perhaps, in all animals, is most decorated, and most free from impurities. But were beauty, or agreeableness of aspect, entirely out of the question, there is another purpose answered by this integument, and by the collocation of the parts of the body beneath it, which is of still greater importance; and that purpose is concealment. Were it possible to view through the skin the mechanism of our bodies, the sight would frighten us out of our wits. "Durst we make a single movement," asks a lively French writer, " or stir a step from the place we were in, if we saw our blood circulating, the tendons pulling, the lungs blowing, the humours filtrating, and all the incomprehensible assemblage of fibres, tubes, pumps, valves, currents, pivots, which sustain an existence at once so frail and so presumptuous?"
V. Of animal bodies, considered as masses, there is another property, more curious than it is generally thought to be; which is the faculty of standing: and it is more remarkable in twolegged animals than in quadrupeds, and, most of all, as being the tallest, and resting upon the smallest base, in man. There is more, I think, in the matter than we are aware of. The statue of a man, placed loosely upon a pedestal, would not be secure of standing half an hour. You are obliged to fix its feet to the block by bolts and solder; or the first shake, the first gust of wind, is sure to throw it down. Yet this statue shall express all the mechanical proportions of a living model. It is not thenefore the mere figure, or merely placing the centre of gravity within the base, that is sufficient. Either the law of gravitation is suspended in favour of living substances, or something more is done for them, in order to enable them to uphold their posture. There is no reason whatever to doubt, but that their parts descend by gravitation in the same manner as those of dead matter. The gift therefore appears to me to consist in a faculty of perpetually shifting the centre of gravity, by a set of obscure, indeed, but of quick-balancing actions, so as to keep the line of direction, which is a line drawn from that centre to the ground, within its prescribed limits.

Of these actions it may be observed, first, that they in part constitute what we call strength. The dead body drops down. The mere adjustment therefore of weight and pressure, which may be the same the moment after death as the moment before, does not support the column. In cases also of extreme weakness, the patient cannot stand upright. Secondly, that these actions are only in a small degree voluntary. A man is seldom conscious of his voluntary powers in keeping himself upon his legs. A child learning to walk is the greatest posture-master in the world : but art, if it may be so called, sinks into habit; and he is soon able to poise himself in a great variety of attitudes, without being sensible either of caution or effort. But still there must be an aptitude of parts, upon which habit can thus attach; a previous capacity of motions which the animal is thus taught to exercise : and the facility with which this exercise is acquired forms one object of our admiration. What parts are principally employed, or in what manner each contributes to its office, is, as hath already been confessed, difficult to explain. Perhaps the obscure motion of the bones of the feet may have their share in this effect. They are put in action by every slip or vacillation of the body, and seem to assist in restoring its balance. Certain it is, that this circumstance in
the structure of the foot, viz., its being composed of many small bones, applied to and articulating with one another by diversely-shaped surfaces, instead of being made of one piece, like the last of a shoe, is very remarkable.

I suppose also that it would be difficult to stand firmly upon stilts or wooden legs, though their base exactly imitated the figure and dimensions of the sole of the foot. The alternation of the joints, the knee-joint bending backward, the hipjoint forward; the flexibility, in every direction, of the spine, especially in the loins and neck, appear to be of great moment in preserving the equilibrium of the body. With respect to this last circumstance, it is observable, that the vertebræ are so confined by ligaments as to allow no more slipping upon their bases, than what is just sufficient to break the shock which any violent motion may occasion to the body. A certain degree also of tension of the sinews appears to be essential to an erect posture ; for it is by the loss of this that the dead or paralytic body drops
down. The whole is a wonderful result of combined powers, and of very complicated operations. Indeed, that standing is not so simple a business as we imagine it to be, is evident from the strange gesticulations of a drunken man, who has lost the. government of the centre of gravity ${ }^{46}$.

[^60]We have said that this property is the most worthy of observation in the human body; but a bird, resting upon its perch, or hopping upon a spray, affords no mean specimen of the name faculty. A chicken runs off as soon as it is hatched from the egg; yet a chicken, considered geometrically, and with relation to its centre of gravity, its line of direction, and its equilibrium, is a very irregular solid. Is this gift, therefore, or instruction? May it not be said to be with great attention that nature hath balanced the body upon its pivots?

I observe also in the same bird a piece of useful mechanism of this kind. In the trussing of a fowl, upon bending the legs and thighs up towards the body, the cook finds that the claws close of their own accord. Now let it be remembered, that this is the position of the limbs in which the bird rests upon its perch. And in this position it sleeps in safety; for the claws do their office in keeping hold of the support-not by any exertion of voluntary power, which sleep might suspend, but by the traction of the tendons in consequence of the attitude which the legs and thighs take by the bird sitting down, and to which the mere weight of the body gives the force that is necessary.
VI. Regarding the human body as a mass;
regarding the general conformations which obtain in it; regarding also particular parts in respect to those conformations; we shall be led to observe what I call "interrupted analogies." The following are examples of what I mean by these terms; and I do not know how such critical deviations can, by any possible hypothesis, be accounted for without design:-

1. All the bones of the body are covered with a periosteum, except the teeth, where it cease ; and an enamel of ivory, which saws and files will hardly touch, comes into its place. No one can doubt of the use and propriety of this difference; of the "analogy" being thas "interrupted;" of the rule, which belongs to the conformation of the bones, stopping where it does stop; for, had so exquisitely sensible a membrane as the periosteum invested the teeth, as it invests every other bone of the body, their action, necessary exposure, and irritation, would have subjected the animal to continual pain. General as it is, it was not the sort of integument which suited the teeth; what they stood in need of was a strong, hard, insensible, defensive coat; and exactly such a covering is given to them, in the ivory enamel which adheres to their surface. ${ }^{47}$

[^61]2. The scarf-skin, which clothes all the rest of the body, gives way, at the extremities of the toes and fingers, to nails. A man has only to look at his hand, to observe with what nicety and precision that covering, which extends over every other part, is here superseded by a different substance and a different texture. Now, if either the rule had been necessary, or the deviation from it accidental, this effect would not be seen. When I speak of the rule being necessary, I mean the formation of the skin upon the surface being produced by a set of causes constituted without design, and acting, as all ignorant causes must act, by a general operation. Were this the case, no account could be given of the operation being suspended at the fingers' ends, or on the back part of the fingers, and not on the fore part. On the other hand: if the deviation were accidental, an error, an anomalism-were it any thing elsc than settled by intention-we should meet with nails upon other parts of the body: they would be scattered over the surface, like warts or pimples.*

[^62]3. All the great cavities of the body are enclosed by membranes, except the skull. Why should not the brain be content with the same covering as that which serves for the other principal organs of the body? The heart, the lungs, the liver, the stomach, the bowels, have all soft integuments, and nothing else. The muscular coats are all soft and membranous. I can see a reason for this distinction in the final cause, but in no other. The importance of the brain to life (which experience proves to be immediate), and -the extreme tenderness of its substance, make a solid case more necessary for it, than for any other part; and such a case the hardness of the skull supplies. ${ }^{48}$ When the smallest portion of

[^63]this natural casket is lost, how carefully, yet how imperfectly, is it replaced by a plate of metal! If an anatomist should say, that this bony protection is not confined to the brain, but is extended along the course of the spine, I answer, that he adds strength to the argument. If he remark, that the chest also is fortified by bones, I reply, that I should have alleged this instance myself, if the ribs had not appeared subservient to the purpose of motion as well as of defence. What distinguishes the skull from every other cavity is, that the bony covering completely surrounds its contents, and is calculated, not for motion, but solely for defence. Those hollows, likewise, and inequalities which we observe in the inside of the skull, and which exactly fit the folds of the brain, answer the important design of keeping the substance of the brain steady, and of guarding it against concussions.

CHAPTER XII.

COMPARATIVE ANATOMY.
Whenever we find a general plan pursued, yet with such variations in it as are, in each ease, required by the particular exigency of the subject to which it is applied, we possess, in such a plan and such adaptation, the strongest evidence that can be afforded of intelligence and design : an evidence which the most completely excludes every other hypothesis. If the general plan proceeded from any fixed necessity in the nature of things, how could it accommodate itself to the various wants and uses which it had to serve under different circumstances, and on different occasions? Arkwright's mill was invented for the spinning of cotton. We see it employed for the spinning of wool, flax, and hemp, with such modifications of the original principle, such variety in the same plan, as the texture of those different materials rendered necessary. Of the machine's being put together with design, if it were possible to doubt whilst we saw it only under one mode, and in one form; when we carne to observe it in its different applications, with such changes of structure, such
additions and supplements, as the special and particular use in each case demanded, we could not refuse any longer our assent to the proposi-tion-" that intelligence, properly and strictly so called (including, under that name, foresight, consideration, reference to utility), had been employed, as well in the primitive plan, as in the several changes and accommodations which it is made to undergo."

Very much of this reasoning is applicable to what has been called Comparative Anatomy. In their general economy, in the outlines of the plan, in the construction as well as offices of their principal parts, there exists between all large terrestrial animals a close resemblance. In all, life is sustained, and the body nourished, by nearly the same apparatus. The heart, the lungs, the stomach, the liver, the kidneys, are much alike in all. The same fluid (for no distinction of blood has been observed) circulates through their vessels, and nearly in the same order. The same cause, therefore, whatever that cause was, has been concerned in the origin, has governed the production, of these different animal forms.

When we pass on to smaller animals, or to the inhabitants of a different element, the resemblance becomes more distant and more obscure; but still the plan accompanies us.

And, what we can never enough commend, and which it is our business at present to exemplify, the plan is attended, through all its varieties and deflections, by subserviences to special occasions and utilities.
I. The covering of different animals (though whether I am correct in classing this under their anatomy, I do not know) is the first thing which presents itself to our observation; and is, in truth, both for its variety and its suitableness to their several natures, as much to be admired as any part of their structure. We have bristles, hair, wool, furs, feathers, quills, prickles, scales; yet in this diversity both of material and form, we cannot change one animal's coat for another, without evidently changing it for the worse; taking care, however, to remark, that these coverings are, in many cases, armour as well as clothing; intended for protection as well as warmth.

The human animal is the only one which is naked, and the only one which can clothe itself. This is one of the properties which renders him an animal of all climates, and of all seasons. He can adapt the warmth or lightness of his covering to the temperature of his habitation. Had he been born with a fleece upon his back, although he might have been comforted by its warmth in
high latitudes, it would have oppressed him by its weight and heat, as the species spread towards the equator.

What art, however, does for men, nature has, in many instances, done for those animals which are incapable of art. Their clothing, of its own accord, changes with their necessitics. This is particularly the case with that large tribe of quadrupeds which are covered with furs. Every dealer in hare-skins and rabbit-skins knows how much the fur is thickened by the approach of winter. It seems to be a part of the same constitution and the same design, that wool, in hot countries, degenerates, as it is called, but in truth (most happily for the animal's ease) passes into hair; whilst, on the contrary, that hair, in the dogs of the polar regions, is turned into wool, or something very like it. To which may be referred, what naturalists have remarked, that bears, wolves, foxes, hares, which do not take the water, have the fur much thicker on the back than the belly; whereas in the beaver it is the thickest upon the belly; as are the feathers in water-fowl. We know the final cause of all this, and we know no other.

The covering of birds cannot escape the most vulgar observation: its lightness, its smoothness, its warmth-the disposition of the feathers all
inclined backward, the down about their stem, the overlapping of their tips, their different configuration in different parts, not to mention the variety of their colours, constitute a vestment for the body, so beautiful, and so appropriate to the life which the animal is to lead, as that, I think, we should have had no conception of any thing equally perfect, if we had never seen it, or can now imagine any thing more so. Let us suppose (what is possible only in supposition) a person who had never seen a bird to be presented with a plucked pheasant, and bid to set his wits to work how to contrive for it a covering which shall unite the qualities of warmth, levity, and least resistance to the air, and the highest degree of each; giving it also as much of beauty and ornament as he could afford. He is the person to behold the work of the Deity, in this part of his creation, with the sentiments which are due to it.

The commendation which the general aspect of the feathered world seldom fails of exciting will be increased by further examination. It is one of those cases in which the philosopher has more to admire than the common observer. Every feather is a mechanical wonder. If we look at the quill, we find properties not easily brought together, strength and lightness. I know few things more
remarkable than the strength and lightness of the very pen with which I am writing. If we cast our eye to the upper part of the stem, we see a material, made for the purpose, used in no other class of animals, and in no other part of birds, tough, light, pliant, clastic. The pith also which feeds the feathers is, amongst animal substances, sui generis-neither bone, flesh, membrane, nor tendon*.

But the artificial part of a feather is the beard, or, as it is sometimes, I believe, called, the vane. By the beards are meant what are fastened on each side of the stem, and what constitute the breadth of the feather, what we usually strip off from one side or both when we make a pen. The separate pieces, or laminæ, of which the beard is composed, are called threads, sometimes filaments or rays. Now, the first thing which an attentive observer will remark is, how much stronger the beard of the feather shows itself to be when pressed in a direction perpendicular to its plane, than when rubbed, either up or down, in the line of the stem; and he will soon discover the structure which occasions this difference, viz., that the

[^64]laminæ whereof these beards are composed are flat, and placed with their flat sides towards each other, by which means, whilst they easily bend for the approaching of each other, as any one may perceive by drawing his finger ever so lightly upwards, they are much harder to bend out of their plane, which is the direction in which they have to encounter the impulse and pressure of the air, and in which their strength is wanted and put to the trial.

This is one particularity in the structure of a feather: a second is still more extraordinary. Whoever examines a feather cannot help taking notice, that the threads or laminæ of which we kave been speaking, in their natural state, unitethat their union is something more than the mere apposition of loose surfaces-that they are not, parted asunder without some degree of forcethat, nevertheless, there is no glutinous cohesion between them-that, therefore, by some mechanical means or other, they catch or clasp among themselves, thereby giving to the beard or vana its closeness and compactness of texture. Nor is this all: when two laminæ which have been sepa-: rated by accident or force are brought together again, they immediately reclasp; the connexion, whatever it was, is perfectly recovered, and the beard of the feather becomes as smooth and firm
as if nothing had happened to it. Draw your finger down the feather, which is against the grain, and you break, probably, the junction of some of the contiguous threads; draw your finger up the feather, and you restore all things to their former state. This is no common contrivance; and now for the mechanism by which it is effected. The threads or laminæ above mentioned are interlaced with one another; and the interlacing is performed by means of a vast number of fibres or teeth, which the laminæ shoot forth on each side, and which hook and grapple together. A friend of mine counted fifty of these fibres in one-twentieth of an inch. These fibres are crooked, but curved after a different manner; for those which proceed from the thread on the side towards the extremity of the feather are longer, more fiexible, and bent downward; whereas thowe which proceed from the side towards the beginning or quill end of the feather are shorter, firmer, and turn upwards. The process, then, which takes place is as follows: when two laminæ are preased together, so that these long fibres are forced far enough over the short ones, their crooked parts fall into the cavity made by the crooked parts of the others, just as the latch that is fastened to a door enters into the cavity of the catch fixed to the door-post, and there hooking itself, fastens the
door; for it is properly in this manner that one thread of a feather is fastened to the other.
This admirable structure of the feather, which it is easy to see with the microscope, succeeds perfectly for the use to which nature has designed it, which use was, not only that the laminæ might be united, but that, when one thread or lamina has been separated from another by some external violence, it might be reclasped with sufficient facility and expedition*.

In the ostrich, this apparatus of crotchets and fibres, of hooks and teeth, is wanting; and we see the consequence of the want. The filaments hang loose and separate from one another, forming only a kind of down, which constitution of the feathers, however it may fit them for the flowing honours of a lady's head-dress, may be reckoned an imperfection in the bird, inasmuch as wings composed of these feathers, although they may greatly assist it in running, do not serve for flight.

But, under the present division of our subject, our business with feathers is as they are the covering of the bird. And herein a singular circumstance occurs. In the small order of birde

[^65]which winter with us, from a snipe downwards, let the external colour of the feathers be what it will, their Creator has universally given them a bed of black down next their bodies. Black, we know, is the warmest colour; and the purpose here is, to keep in the heat arising from the heart and circulation of the blood . It is further like-

[^66]wise remarkable, that this is not found in larger birds; for which there is also a reason. Small birds are much more exposed to the cold than large ones, forasmuch as they present, in proportion to their bulk, a much larger surface to the air. If a turkey were divided into a number of wrens (supposing the shape of the turkey and the wren to be similar), the surface of all the wrens would exceed the surface of the turkey in the proportion of the length, breadth (or of any homologous line) of a turkey to that of a wren, which would be, perhaps, a proportion of ten to one. It was necessary, therefore, that small birds should be more warmly clad than large ones; and this seems to be the expedient by which that exigency is provided for.
II. In comparing different animals, I know no part of their structure which exhibits greater variety, or, in that variety, a nicer accommodation to their respective conveniency than that which is seen in the different formations of their mouths. Whether the purpose be the reception of aliment merely, or the catching of prey, the picking up of
sponds with philosophical experiments-a white surface absorbing the least, and radiating the least, it should therefore tend to confine the vital heat within the animal, and carry it off slowly to the atmosphere.
seeds, the cropping of herbage, the extraction of juices, the suction of liquids, the breaking and grinding of food, the taste of that food, together with the respiration of air, and, in conjunction with it, the utterance of sound; these various offices are assigned to this one part, and, in different species, provided for as they are wanted by its different constitution. In the human species, forasmuch as there are hands to convey the food to the mouth, the mouth is flat, and by reason of its flatness, fitted only for reception; whereas the projecting jaws, the wide rictus, the pointed teeth of the dog and his affinities, enable them to apply their mouths to snatch and seize the objects of their pursuit. The full lips, the rough tongue, the corrugated cartilaginous palate, the broad cutting teeth of the ox, the decr, the horse, and the sheep qualify this tribe for browsing upon their pasture; either gathering large mouthfuls at once, where the grass is long, which is the case with the ox in particular, or biting close where it is short, which the horse and the sheep are able to do in a degree that one could hardly expect. The retired under-jaw of a swine works in the ground, after the protruding snout, like a prong or plough-share, has made its way to the roots upon which it feeds. A conformation so happy was not the gift of chance.

In birds, this organ assumes a new character; new both in substance and in form, but in both wonderfully adapted to the wants and uses of a distinct mode of existence. We have no longer the fleshy lips, the teeth of enamelled bone; but we have, in the place of these two parts, and to perform the office of both, a hard substance (of the same nature with that which composes the nails, claws, and hoofs of quadrupeds), cut out into proper shapes, and mechanically suited to the actions which are wanted. The sharp edge and tempered point of the sparrow's bill picks almost every kind of seed from its concealment in the plant, and not only so, but hulls the grain, breaks and shatters the coats of the seed, in order to get at the kernel. The hooked beak of the ㄴ 2
hawk tribe separates the flesh from the bones of the animals which it feeds upon, almost with the cleanness and precision of a dissector's knife. The butcher-bird transfixes its prey upon the spike of a thorn whilst it picks its bones. In some birds of this class we have the cross bill, i.e., both the upper and lower bill hooked, and their tips crossing. The spoon bill enables the goose to graze, to collect its food from the bottom of pools, or to seek it amidst the soft or liquid substances with which it is mixed. The long tapering bill of the snipe and woodcock penetrates still deeper into moist earth, which is the bed in which the food of that species is lodged. This is exactly the instrument which the animal wanted. It did not want strength in its bill, which was inconsistent with the slender form of the animal's neck, as well as unnecessary for the kind of aliment upon which it subsists; but it wanted length to reach its object ${ }^{51}$.

[^67]But the species of bill which belongs to the birds that live by suction deserves to be described
heron, the bird throws itself upon its back, and, retracting its long neck, suddenly darts it out with a force which strikes the bill deep into the dog. If you hold

your hat towards the bird, the bill will be struck quite through it. In contending with the hawk, when the latter is spitted, it is not by the rapid descent of the hawk, but by the force with which the heron drives its bill.

The strength of the bill of the parrot, and that of all birds which break the stones of fruit, or nuts, or hard seeds, is in another direction : the bill is hooked, yet is differently formed from that of the carnivorous bird. The intention is, in the first place, that the point shall play vertically, which, with the strengthening of successive layers near the point, enables it to break hard materials; and secondly, that by this form the nut or seed may be brought nearer the joining or articulation of the jaw, which gives the same advantage that we
in its relation to that office. They are what naturalists call serrated or dentated bills; the inside of them, towards the edge, being thickly set with parallel or concentric rows of short, strong, sharppointed prickles. These, though they should be called teeth, are not for the purpose of mastication, like the teeth of quadrupeds; nor yet, as in fish, for the scizing and retaining of their prey; but for a quite different use. They form a filtre. The duck by means of them discusses the mud;
have when we pat a nut nearer the joint of the nutcracker, that is, nearer the fulcrum.

One disadvantage of this form and shortness of the bill would be, that the mandibles could not open wide enough to take in a large seed; but it is provided that the upper mandible shall move upon the skull as well as the lower one, a subject which has not escaped our author's attention.

The form of the bill of the cross-bill, which he mentions, looks like an imperfection, but is attended with real advantages. It is not for crushing, but rather for splitting up a seed into halves, and tearing the cones of the fir-tree.

One of the most curious provisions is in the bill of the sea-crow. The mandibles are compressed into the form of simple laminæ, and the lower mandible projects beyond the upper one; so that, as he skims along the water, he dips his bill and lifts his food by the most appropriate instrument.
examining with great accuracy the puddle, the brake, every mixture which is likely to contain her food. The operation is thus carried on:-The

liquid or semi-liquid substances in which the animal has plunged her bill, she draws, by the action of her lungs, through the narrow interstices which lie between these teeth, catching, as the stream passes across her beak, whatever it may happen to bring along with it that proves agreeable to her choice, and easily dismissing all the rest. Now, suppose the purpose to have been, out of a mass of confused and heterogeneous substances, to separate for the use of the animal, or rather to enable the animal to separate for its own, those few partieles which suited its taste and digestion, what more artificial or more commodious instrument of selection could have been given to it than
this natural filtre? It has been observed also (what must enable the bird to choose and distinguish with greater acuteness, as well, probably, as what greatly increases its luxury) that the bills of this species are furnished with large nerves, that they are covered with a skin, and that the nerves run down to the very extremity. In the curlew, woodcock, and snipe, there are three pairs of nerves, equal almost to the optic nerve in thickness, which pass first along the roof of the mouth, and then along the upper chap down to the point of the bill, long as the bill is ${ }^{\text {sin }}$.

But to return to the train of our observations. The similitude between the bills of birds and the mouths of quadrupeds is exactly such as, for the sake of the argument, might be wished for. It is near enough to show the continuation of the same plan: it is remote enough to exclude the supposition of the difference being produced by action or use. A more prominent contour, or a wider gap, might be resolved into the effect of continued efforts, on the part of the species, to thrust out the mouth or open it to the stretch. But by what course of action, or exercise, or en-

[^68]deavour, shall we get rid of the lips, the gums, the teeth, and acquire in the place of them pincers of horn? By what habit shall we so completely change, not only the shape of the part, but the substance of which it is composed? The truth is, if we had seen no other than the mouths of quadrupeds, we should have thought no other could have been formed: little could we have supposed that all the purposes of a mouth furnished with lips and armed with teeth could be answered by an instrument which had none of these-could be supplied, and that with many additional advantages, by the hardness, and sharpness, and figure of the bills of birds. Everything about the animal mouth is mechanical. The teeth of fish havetheir points turned backward, like the teeth of a wool or cotton card. The teeth of lobsters work one against another, like the sides of a pair of shears. In many insects, the mouth is converted into a pump or sucker, fitted at the end sometimes with a wimble, sometimes with a forceps; by which double provision, viz., of the tube and the penctrating form of the point, the insect first bores through the integuments of its prey, and then extracts the juices. And what is most extraordinary of all, one sort of mouth, as the occasion requires, shall be changed into another sort. The caterpillar could not live without teeth; in
several species the batterfly formed from it could not use them. The old toeth, therefore, are cant off with the exurise of the grub; a new and totrilly different apparatus assumes their place in the fy. Amid these novelties of form, we sometimes forget that it is all the while the animal's mouth; that, whether it be lips, or teeth, or bill, or beak, or shears, or pump, it is the same part divervified; snd it is also remarkable, that, under all the varieties of configuration with which we are acquainted, and which are very great, the organs of taste and smelling are situated near each other.
III. To the mouth adjoins the gallet: in this part also, comparative anatomy discovers a difference of structure adapted to the differeat necessities of the animal. In brutes, because the posture of their neck conduces little to the passage of the aliment, the fibres of the gullet which act in this business run in two close spiral lines, crossing each other : in mon these fibres ran only a little obliquely from the upper end of the cesophagus to the stomach, into which, by a gentle contraction, they casily transmit the descending morsels-that is to say, for the more laborious deghatition of animals whick thrust their food up instead of down, and also through a longer passage, a proportionably more powerful apparatus of muscles is provided-more powerful, not mercly by the
strength of the fibres, which might be attribated to the greater exercise of their force, but in their collocation, which is a determinate circumstance, and must have been original.
IV. The gullet leads to the insestines: here, likewise, as before, comparimg quadrupeds with man, under a general similitude we meet with appropriate differences. The valvule comniventes, or, as they are by some called, the semi-lunar valven, found in the human intestine, are wanting in that of brutes. These are wrinkles or plates of the innermost coat of the guts, the effect of which is to retard the progress of the food through the alimentary canal. It is easy to understand how much more necessary such a provision may be to the body of an animal of an erect posture, and in which, consequently, the weight of the food is added to the action of the intestine, than in that of a quadruped, in which the course of the food, from its entrance to its exit, is nearly horizontal; but it is impossible to assign any cause, except the final cause, for this distinction actually taking place. So far as depends upon the action of the part, this structure was more to be expected in a quadruped than in a man. In truth, it must in both have been formed, not by action, but in direct opposition to action and to pressure; but the opposition which would arise from pressure is
greater in the upright trunk than in any other. That theory, therefore, is pointedly contradicted by the example before us. The structure is found where its generation, according to the method by which the theorist would have it generated, is the most difficult; but, observe, it is found where its effect is most useful.

The different length of the intestines in carnivorous and herbivorous animals has been noticed on a former occasion. The shortest, I believe, is that of some birds of prey, in which the intestinal canal is little more than a straight passage from the mouth to the vent. The longest is in the deer-kind. The intestines of a Canadian stag, four feet high, measured ninety-six feet*. The intestine of a sheep, unravelled, measured thirty times the length of the body. The intestine of a wild cat is only three times the length of the body. Universally, where the substance upon which the animal feeds is of slow concoction, or yields its chyle with more difficulty, there the passage is circuitous and dilatory, that time and space may be allowed for the change and the absorption which are necessary. Where the food is soon dissolved, or already half assimilated, an unnecessary or perhaps hurtful detention is avoided, by giving to it a shorter and a readier route.

[^69]V. In comparing the bones of different animals, we are struck, in the bones of birds, with a propriety which could only proceed from the wisdom of an intelligent and designing Creator. In the bones of an animal which is to fly, the two qualities required are strength and lightness. Wherein, therefore, do the bones of birds (I speak of the cylindrical bones) differ in these respects from the bones of quadrupeds? In three properties: first, their cavities are much larger in proportion to the weight of the bone than in those of quadrupeds; secondly, these cavities are empty; thirdly, the shell is of a firmer texture than is the substance of other bones. It is easy to observe these particulars even in picking the wing or leg of a chicken. Now the weight being the same, the diameter, it is evident, will be greater in a hollow bone than in a solid one, and with the diameter, as every mathematician can prove, is increased, cateris paribus, the strength of the cylinder or its resistance to breaking. In a word, a bone of the same weight would not have been so strong in any other form; and to have made it heavier would have incommoded the animal's flight. Yet this form could not be acquired by use, or the bone become hollow or tubular by exercise. What appetency could excavate a bone?
VI. The lungs also of birds, as compared with the lungs of quadrupeds, contain in them a prorimion distinguishingly calculated for this same parpose of levitation, namely, a commanaication (not found in other kinds of animals) between the airvessels of the lungs and the cavities of the body; so that, by the intromission of air from one to the other (at the will, as it should seem, of the aximal), ita body can be occasionally puffed out, and ins tendency to dencend in the air, or its specific gravity, made less. The bodies of birds are blown up from their lungs (which no other animal bodica are), and thus rendered buoyant*.
VII. All birds are oxiparous. This hikewise carries on the work of gestation with as little increase as possible of the weight of the body. A gravid uterus would have been a troublesome burden to a bird in its flight. The advantage in this respect of an oviparous procreation is, that whidst the whole brood are hatched together, the egga are excluded singly, and at considerable intervals. Ten, fifteen, or twenty young birds may be produced in one cletch or covey, yet the parent bird

[^70]have never been encumbered by the load of more than one full-grown egg at one time ${ }^{\text {u }}$.
VIII. A principal topic of comparison between sumals is in their instruments of motion. These cone before us under three divisions-feet, wings, and fins. I desire any man to say which of the three is best fitted for its use; or whether the same consummate art be not conspicuous in them all. The constitution of the elements in which the motion is to be performed is very different. The animal action must necessarily follow that constitation. The Creator, therefore, if we might so speak, had to prepare for different situations, for different difficulties; yet the purpose is accomplished not less successfully in one case than in the other. And as between wings and the corresponding limbs of quadrupeds, it is accomplished without deserting the general idea. The idea is modified, not deserted. Strip a wing of its feathers, and it bears no obscure resemblance to the fore-leg of a quadruped. The articulations at the shoulder and the cubitus are much alike; and,

[^71]what is a closer circumstance, in both cases the upper part of the limb consists of a single bone, the lower part of two.

But, fitted up with its furniture of feathers and quills, it becomes a wonderful instrument, more artificial than its first appearance indicates, though that be very striking : at least, the use which the bird makes of its wings in flying is more complicated and more curious than is generally known. One thing is certain, that if the flapping of the wings in flight were no more than the reciprocal motion of the same surface in opposite directions, either upwards and downwards, or estimated in any oblique line, the bird would lose as much by one motion as she gained by another. The skylark could never ascend by such an action as this; for, though the stroke upon the air by the underside of her wing would carry her up, the stroke from the upper-side, when she raised her wing again, would bring her down. In order, therefore, to account for the advantage which the bird derives from her wing, it is necessary to suppose that the surface of the wing, measured upon the same plane, is contracted, whilst the wing is drawn up; and let out to its full expansion, when it descends upon the air for the purpose of moving the body by the re-action of that element. Now, the form and structure of the wing, its external
convexity, the disposition, and particularly the over-lapping, of its larger feathers, the action of the muscles and joints of the pinions, are all adapted to this alternate adjustment of its shape and dimensions. Such a twist, for instance, or semirotatory motion, is given to the great feathers of the wing, that they strike the air with their flat side, but rise from the stroke slantwise. The turning of the oar in rowing, whilst the rower advances his hand for a new stroke, is a similar operation to that of the feather, and takes its name from the resemblance. I believe that this faculty is not found in the great feathers of the tail. This is the place also for observing that the pinions are so set upon the body as to bring down the wings not vertically, but in a direction obliquely tending towards the tail; which motion, by virtue of the common resolution of forces, does two things at the same time-supports the body in the air, and carries it forward. The steerage of a bird in its flight is effected partly by the wings, but in a principal degree by the tail. And herein we meet with a circumstance not a little remarkable. Birds with long legs have short tails; and in their flight place their legs close to their bodies, at the same time stretching them out backwards, as far as they can. In this position the legs extend beyond the rump,
and become the rudder; supplying that steerage which the tail could not.

From the wings of birds, the transition is easy to the fins of fish. ${ }^{*}$ They are both, to their respective tribes, the instruments of their motion; but, in the work which they have to do, there is a considerable difference, founded in this circumstance. Fish, unlike birds, have very nearly the same specific gravity with the element in which they move. In the case of fish, therefore, there is little or no weight to bear up; what is wanted, is only an impulse sufficient to carry the body through a resisting medium, or to maintain the posture, or to support or restore the balance

[^72]of the body, which is always the most unsteady where there is no weight to sink it. For these offices, the fins are as large as necessary, though much smaller than wings, their action mechanical, their position, and the muscles by which they are moved, in the highest degree convenient. The following short account of some experiments upon fish, made for the purpose of ascertaining the use of their fins, will be the best confirmation of what we assert. In most fish, besides the great fin, the tail, we find two pairs of fins upon the sides, two single fins upon the back, and one upon the belly, or rather between the belly and the tail. The balancing use of these organs is proved in this manner. Of the large-headed fish, if you cut off the pectoral fins-i.e., the pair which lies close behind the gills-the head falls prone to the bottom: if the right pectoral fin only be cut off, the fish leans to that side; if the ventral fin on the same side be cut away, then it loses its equilibrium entirely; if the dorsal and ventral fins be cut off, the fish reels to the right and left. When the firsh dies, that is, when the fins cease to play, the belly turns npwards. The use of the same parts for motion is seen in the following observation upon them when put in action. The pectoral, and more particularly the ventral fins, serve to raise and depress the fish; when the fish desires to have a retrograde motion, a stroke for-
ward with the pectoral fin effectually produces it; if the fish desire to turn either way, a single blow with the tail the opposite way sends it round at once; if the tail strike both ways, the motion produced by the double lash is progressive, and enables the fish to dart forward with an astonishing velocity.* The result is, not only in some cases the most rapid, but in all cases the most gentle, pliant, casy, animal motion with which we are acquainted. However, when the tail is cut off, the fish loses all motion, and gives itself up to where the water impels it. The rest of the fins, therefore, so far as respects motion, seem to be merely subsidiary to this. In their mechanical use, the anal fin may be reckoned the keel; the ventral fins, out-riggers; the pectoral muscles, the oars; and if there be any similitude between these parts of a boat and a fish, observe, that it is not the resemblance of imitation, but the likeness which arises from applying similar mechanical means to the same purpose.

We have seen that the tail in the fish is the great instrument of motion. Now, in cetaceous or warm-blooded fish, which are obliged to rise every two or three minutes to the surface to take breath, the tail, unlike what it is in other fish, is horizontal; its stroke, consequently, perpendicular to the horizon, which is the right direction

[^73]for sending the fish to the top, or carrying it down to the bottom. ${ }^{\text {se }}$
${ }^{58}$ The poising and motion of fishes in the water has interested some of our greatest philosophers, as Galileo and Borelli. It is estimated that fishes make their way through a medium which resists nine hundred times more than the atmosphere. But then, as it offers a certain resistance to their progress, it resists also the motion of their tail and fins by which they have their power of progression. The breadth of the tail of fishes, compared with that of their fins, and its muscularity and power, declare what is affirmed to us upon authority-that the tail is the great instrument of their progression; and we can see that when the trout darts away, the force of his motion lays down the fins close upon his body. But the fins direct him, as outriggers, and the pectoral fins especially, by raising or depressing the head, give direction to the whole body under the force of the tail. The lateral fins, and particularly the pectoral fins, also sustain him in the right position in the water: without the co-operation of there with the tail, the fish would move like a boat sculled by one oar at the stern. As the digestion of fishes, as well as that of other animale, is attended with the extrication of air, and as the intestines are below the centre, the belly would be turned up but for the action of these lateral fins: as we see takes place in a dead fish. The tail and fins are the instruments of motion; but the incessant action of the muscles which move these is a just matter of admiration. If a fish move with his bead down the stream,

Regarding animals in their instruments of motion, we have only followed the comparison
he must move more rapidly than the water, or the water gets under the operculum of the gills, and chokes him. He lies, therefore, continually with his head to the stream. We may see a trout lying for hours stationary, whilst the stream is running past him; and they seem to remain so for day: and nights. In salmon-fishing, the fly is played upon the broken water, in the midst of the torrent, and there the fish shows himself rising from a part of the river where men could not preserve their footing, though assisted by poles, or by locking their arms together. When the salmon leaps, he makes extraordinary exertions. Just under the cataract, and against the stream, he will rush for some yards, and rise out of the spray six or eight feet; and amidst the noise of the water, they may be heard striking against the rock with a sound like the clapping of the hands. If they find a temporary lodgment on the shelving rock, they lie quivering and preparing for another somerset, until they reach the top of the cataract. This exhibits not only the power of their musclea, assisted by the elasticity of their bones, but the force of instinct by which they are led to seek the shallow streams for depositing their eggs.

The porpoise will swim round and round a ship which is sailing at fourteen miles an hour: a thing almost as surprising as the fly circling round the horse's ear for a whole stage.

To all this may be added, that the solid which mathematicians have discovered, by refined application of the
through the first great division of animals into beasts, birds, and fish. If it were our intention to pursue the consideration farther, I should take in that generic distinction amongst birds, the webfoot of water-fowl. It is an instance which may be pointed out to a child. The utility of the web to water-fowl, the inutility to land-fowl, are so obvious, that it seems impossible to notice the difference without acknowledging the design. I am at a loss to know how those who deny the agency of an intelligent Creator dispose of this example.

There is nothing in the action of swimming, as carried on by a bird upon the surface of the water, that should generate a membrane between the toes. As to that membrane, it is an exercise of constant resistance. The only supposition I can think of is, that all birds have been originally

[^74]water-fowl, and web-footed; that sparrows, hawks, linnets, \&c., which frequent the land, have, in process of time, and in the course of many generations, had this part worn away by treading upon hard ground. To such evasive assumptions must atheism always have recourse! And after all, it confesses that the structure of the feet of birds, in their original form, was critically adapted to their original destination! The web-feet of amphibious quadrupeds, seals, otters, \&c., fall under the same observation.
IX. The five senses are common to most large animals; nor have we much difference to remark in their constitution, or much, however, which is referable to mechanism.

The superior sagacity of animals which hunt their prey, and which, consequently, depend for their livelihood upon their nose, is well known in its use; but not at all known in the organization which produces it.

The external ears of beasts of prey, of lions, tigers, wolves, have their trumpet-part, or concavity, standing forwards, to seize the sounds which are before them-viz., the sounds of the animals which they pursue or watch. The ears of animals of flight are turned backward, to give notice of the approach of their enemy from behind, whence he may steal upon them unseen. This is a critical distinction, and is mechanical; but it
may be suggested, and, I think, not without probability, that it is the effect of continual habit.

The eyes of animals which follow their prey by night, as cats, owls, \&c., possess a faculty not given to those of other species, namely, of closing the pupil entirely. The final cause of which seems to be this:-It was necessary for such animals to be able to descry objects with very small degrees of light. This capacity depended upon the superior sensibility of the retina; that is, upon its being effected by the most feeble impulses. But that tenderness of structure, which rendered the membrane thus exquisitely sensible, rendered it also liable to be offended by the access
of atronger degrees of light. The contractile range therefore of the pupil is increased in these animals, 80 as to enable them to close the aperture entirely, which includem the power of diminishing it in every degree; whereby at all times such portions, and only such portioms, of light are admitted, as may be received without injury to the sense.

[The figure represents the iris of a lion. B B, the atraight on converging fibres; C, the fibres which encircle the inner margin of the iris.]

There appears to be also in the figure, and in some properties of the pupil of the eye, an appropriate relation to the wants of different anmaals. In horses, oxen, goats, sheep, the pupil of the eye is elliptieal ; the transverse axis being horizontal; by which structure, although the eye be placed on the side of the head, the anterior elongation of the pupit catches the forward rays, or those which come from objects immediately in front of the animal's face.

CHAPTER XII.

PECULIAR ORGANISATIONS.
I believe that all the instances which I shall collect under this title might, consistently encugh with technical language, have been placed under the head of Cosaparative Anatomy. But there appears to me an impropriety in the use which that term hath obtained; it being, in some sort, absurd to call that a case of comparative anatomy, in whieh there is nothing to "compare;" in which a conformation is found in one animal, which hath nothing properly answering to it in another. Of this kind are the examples which I have to propose in the present chapter; and the reader will see that, though some of them be the strongest, perhaps, he will meet with under any division of our subject, they must necessarily be of an uncorsected and miscellaneous nature To dispone them, however, into some sort of order, we will notice, first, particularities of structure which belong to quadrupeds, birds, and fish, as such, or to many of the kinds included in these classes of animals; and then, such particularities as are confined to one or tro species.
I. Along each side of the neck of large quadrupeds runs a stiff robust cartilage, which butchers call the pax-wax. No person can carve the upper end of a crop of beef without driving his knife against it. It is a tough, strong, tendinous substance, braced from the head to the middle of the back: its office is to assist in supporting the weight of the head. It is a mechanical provision, of which this is the undisputed use; and it is sufficient, and not more than sufficient, for the purpose which it has to execute. The head of an ox or a horse is a heavy weight, acting at the end of a long lever (consequently with a great purchase), and in a direction nearly perpendicular to the joints of the supporting neck. From such a force, so advantageously applied, the bones of the neck would be in constant danger of dislocation, if they were not fortified by this strong tape. No such organ is found in the human subject, because, from the erect position of the head (the pressure of it acting nearly in the direction of the spine), the junction of the vertebra appears to be sufficiently secure without it. This cautionary expedient, therefore, is limited to quadrupeds: the care of the Creator is scen where it is wanted ${ }^{*}$.

[^75]II. The oil with which birds preen their feathers, and the organ which supplies it, is a specific provision for the winged creation. On each side of the rump of birds is observed a small nipple, yielding upon pressure a butter-like substance, which the bird extracts by pinching the pap with its bill. With this oil or ointment, thus procured, the bird dresses his coat; and repeats the action as often as its own sensations teach it that it is in any part wanted, or as the excretion may be suf-
spine: a range of peculiar ligaments, the " ligamenta subfava," run along the course of the spine, and are highly elastic. The ligamentum nuche is that ligament which runs from the prominence of the spine between the shoulders to the back of the head; and the student who hangs his head over his book enjoys the advantage of this elastic support: so that it is strictly a matter comparative; we may trace it with increasing strength from the ligament that sustains a man's head, to that which, like the spring of a steelyard, weighs against the immense head of the elephant.
These elastic ligaments vary with the length and motion of the neck. It would be tedious to describe their varieties in the camel, cameleopard, ostrich, \&c. We may be satisfied with the fact, that the elastic ligament is a structure extensively used in the animal textures, generally coming in aid of the muscles, or as a substitute for them.
ficient for the expense. The gland, the pap, the nature and quality of the excreted substance, the manner of obtaining it from its lodgment in the body, the application of it when obtained, form, collectively, an evidence of intention which it is not easy to withstand. Nothing similar to it is found in unfeathered animals. What blind cosatus of nature should produce it in birds; should not produce it in beasts?
III. The air-bladder also of a fish affords a plain and direct instance, not only of contrivance, but strictly of that species of contrivance which we denominate mechanical. It is a philosophical apparatus in the body of an animal. The principle of the contrivance is clear: the application of the principle is also clear. The use of the organ to sustain, and, at will, also to elevate, the body of the fish in the water, is proved by observing, what has been tried, that, when the bladder is burst, the fish grovels at the bottom; and also, that flounders, soles, skates, which are without the air-bladder, seldom rise in the water, and that with effort. The manner in which the purpose is attained, and the suitableness of the means to the end, are not difficult to be apprehended. The rising and sinking of a fish in water, so far as it is independent of the stroke of the fins and tail, can only be regulated by the specific gravity of the body. When the bladder,
contained in the body of the firh, is contracted, which the fish probably possesses a muscular pewer of doing, the bulk of the fish is contracted along with it ; whereby, since the absolute weight remains the same, the specific gravity, which is the sinking force, is increased, and the fish dosceads: on the contrary, when, in consequence of the relaxation of the muscles, the elasticity of the enclosed and now compressed air restores the dimensiqns of the bladder, the tendency downwards becomes proportionably less than it wam before, or is turned into a contrary tendency. These are known properties of bodies immersed in a fluid. The enamelled figures, or little glase bubbles, in a jar of water, are made to rise and fall by the same artifice. A diving-machine might be made to ascend and descend, upon the like principle; mamely, by introducing into the inside of it an air-vessel, which, by its comtraction, would diminish, and by its distension enlarge, the bulk of the machine itself, and thrus render it specifically heavier or specifically lighter than the water which surrounds it. Suppose this to be done, and the artist to solicit a patent for his invention: the inspectors of the model, whatever they might think of the use or value of the contrivance, could by no possibility entertain a question in their minds, whether it were a contrivance or not. No reason has ever been as-
signed,-no reason can be assigned, why the conclusion is not as certain in the fish as it is in the machine; why the argument is not as firm in one case as the other.

It would be very worthy of inquiry, if it were possible to discover, by what method an animal which lives constantly in water is able to supply a repository of air. The expedient, whatever it be, forms part, and perhaps the most curious part of the provision. Nothing similar to the air-bladder is found in land-animals; and a life in the water has no natural tendency to produce a bag of air. Nothing can be farther from an acquired organisation than this is ${ }^{58}$.

[^76]These examples mark the attention of the Creator to the three great kingdoms of his animal creation, and to their constitution as such. The example which stands next in point of generality, belonging to a large tribe of animals, or rather to various species of that tribe, is the poisoncus tooth of serpents.
I. The fang of a viper is a clear and curious example of mechanical contrivance. It is a perforated tooth, loose at the root : in its quiet state, lying down flat upon the jaw, but furnished with a muscle, which, with a jerk, and by the pluck, as it were, of a string, suddenly erects it. Under the tooth, close to its root, and communicating with the perforation, lies a small bag containing the venom. When the fang is raised, the closing of the jaw presses its root against the bag under-
especially of their head, and which it has been observed is bestowed in order to ensure their readily coming to the surface to breathe when their natural powers are weakened. For the same reason, that they may raise their heads to the surface, their tails are horizontal. In the jelly-fish, those soft animals which float in sheltered estuaries (the physsophora), there is an air-vessel which they can fill and empty, by which means they rise or sink at pleasure. Others (the villela) raise a sail. Some of this class propel themselves by taking in water, and suddenly rejecting it.

$$
\circ 3
$$

moath; and the force of this compression sends out the fluid with a considerable impetus through the tube in the middle of the tooth. What more unequivocal or effectual apparatus could be derised for the double purpose of at once inflicting the wound and injecting the poison? Yet, though lodged in the mouth, it is so constituted, as, in ite inoffensive and quiescent state, not to interfere with the animal's ordinary office of receiving ite food. It has been observed also, that none of the harmless serpents, the bback snake, the blind worm, \&cc, have thewe fangs, but teeth of an equal size; not moveable as this is, but fixed into the jaw.
II. In being the property of several different species, the preceding example is resembled by that which I shall next mention, which is the bag of the opossum. This is a mechanical contrivance, most properly so called. The simplicity of the expedient renders the contrivance more obvious than many others, and by no means less certain. A false skin under the belly of the animal forms a pouch, into which the young litter are received at their birth; where they have an easy and constant access to the teats; in which they are transported by the dam from place to place; where they are at liberty to run in and out; and where they find a refuge from surprise and danger. It is their cradle, their asylum, and the machine for
their conveyance. Can the use of this structure be doubted of? Nor is it a mere doubling of the slin; but is a new organ, furnished with bones and muscles of its own. Two bones are placed before the os pubis, and joined to that bone as their base. These suppart and give a fixture to the muscles which serve to open the bag. To these muscles there are antagonists, which serve in the same manner to shat it; and this office they perform so exactly, that, in the living animal, the opening can scarcely be discerned, except when the sides are forcibly drawn asunder*. Is there any action in this part of the animal, any process arising from that action, by which these members could be formed? any account to be given of the formation, except design?
III. As a particularity, yet appertaining to more species than one, and also as strictly mechanical, we may notice a circumstance in the structure of the claws of certain birds. The middle claw of the heron and cormorant is toothed and notched like a saw. These birds are great fishers, and these notches assist them in holding their slippery prey. The use is evident; but the structure such, as cannot at all be accounted for by the effort of the animal, or the exercise of the part. Some other fishing birds have these notches in their bills; and for the same purpose.

[^77]The gannet, or Solend goose, has the side of its bill irregularly jagged, that it may hold its prey the faster. Nor can the structure in this, more than in the former case, arise' from the manner of employing the part. The smooth surfaces, and soft flesh of fish, were less likely to notch the bills of birds, than the hard bodies upon which many other species feed.

We now come to particularities strictly so called, as being limited to a single species of animal. Of these, I shall take one from a quadruped, and one from a bird.
I. The stomach of the camel is well known to retain large quantities of water, and to retain it unchanged for a considerable length of time. This property qualifies it for living in the desert: Let us see, therefore, what is the internal organisation, upon which a faculty so rare and so beneficial depends. A number of distinct sacs or bags (in a dromedary thirty of these have been counted) are observed to lie between the membranes of the second stomach, and to open into the stomach near the top by small square apertures. Through these orifices, after the stomach is full, the annexed bags are filled from it: and the water so deposited is, in the first place, not liable to pass into the intestines; in the second place, is kept separate from the solid aliment; and, in the third place, is out of the reach of the diges-
tive action of the stomach, or of mixture with the gastric juice. It appears probable, or rather certain, that the animal, by the conformation of its muscles, possesses the power of squeezing back this water from the adjacent bags into the stomach, whenever thirst excites it to put this power in action.
II. The tongue of the woodpecker is one of those singularities, which nature presents us with, when a singular purpose is to be answered. It is a particular instrument for a particular use ; and what, except design, ever produces such? The woodpecker lives chiefly upon insects lodged in the bodies of decayed or decaying trees. For the purpose of boring into the wood, it is furnished with a bill straight, hard, angular, and sharp. When, by means of this piercer, it has reached the cells of the insects, then comes the office of its tongue : which tongue is, first, of such a length that the bird can dart it out three or four inches from the bill,-in this respect differing greatly from every other species of bird; in the second place, it is tipped with a stiff, sharp, bony thorn; and, in the third place (which appears to me the most remarkable property of all), this tip is dentated on both sides like the beard of an arrow or the barb of a hook. The description of the part declares its uses. The bird, having exposed the
retreats of the insects by the assistance of its bill, with a motion inconceivably quick, launches out at them this long tongue; tramsixes them upon the barbed needle at the end of it; and thus draws its prey within its mouth. If this be not mechanism, what is? Should it be said, that, by continual eadeavours to shoot out the tongue to the stretch, the woodpecker species may by degrees have lengthened the organ itself, beyond that of other birds, what accoant can be given of its form, of its tip? how, in particular, did it get its barb, its dentation? These barbs, in my opinion, whereever they occur, are decisive proofs of mechaniend contrivance ${ }^{50}$.

[^78]III. I shall add one more example, for the sake of its novelty. It is always an agreeable discovery,
transmits a large branch along the inside of the mandibles: and, as this nerve approaches the extremity, it perforates the bone by innumerable small canuls, so as to be given to the horny covering of the beak, which is thus possessed of a sensibility to fecl in the crevices of the wood, and under the bark; and the woodpecker is enabled by this means to direct the tongue, which our author correctly describes an moving with extraordinary celerity, and with a point like a barbed arrow.

We have represented the dissection of the head of this bird more ascurately in its anatomy than is to be found in books. We offer it because it exhibits a very curious piece of mechanism, adjusted to the tongue, to enable the animal to thruat it out far, and with unusual rapidity. A , is the barbed tongue; B , two slender elastic ligamentous cartilages, of very pecrliar structure and use. On one extremity they are attached to the bone which supports the upper mandible; from this we trace them over the skull down upon the sides of the neck; and, with a large sweep, turning ander the lower mandible, and so continued into the tongue, and not terminating until they reach the horny point. CCC, a long muscle which follows these ligamentous cartilages upon their concave side, arising from the brone of the lower mandible, and so sweeping round with the cartilages and over the skull, to have another fixed point at the upper mandible:

Diglized by Google
when, having remarked in an animal an extraordinary structure, we come at length to find out
these protrude the tongue. Two muscles are seen to arise from the sides of the larynx, which are the opponents of the last, and retract the tongue. Leaving the other parts of the anatomy, we beg the reader's attention to the action of the muscle CCC, which presents one of those curious instances observed in comparative anatomy, of a mechanism adapted to a particular purpose. The tongue is not only thrust out far by this apparatus, but is shot with great rapidity, in correspondence with its barbed point. This effect is produced by the two extremities of the muscle being fixed points, and the fibres of the muscle itself running on the concave side of the cartilaginous bow, so as to form a smaller circle. We require no mathematical demonstration to prove that the tongue must be thrust out to a greater distance than the measure of contraction of the muscle. Let us tie the line of the fishing-rod to its slender top, and pull upon it at the butt: the motion of the top will be very extensive, even when only an inch of the line is drawn through the rings. This is a pretty accurate representation of what takes place by the contraction of this protruding muscle. We have noticed that the upper end of this arch is fixed, the whole motion must therefore be given to the loose extremity in the tonguc; and we cannot but observe that this peculiar arch and muscular ring
on unexpected use for it. The following narriz tive furnishes an instance of this kind. The babyroussa, or Indian hog, a species of wild boar, found in the East Indies, has two bent teeth, more than half a yard long, growing upwards, and (which is the singularity) from the upper jaw. These instruments are not wanted for offence; that service being provided for by two tusks issuing from the under jaw, and resembling those of the common boar: nor does the animal use them for defence. They might seem, therefore, to be both a superfluity and an encumbrance. But observe the event:-the animal sleeps stand-
are adapted for the rapid protrusion of the tangue; whilat its retraction is produced by a common muacle, thatia, \& muscle running in a straight course.

Another curious part of this apparatus is, that a mery large gland, which pours out a glutinous matter, is embraced and compressed by the action of the circular muscle. This viscid secretion bedewing the tongue furnishes an additional means for the bird to pick up insects, such as ants, without the necessity of sticking each with its arrow. Nothing can be more mechanical, or more happily adapted to its purpose, than the whole of this structure, and consequently nothing better suited to strengthen the argument in the text. Indeed it is nat inferior to the means employed for giving rapidity of motion to the membrana nictitans of the eye of the bird.
ing; and, in order to support its head, hooks its upper tusks upon the branches of trees ${ }^{\circ 0}$.

${ }^{\infty 0}$ This notion of the babyroussa sleeping on its feet and hanging by its teeth the while, is a mere fancy. It has arisen from the difficulty of accounting for the teeth, which rise out from the mouth, and turn up before the eyes. The better opinion is, that they guard the eyes in rushing through the thick underwood.

CHAPTER XIV.

PROSPECTIVE CONTRIVANCES.

I can hardly imagine to myself a more distinguishing mark, and, consequently, a more certain proof of design, than preparation,-i.e., the providing of things beforehand, which are not to be used until a considerable time afterwards: for this implies a contemplation of the future, which belongs only to intelligence.

Of these prospective contrivances, the bodies of animals furnish various examples.
I. The human teeth afford an instance, not only of prospective contrivance, but of the completion of the contrivance being designedly suspended. They are formed within the gums, and there they stop; the fact being, that their farther advance to maturity would not only be useless to the new-born animal, but extremely in its way; as it is evident that the act of sucking, by which it is for some time to be nourished, will be performed with more ease both to the nurse and to the infant, whilst the inside of the mouth and
edges of the gums are smooth and soft, than if set with hard-pointed bones. By the time they are wanted the teeth are ready. They have been lodged within the gums for some months past, but detained, as it were, in their sockets, so long as their farther protrusion would interfere with the office to which the mouth is destined. Nature, namely, that intelligence which was employed in creation, looked beyond the first year of the infant's life; yet, whilst she was providing for functions which were after that term to become necessary, was careful not to incommode those which preceded them. What renders it more probable that this is the effect of design, is, that the teeth are imperfect, whilst all other parts of the mouth are perfect. The lips are perfect, the tongue is perfect; the cheeks, the jaws, the palate, the pharynx, the larynx, are all perfect: the teeth alone are not so. This is the fact with respect to the human mouth : the fact also is, that the parts above enumerated are called into use from the beginning; whereas the teeth would be only so many obstacles and annoyances, if they were there. When a contrary order is necessary, a contrary order prevails. In the worm of the beetle, as hatched from the egg, the teeth are the first things which arrive at perfection. The insect begins to gnaw as soon as it escapes from the
shell, theagh its other parts be only gradually advancing to their maturity..

What has been observed of the teeth, is true of the horns of animals; and for the same reasor. The horr of a calf or a lamb does not bud, or at least does not sprout to any considerable length, until the animal be eapable of browsing upon its pasture; because such a substance upon the forehead of the young animal would very much incommode the teat of the dam in the office of giving suck.

But in the case of the teeth-of the human weth at least, the prospective contrivance looks still farther. A succession of crops is provided, and provided from the beginning; a seeond tier being originally formed beneath the first, which do not come into use till several years afterwards. And this double or suppletory provision meets a diffieulty in the mechamism of the mouth, which would have appeared almost insurmountable. The expansion of the jaw (the consequence of the proportionable growth of the animal, and of its skull) necessarily separates the teeth of the first set, however compactly disposed, to a distance from one another, which would be very inconvemient.

[^79]Lit due time, therefore, i. e., when the jaw has attained a great part of its dimensions, a new set of teeth springs up (loosening and pushing out the old ones before them), more exactly fitted to the space which they are to occupy, and rising also in such elose ranks, as to allow for any extension of line which the subsequent enlargement of the head may occasion ${ }^{\text {en }}$.
II. It is not very easy to conceive a more evidently prospective contrivance than that which, in all viviparous animals, is found in the milk of the female parent. At the moment the young animal enters the world there is its maintenance ready for it. The particulars to be remarked in this economy are neither few nor slight. We have, first, the mutritious quality of the fluid, unlike, in this respect, every other excretion of the body; and in which nature hitherto remains

[^80]unimitated, neither cookery nor chemistry having been able to make milk out of grass: we have, secondly, the organ for its reception and retention: we have, thirdy, the excretory duct annexed to that organ : and we have, lastly, the determination of the milk to the breast at the particular juncture when it is about to be wanted. We have all these properties in the subject before us; and they are all indications of design. The last circumstance is the strongest of any. If I had been to guess beforehand, I should have conjectured, that at the time when there was an extraordinary demand for nourishment in one part of the system there would be the least likelihood of a redundancy to supply another part. The advanced pregnancy of the female has no intelligible tendency to fill the breasts with milk. The lacteal system is a constant wonder; and it adds to other causes of our admiration, that the number of the teats or paps in each species is found to bear a proportion to the number of the young. In the sow, the bitch, the rabbit, the cat, the rat, which have numerous litters, the paps are numerous, and are disposed along the whole length of the belly : in the cow and mare, they are few. The most simple account of this, is to refer it to a designing Creator ${ }^{\text {as }}$.

[^81]But in the argument before us, we are entitled to consider not only animal bodies when framed, but the circumstance under which they are framed: and in this view of the subject, the constitution of many of their parts is most strictly prospective.
nature secures the nourishment of the embryon plant, or the chick in the egg. The lobes of a bean or a pea, and of most seeds, consist of a deposit of nutritious matter, and when heat and moisture favour the development of the living property, vessels which are scattered in these lobes or cotyledons commence absorption of the matter, and carry it to the centre of the plant. It is remarkable that these lobes, having thus, in the first instance, supplied the young plant with nutritious matter, change their office, and, rising above the surface, become the first leaves. Thus we see how the nourishment is supplied, until the radicle is pushed down into the earth, and the leaves receive the influence of the atmosphere. So in the chick, the white or albumen of the egg goes to its nourishment whilst it is in the shell: but the yolk of the egg is embraced in the body of the chick when excluded from the shell, and a duct leads from the membrane enclosing this mass of nutriment into the first intestine. And thus is the chick nourished, not only whilst included in the shell, but also during its first feeble existence, a period which corresponds with that of lactation in mammalia.
III. The eye is of no use, at the time when it is formed. It is an optical instrument made in a dungeon; constructed for the refraetion of light to a focus, and perfect for its purpose, before a ray of light has had access to it ; geometrically adapted to the properties and action of an element, with which it has no communication. It is about indeed to enter into that communication : and this is precisely the thing which evidences intention. It is providing for the future in the closest sense which can be given to these termes; for it is providing for a future change; not for the then subsisting condition of the animal; not for any gradual progress or advance in that same condition; but for a new state, the consequence of a great and sudden alteration, which the animal is to undergo at its birth. Is it to be believed that the eye was formed, or, which is the same thing, that the series of causes was fixed by which the eye is formed, without a view to this change; without a prospect of that condition, in which its fabric, of no use at present, is about to be of the greatest; without a consideration of the qualities of that element, hitherto entirely exeluded, but with which it was hereafter to hold so intimate a relation? A young man makes a pair of spectacles for himself against he grows old; for which spectacles he has no want or use whatever at the
time he makes them. Could this be done without knowing and considering the defect of vision to which advanced age is subject? Would not the precise suitableness of the instrument to its purpose, of the remedy to the defect, of the convex lens to the flattened eye, establish the certainty of the conclusion, that the case, afterwards to arise, had been considered beforehand, speculated upon, provided for? all which are exclusively the sets of a reasoning mind. The eye formed in one state, for use only in another state, and in a different state, affords a proof no less clear of destination to a fature purpose; and a proof proportionably stronger, as the machinery is more complicated, and the adaptation more exact.
IV. What has been said of the eye, holds equally true of the lungs. Composed of aizvessels, where there is no air; elaborately constructed for the alternate admission and expulsion of an elastic fluid, where no such fluid exists; this great organ, with the whole apparatus belongiag to it, lies collapsed in the fretal thorax; yet in order, and in readiness for action, the first moment that the oceasion requires its service. This is having a machine locked up in stove for fature use; which incontestably proves, that the case was expected to occur in which this use might be experienced; but expectation is the proper act of P 2
intelligence. Considering the state in which an animal exists before its birth, I should look for nothing less in its body than a system of lungs. It is like finding a pair of bellows in the bottom of the sea; of no sort of use in the situation in which they are found; formed for an action which was impossible to be exerted; holding no relation or fitness to the element which surrounds them, but both to another element in another place.
As part and parcel of the same plan ought to be mentioned, in speaking of the lungs, the provisionary contrivances of the foramen ovale and ductus arteriosus. In the footus pipes are laid for the passage of the blood through the lungs; but, until the lungs be inflated by the inspiration of air, that passage is impervious, or in a great degree obstructed. What then is to be done? What would an artist, what would a master, do upon the occasion? He would endeavour, most probably, to provide a temporary passage, which might carry on the communication required, until the other was open. Now this is the thing which is actually done in the heart. Instead of the circuitous route through the lungs which the blood afterwards takes before it get from one auricle of the heart to the other, a portion of the blood passes immediately from the right auricle to the left, through a hole placed
in the partition which separates these cavities. This hole anatomists call the foramen ovale. There is likewise another cross cut, answering the same purpose, by what is called the ductus arteriosus, lying between the pulmonary artery and the aörta. But both expedients are so strictly temporary, that after birth the one passage is closed, and the tube which forms the other shrivelled up into a ligament. If this be not contrivance, what is?

But, forasmuch as the action of the air upon the blood in the lungs appears to be necessary to the perfect concoction of that fluid, i. e. to the life and health of the animal (otherwise the shortest route might still be the best), how comes it to pass that the fotus lives, and grows, and thrives without it? The answer is, that the blood of the foetus is the mother's; that it has undergone that action in her habit; that one pair of lungs serves for both. When the animals are separated a new necessity arises; and to meet this necessity as soon as it occurs an organisation is prepared. It is ready for its purpose; it only waits for the atmosphere; it begins to play the moment the air is admitted to it ${ }^{\circ}$.

[^82]appeari as such; a hittle fardier adrancod, and there are bones, and mascles, and nervee. But these lie quite inactive for a long term; the nerve excites to no action; the muacles do not move; the joints are not exercised, they are perfected alowly. The period of full development is not arrived; they have not yet their stimulus to ectivity. The whole then is in a state of preparation. Conduit pipes without their fluids, glands and ducts without their secretions, sensibilities dormant, and a mechanism quite inoperative; a whole animal system beautifully contrived, but only in "prospective contrivance."

CHAPTER XV.

RELATIONS

When several different parts contribute to one effect, or, which is the same thing, when an effect is produced by the joint action of different instruments; the fitness of such parts or instruments to one another for the purpose of producing, by their united action, the effect, is what I call relation; and wherever this is observed in the works of nature or of man it appears to me to carry along with it decisive evidence of understanding, intention, art. In examining, for instance, the several parts of a watch, the spring, the barrel, the chain, the fusee, the balance, the wheels of various sizes, forms, and positions, what is it which would take an observer's attention as most plainly evincing a construction, directed by thought, deliberation, and contrivance? It is the suitableness of these parts to one another; first, in the succession and order in which they act; and, secondly, with a view to the effect finally produced. Thus, referring the spring to the wheels, our observer sees in it that which
originates and upholds their motion; in the chain, that which transmits the motion to the fusee; in the fusee, that which communicates it to the wheels; in the conical figure of the fusee, if he refer to the spring, he sees that which corrects the inequality of its force. Referring the wheels to one another, he notices, first, their teeth, which would have been without use or meaning if there had been only one wheel, or if the wheels had had no connexion between themselves, or common bearing upon some joint effect; secondly, the correspondency of their position, so that the teeth of one wheel catch into the teeth of another; thirdly, the proportion observed in the number of teeth in each wheel, which determines the rate of going. Referring the balance to the rest of the works, he saw, when he came to understand its action, that which rendered their motions equable. Lastly, in looking upon the index and face of the watch, he saw the use and conclusion of the mechanism, viz. marking the succession of minutes and hours; but all depending upon the motions within, all upon the system of intermediate actions between the spring and the pointer. What thus struck his attention in the several parts of the watch he might probably designate by one general name of "relation;" and observing with respect to all cases whatever, in which
the origin and formation of a thing could be ascertained by evidence, that these relations were found in things produced by art and design, and in no other things, he would rightly deem of them as characteristic of such productions. To apply the reasoning here described to the works of nature.

The animal œconomy is full, is made up, of these relations.
I. There are, first, what in one form or other belong to all animals, the parts and powers which successively act upon their food. Compare this action with the process of a manufactory. In men and quadrupeds the aliment is first broken and bruised by mechanical instruments of mastication, viz. sharp spikes or hard knobs, pressing against or rubbing upon one another; thus ground and comminuted it is carried by a pipe into the stomach, where it waits to undergo a great chymical action, which we call digestion : when digested it is delivered through an orifice, which opens and shuts, as there is occasion, into the first intestine ; there, after being mixed with certain proper ingredients, poured through a hole in the side of the vessel, it is farther dissolved: in this state the milk, chyle, or part which is wanted, and which is suited for animal nourishment, is strained off by the mouths of very small tubes
opening into the cavity of the intestines; thus freed from its grosser parts, the percolated fluid is carried by a long, winding, but traceable course, into the main stream of the old circulation; which conveys it in its progress to every part of the body. Now I say again, compare this with the process of a manufactory, with the making of cider, for example; with the bruising of the apples in the mill, the squeezing of them when so bruised in the press, the fermentation in the vat, the bestowing of the liquor thus fermented in the hogsheads, the drawing off into bottles, the pouring out for use into the glass. Let any one show me any difference between these two cases as to the point of contrivance. That which is at present under our consideration, the "relation" of the parts successively employed, is not more clear in the last case than in the first. The aptness of the jaws and teeth to prepare the food for the stomach is, at least, as manifest as that of the cider-mill to crush the apples for the press. The concoction of the food in the stomach is as necessary for its future use as the fermentation of the stum in the vat is to the perfection of the liquor. The disposal of the aliment afterwards, the action and change which it undergoes, the route which it is made to take, in order that, and until that, it arrive at its destination, is more complex indeed
and intricate, but, in the midst of complication and intricacy, as evident and certain as is the apparatus of cocks, pipes, tunnels, for transferring the cider from one vessel to another; of barrels and bottles for preserving it till fit for use, or of cups and glasses for bringing it when wanted to the lip of the consumer. The character of the machinery is in both cases this,-that one part answers to another part, and every part to the final result.

This parallel between the alimentary operation and some of the processes of art might be carried further into detail. Spallanzani has remarked* a circumstantial resemblance between the stomachs of gallinaceous fowls and the structure of corn-mills. Whilst the two sides of the gizzard perform the office of the mill-stones, the craw or crop supplies the place of the hopper.

When our fowls are abundantly supplied with meat, they soon fill their craw; but it does not immediately pass thence into the gizzard; it always enters in very small quantities, in proportion to the progress of trituration, in like manner as, in a mill, a receiver is fixed above the two large stones which serve for grinding the corn, which receiver, although the corn be put into it in bushels, allows the grain to dribble only in

[^83]small quantities into the central hole in the upper mill-stone.

But we have not done with the alimentary history. There subsists a general relation between the external organs of an animal by which it procures its food and the internal powers by which it digests it. Birds of prey, by their talons and beaks, are qualified to seize and devour many species both of other birds and of quadrupeds. The constitution of the stomach agrees exactly with the form of the members. The gastric juice of a bird of prey, of an owl, a falcon, or a kite, acts upon the animal fibre alone; it will not act upon seeds or grasses at all. On the other hand; the conformation of the mouth of the sheep or the ox is suited for browsing upon herbage. Nothing about these animals is fitted for the pursuit of living prey. Accordingly it has been found by experiments, tried not many years ago, with perforated balls, that the gastric juice of ruminating animals, such as the sheep and the ox, speedily dissolves vegetables, but makes no impression upon animal bodies. This accordancy is still more particular. The gasiric juice, even of granivorous birds will not act upon the grain whilst whole and entire. In performing the experiment of digesting with the gastric juice in vessels, the gain must be crushed and bruised before it be
submitted to the menstruum, that is to say, must undergo by art, without the body, the preparatory action which the gizzard exerts upon it within the body, or no digestion will take place. So strict, in this case, is the relation between the offices assigned to the digestive organ, between the mechanical operation and the chemical process.
II. The relation of the kidneys to the bladder, and of the ureters to both, i.e., of the secreting organ to the vessel receiving the secreted liquor, and the pipe laid from one to the other for the purpose of conveying it from one to the other, is as manifest as it is amongst the different vessels employed in a distillery, or in the communications between them. The animal structure, in this case, being simple, and the parts easily separated, it forms an instance of correlation which may be presented by dissection to every eye, or which, indeed, without dissection, is capable of being apprehended by every understanding. This correlation of instruments to one another fixes intention somewhere. Especially when every other solution is negatived by the conformation. If the bladder had been merely an expansion of the ureter, produced by retention of the fluid, there ought to have been a bladder for each ureter. One receptacle fed by two pipes issuing from different sides of the body, yet from both con-

Noying the same luid, is not to be acoounted for by any such supposition as this.
III. Relation of parts to one another aecompanies us throughont the whole animal economy. Can any relation be more simple, yet more convincing than this, that the eyes are so placed as to look in the direction in which the legs move and the hands work? It might have happened very differently if it had been left to chance. There were at least three quarters of the compass out of four to have erred in. Any considerable alteration in the position of the eye or the figure of the joints would have disturbed the line, and destroyed the alliance between the sense and the limbs.
IV. But relation, perhaps, is never so striking as when it subsists, not between different parts of the same thing, but between different things. The relation between a lock and a key is more obvious than it is between different parts of the lock. A bow was designed for an arrow, and an arrow for a bow; and the design is more evident for their being separate implements.

Nor do the works of the Deity want this clearest species of relation. The sexes are manifestly made for each other. They form the grand relation of animated nature, universal, organic, mechanical, subsisting, like the clearest relations of art, in
different individuals, unequivoeal, inexplicable vithout design.

So much so, that, wene every other proof of contrivance in nature dubious or obscure this alone wontd be sufficient. The example is complete. Nothing is wanting to the argument. I mee no way whatever of getting over it.
V. The teats of animals which give suck, bear a relation to the mouth of the suckling progeny, particularly to the lips and tongue. Here also, as before, is a correspondency of parts, which parts subsist in different individuals.

These are general relations, or the relations of parts which are found either in all animals or in large classes and descriptions of animals. Particular relations, or the relations which subsist between the particular configuration of one or more parts of certain species of animals, and the particular configuration of one or more other parts of the same animal (which is the sort of relation that is, perhaps, most striking) are such as the following:
I. In the swan, the web-foot, the spoon-bill, the long neck, the thick down, the graminivorous stomach, bear all a relation to one another, inasmuch as they all concur in one design, that of supplying the occasions of an aquatic fowl floating upon the
surface of shallow pools of water, and seeking its food at the bottom. Begin with any one of these particularities of structure, and observe how the rest follow it. The web-foot qualifies the bird for swimming; the spoon-bill enables it to graze. But how is an animal floating upon the surface of pools of water to graze at the bottom, except by the mediation of a long neck? A long neck accordingly is given to it. Again, a warmblooded animal which was to pass its life upon water, required a defence against the coldness of that element. Such a defence is furnished to the swan in the muff in which its body is wrapped. But all this outward apparatus would have been in vain, if the intestinal system had not been suited to the digestion of vegetable substances. I say suited to the digestion of vegetable substances; for it is well known that there are two intestinal systems found in birds: one with a membranous stomach and a gastric juice, capable of dissolving animal substances alone-the other with a crop and gizzard calculated for the moistening, bruising, and afterwards digesting, of vegetable aliment.

Or set off with any other distinctive part in the body of the swan; for instance, with the long neck. The long neck, without the web-foot, would have been an encumbrance to the bird;
yet there is no necessary connexion between a long neck and a web-foot. In fact they do not usually go together. How happens it, therefore, that they meet only when a particular design demands the aid of both?
II. This mutual relation, arising from a subserviency to a common purpose, is very observable also in the parts of a mole. The strong short legs of that animal, the palmated feet, armed with sharp nails, the pig-like nose, the teeth, the velvet coat, the small external ear, the sagacious smell, the sunk protected eye, all conduce to the utilities or to the safety of its under-ground life. It is a special purpose, specially consulted throughout. The form of the feet fixes the character of the animal. They are so many shovels; they determine its action to that of rooting in the ground; and everything about its body agrees with this destination. The cylindrical figure of the mole, as well as the compactness of its form, arising from the terseness of its limbs, proportionably lessens its labour; because, according to its bulk, it thereby requires the least possible quantity of earth to be removed for its progress. It has nearly the same structure of the face and jaws as a swine, and the same office for them. The nose is sharp, slender, tendinous, strong, with a pair of nerves going down to the end of it.

The plush covering which, by the smoothness, closeness, and polish of the short piles that come: pose it, rejects the adhemion of almost every epeoies of earth, defends the animal from cold and wet, and from the impediment which it would experience by the mould sticking to its body. From soils of all kinds the little pioneer comes forth bright and clean. Inhabiting dirt, it is of all animals the neatemt.

But what I have always most admired in the mole is its eyes. This animal occasionally visiting the surface, and wanting, for its safety and direction, to be informed when it does so, or when it approaches it, a perception of light was necessary. I do not know that the clearness of sight depends at all upon the size of the organ. What is gained by the largeness or prominence of the globe of the eye, is width in the field of vision. Such a capacity would be of no use to an animal which was to seek its food in the dark. The mole did wot want to look about it; nor would a large advanced eye have been easily defended from the annoyance to which the life of the animal mast constantly expose it. How indeed was the mole, werking its way under ground, to guard its eyes at all? In order to meet this dificulty, the eyes are made scancely larger than the head of a corking-pin; and these minute globules are sunk
so deeply in the skull, and lie so sheltered within the velvet of its covering, as that arry contraction of what may be called the eye-brows, not only closes up the apertures waich lead to the eyes, but prements a cushion, as it wene, to any sharp or protruding subutance which might push againat them. This eqerture, even in its ordinary state, is like a pin-hole in a piece of velvet, scarcely pervious to loose particles of earth.

Observe, then, in this structure, that which we call relation. There is no natural connexion between a small sunk eye and a shovel palmated foot. Palmated feet might have been joined with goggle eyes; or small eyes might have been joined with feet of any other form. What was it therefore which brought them together in the mole? That which brought together the barrel, the chain, and the fusee in a watch-design; and design in both cases inferred, from the relation which the parts bear to one another in the prosecution of a common purpose. As hath already been observed, there are different ways of stating the relation, according as we sat out from a different part. In the instance before us, we may either consider the shape of the feet, as qualifying the animal for that mode of life and inhabitation to which the structure of its eyes confines it; or we may consider the structure of the eye as the
only one which would have suited with the action to which the feet are adapted. The relation is manifest, whichever of the parts related we place first in the order of our consideration. In a word, the feet of the mole are made for digging: the neck, nose, eyes, ears, and skin, are peculiarly adapted to an underground life; and this is what I call relation.

CHAPTER XVI.

COMPENSATION.
Compensation is a species of relation. It is relation when the defects of one part, or of one organ, are supplied by the structure of another part, or of another organ. Thus-
I. The short unbending neck of the elephant is compensated by the length and flexibility of his proboscis. He could not have reached the ground without it; or, if it be supposed that he might have fed upon the fruit, leaves, or branches of trees, how was he to drink? Should it be asked, why is the elephant's neck so short? it may be answered, that the weight of a head so heavy could not have been supported at the end of a longer leaver. To a form, therefore, in some respects necessary, but in some respects also inadequate to the occasion of the animal, a supplement is added, which exactly makes up the deficiency under which he laboured.

If it be suggested that this proboscis may have been produced, in a long course of generations, by the constant endeavour of the elephant to thrust out its nose (which is the general hypothesis by
which it has lately been attempted to account for the forms of animated nature), I would ask, How was the animal to subsist in the mean timeduring the process-ratil this prolongation of snout were completed? What was to become of the individual whilst the species was perfecting? ${ }^{4}$

[^84]Our business at present is, simply to point out the retation which this organ bears to the peculiar figure of the animal to which it belongs. And herein all things correspond. The necessity of the elephant's proboseis arises from the shortness of his neck : the shortness of the neck is rendered necessary by the weight of the head. Were we to enter into an examination of the structure and anatomy of the proboscis itself, we should see in it one of the most curious of all examples of animal mechanism. The disposition of the ringlets and fibres, for the purpose, first, of forming a long cartilaginous pipe; secondly, of contracting and lengthening that pipe; thirdly, of turning it in every direction at the will of the animal; with the superaddition at the end, of a fleshy production, of about the length and thickness of a finger,

One would imagine that an idea so wild, as that an animal should produce the variety of organs or external instruments which we see, by an effort-an energy proceeding from itself, could never have been maintained in an age like the present, when it is so fully proved that there is no change upon the extremity of an animal, no additional organ like this of the trunk of an elephant, no variety in its paw or its hoof, but what is attended with a corresponding alteration in the whole system of the creature-of its bones, its teeth, its stomach, as well as in its appetites and desires.
and performing the office of a finger, so as to pick up a straw from the ground. These properties of the same organ, taken together, exhibit a specimen, not only of design (which is attested by the advantage), but of consummáte art, and, as I may say, of elaborate preparation, in accomplishing that design.
II. The hook in the wing of a bat is strictly a mechanical, and, also, a compensating contrivance. At the angle of its wing there is a bent claw, exactly in the form of a hook, by which the bat attaches itself to the sides of rocks, caves, and buildings, laying hold of crevices, joinings, chinks, and roughnesses. It hooks itself by this claw; remains suspended by this hold; takes its flight from this position: which operations compensate for the decrepitude of its legs and feet. Without her hook, the bat would be the most helpless of all animals. She can neither run upon her feet, nor raise herself from the ground. These inabilities are made up to her by the contrivance in her wing; and in placing a claw on that part, the Creator has deviated from the analogy observed in winged animals. A singular defect required a singular substitute.
III. The crane-kind are to live and seek their food amongst the waters; yet, having no web-foot, are incapable of swimming. To make up for this
deficiency, they are furnished with long legs for wading, or long bills for groping, or usually with both. This is compensation. But I think the true reflection upon the present instance is, how every part of nature is tenanted by appropriate inhabitants. Not only is the surface of deep waters peopled by numerous tribes of birds that swim, but marshes and shallow pools are furnished with hardly less numerous tribes of birds that wade.
IV. The common parrot has, in the structure of its beak, both an inconveniency and a compensation for it. When I speak of an inconveniency I have a view to a dilemma which frequently occurs in the works of nature-viz., that the peculiarity of structure by which an organ is made to answer one purpose necessarily unfits it for some other purpose. This is the case before us. The upper bill of the parrot is so much hooked, and so much overlaps the lower, that if, as in other birds, the lower chap alone had motion, the bird could scarcely gape wide enough to receive its food: yet this hook and overlapping of the bill could not be spared, for it forms the very instrument by which the bird climbs,-to say nothing of the use which it makes of it in breaking nuts and the hard substances upon which it feeds. How, therefore, has nature provided for
the opening of this occluded mouth? By making the upper chap moveable, as well as the lower. In most birds, the upper chap is connected, and makes but one piece, with the skull; but in the parrot the upper chap is joined to the bone of the head by a strong membrane placed on each side of it, which lifts and depresses it at pleasure.*
V. The spider's web is a compensating contriv-

ance. The spider lives upon flies, without wings to pursue them,-a case, one would have thought, of great difficulty, yet provided for, and provided for by a resource which no stratagem, no effort of

- Coldsmith* Nat. Hist. vol. च. p. 274.
the animal, could have produced, had not both its external and internal structure been specifically adapted to the operation ${ }^{63}$.

[^85]VI. In many species of insects the eye is fixed, and consequently without the power of turning
couching in concealment, leap upon their victims. Some conceal themselves under a silken hood or tabe, six eyes only projecting. Some bore a hole in the earth, and line it as finely as if it were done with the trowel and mortar, and then hang it with delicate curtains. A very extraordinary degree of contrivance is exhibited in the trap-door spider. This door, from which it derives its name, has a frame and hinge on the mouth of the cell, and is so provided that the claw of the spider can lay hold of it, and whether she enters or goes out, says Mr. Kirby, the door shuts of itself. But the water-spider has a domicile more curious still: it is under water, with an opening at the lower part for her exit and entrance; and although this cell be under water, it contains air like a diving-bell, so that the spider breathes the atmosphere. The air is renewed in the cell in a manner not easily explained. The spider comes to the surface; a bubble of air is attracted to its body; with this air she descends, and gets under her cell, when the air is disengaged and rises into the cell; and thus, though under water, she lives in the air. There must be some peculiar property of the surface of this creature by which she can move in the water surrounded with an atmosphere, and live under the water breathing the air.

The chief instrument by which the spider performs these wonders is the spinning apparatus. The matter from which the threads are spun is a liquid contained in
the pupil to the object. This great defect is, however, perfectly compensated, and by a mechanism which we should not suspect. The eye is a mul-tiplying-glass with a lens looking in every direction and catching every object. By which means, although the orb of the eye be stationary, the field of vision is as ample as that of other animals, and is commanded on every side. When this lattice-work was first observed, the multiplicity and minuteness of the surfaces must have added to the surprise of the discovery. Adams tells us that fourteen hundred of these reticulations have been counted in the two eyes of a drone-bee.

In other cases the compensation is effected by
cells; the ducts from these cells open upon little projecting teats, and the atmosphere has so immediate an effect upon this liquid, that upon exposure to it, the secretion becomes a tough and strong thread. Twentyfour of these fine strands form together a thread of the thickness of that of the silk-worm. We are assured that there are three different sorts of material thus produced, which are indeed required for the various purposes to which they are applied-as, for example, to mix up with the earth to form the cells,-to line these cells as with fine cotton,-to make light and floating threads by which they may be conveyed through the air, as well as those meshes which are so geometrically and correctly formed to entrap their prey.
the number and position of the eyes themselves. The spider has eight eyes, mounted upon different parts of the head; two in front, two in the top of the head, two on each side. These eyes are without motion, but, by their situation, suited to comprehend every view which the wants or safety of the animal rendered it necessary for it to take.
VII. The Memoirs for the Natural History of Animals, published by the French Academy, A. D. 1687, furnish us with some curious particulars in the eye of a cameleon. Instead of two cyelids, it is covered by an eyelid with a hole in it. This singular structure appears to be compensatory, and to answer to some other singularities in the shape of the animal. The neck of the cameleon is inflexible. To make up for this, the eye is so prominent as that more than half of the ball stands out of the head, by means of which extraordinary projection the pupil of the eye can be carried by the muscles in every direction, and is capable of being pointed towards every object. But then, so unusual an exposure of the globe of the eye requires for its lubricity and defence a more than ordinary protection of eyelid, as well as a more than ordinary supply of moisture; yet the motion of an eyelid, formed according to the common construction, would be impeded, as it should seem, by the convexity of the organ. The aper-
ture in the lid meets this difficulty. It enables the amimal to keep the principal part of the surface of the eye under cover, and to preserve it in a due state of humidity without shatting out the light, or without performing every moment a niotitation which it is probable would be more laborious to this animal than to others.
VIII. In another animal, and in another part of the animal economy, the same Memoirs describe a most remarkable substitution. The reader will remember what we have already observed concerning the intestinal canal-that its length, so many times exceeding that of the body, promotes the extraction of the chyle from the aliment by giving room for the lacteal vessels to act uponit through a greater space. This long intestime, wherever it occurs, is in other animals disposed in the abdomen from side to side in returning folds. But in the animal now under our notice the matter is managed otherwise. The same intention is mechanically effectuated, but by a mechanism of a different kind. The animal of which I speak is an amphibious quadruped, which our authors call the alopecias or sca-fox. The intestine is straight from one end to the other; but in this straight and consequently short intestine is a winding, corkscrew, spiral passage, through which the food; not without several circumvolutions, and in fact
by a long route, is conducted to its exit. Here the shortness of the gut is compensated by the obliquity of the perforation.
IX. But the works of the Deity are known by expedients. Where we should look for absolute destitution-where we can reckon up nothing but wants-some contrivance always comes in to supply the privation. A snail, without wings, feet, or thread, climbs up the stalks of plants by the sole aid of a viscid humour discharged from her skin. She adheres to the stems, leaves, and fruits of plants by means of a sticking-plaster. A mussel, which might seem by its helplessness to lie at the mercy of every wave that went over it, has the singular power of spinning strong tendinous threads by which she moors her shell to rocks and timbers. A cockle, on the contrary, by means of its stiff tongue, works for itself a shelter in the sand. The provisions of nature extend to cases the most desperate. A lobster has in its constitution a difficulty so great that one could hardly conjecture beforehand how nature would dispose of it. In most animals the skin grows with their growth. If, instead of a soft skin, there be a shell, still it admits of a gradual enlargement. If the shell, as in the tortoise, consist of several pieces, the accession of substance is made at the sutures. Bivalve shells grow
bigger by receiving an accretion at their edge; it is the same with spiral shells at their mouth. The simplicity of their form admits of this. But the lobster's shell being applied to the limbs of the body, as well as to the body itself, allows not of either of the modes of growth which are observed to take place in other shells. Its hardness resists expansion; and its complexity renders it incapable of increasing its size by addition of substance to its edge. How then was the growth of the lobster to be provided for? Was room to be made for it in the old shell, or was it to be successively fitted with new ones? If a change of shell became necessary, how was the lobster to extricate himself from his present confinement? how was he to uncase his buckler, or draw his legs out of his boots? The process which fishermen have observed to take place is as follows. At certain seasons the shell of the lobster grows soft; the animal swells its body; the seams open, and the claws burst at the joints. When the shell has thus become loose upon the body, the animal makes a second effort, and by a tremulous spasmodic motion casts it off. In this state the liberated but defenceless fish retires into holes in the rock. The released body now suddenly pushes its growth. In about eight-and-forty hours a fresh concretion of humour upon the surface, i. e., Q 3
a new shell, is formed, adapted in every part to the increased dimensions of the animal. This wonderful mutation is repeated every year".

If there be imputed defects without compenswtion, I should suspect that they were defects only in appearance. Thus, the body of the stoth has often been reproached for the slowness of its motions, which has been attributed to an imperfection in the formation of its limbs. But it ought to be observed that it is this slowsess which alome suspends the voracity of the animad. He fasts during his migration from one tree to another: and this fast may be necessary for the relief of his overcharged vessels, as well as to allow time for the concoction of the mass of coarse and hard food which he has taken into his stomach. The tardiness of his pace seems to have reference to the capacity of his organs, and to his propensidies with respect to food-i. e., is calculated to counteract the effects of repletion.

Or there may be cases in which a defect is artificial, and compensated by the very cause which produces it. Thus the sheep, in the domesticated state in which we see it, is destitute of the ordinary means of defence or escape-is incapabbe either of resistance or flight. But this is not wo

[^86]with the wild animal. The natural sheep is swift and active; and, if it lose these qualities when it comes under the subjection of man, the loss is compensated by his protection. Perhaps there is no species of quadruped whatever which suffers so little as this does from the depredation of animals of prey.

For the sake of making our meaning better understood, we have considered this business of compensation under certain particularities of constitution in which it appears to be most conspicuous. This wiew of the subject necessarily limits the instances to single species of animals. But there are compensations, perhaps not less certain, which extend ower large classes and to large pontions of living natare.

1. In quadrupeds, the deficiency of teeth is usually compensated by the faculty of rumination. The sheep, deer, and ox tribe are without foretecth in the upper jawor. These ruminate. The horse and ass are furnished with teeth in the upper jaw, and do not ruminate. In the former class, the grass and hay descend into the stomach nearly in the state in which they are cropped from the pasture or gathered from the bundle. In the stomach they are softened by the gastric juice,

[^87]which in these animals is unusually copious: thus softened and rendered tender, they are returned a second time to the action of the mouth, where the grinding teeth complete at their leisure the trituration which is necessary, but which was before left imperfect: I say the trituration which is necessary; for it appears from experiments that the gastric fluid of sheep, for example, has no effect in digesting plants unless they have been previously masticated; that it only produces a slight maceration, nearly as common water would do in a like degree of heat; but that when once vegetables are reduced to pieces by mastication, the fluid then exerts upon them its specific operation. Its first effect is to soften them, and to destroy their natural consistency : it then goes on to dissolve them, not sparing even the toughest parts, such as the nerves of the leaves*.

I think it very probable that the gratification also of the animal is renewed and prolonged by this faculty. Sheep, deer, and oxen appear to be in a state of enjoyment whilst they are chewing the cud: it is then, perhaps, that they best relish their food ${ }^{\text {es }}$.

[^88]II. In birds, the compensation is still more striking. They have no teeth at all. What have
are animals to live upon it; and the kind of food determines the organization of the creature, not resulting from it, but provided for it. The class of ruminants feed on the coarser herbage where the vegetable is in abundance, but the actual nutritious matter is small in quantity compared with the mass. There is therefore an obvious necessity for a more complex apparatus to extract the smaller proportion of matter capable of being animalized : hence the maceration in the first stomach, hence the regurgitation and rumination, and the reception into the second and third stomach, in preparation for the proper digestion in the last. When the mass is digested, the nutritious part is still small in proportion to the whole; and to permit that smaller portion of aliment to be absorbed and carried into the system, the intestinal canal must be long and complex, offering resistance to the rapid descent of the food, and giving it lodgment : and thus there is always a correspondence between the complication of the stomach and the length of the intestines, and between both and the nature of the food. It is further very remarkable, that when animals of the same species live in different climates, where there is more or less abundance of vegetable food, there is an adaptation of their digestive organs. Where it is abundant, the configuration of the intestines which is intended to delay its descent is less complex. Where the food is more scarce, the intestine is longer, and the
they then to make n_{p} for this severe want? I erpeak of granivorous and hertivorous birds: math as common fowls, turkeys, ducks, geese, pigeoms, \&c.; for it is concerning these alone that the question need be asked. All these are furnished with a peculiar and most powerful muscle, called the gizzard; the inner coat of which is fitted up with rough plaits, which, by a strong friction againat one another, break and grind the hard aliment as effectually, and by the same mechasical action, an a coffee-mill weuld do. It has been proved by the most correct experimente, that the gastrie jaice of these birds will not operate upon the entire grain : not ever wher softened by water or macerated in the crop. Therefore, without a grinding machine within its body, without the trituration of the gizzard, a chicken would have starved upon a heap of corn. Yet, why should a bill and a gizzard go together? why should a gizzard never be found where there are teeth?

[^89]Nor does the gizzard belong to birds as such. A gizarard is not foundi in birds of prey: their food requires not to be ground down in a midl. The compensatory contrivance goes no farther than the necessity. In both classes of birds, however, the digestive orgam within the body bears a strict and mechanical relation to the external instruments for procuring food. The soft membranous stomach accompanies a hooked notched beak; short muscular legs; strong, sharp, croeked talons:-the cartilaginous stomach attends that conformation of bill and toes which restrains the bird to the picking of seeds or the cropping of plants**.

* We have said that it is the object to support animal life, and to give the enjoyment of existence; and that wherever the means are afforded of converting a material under the processes of digestion and assimilation, there animals will be found with an apparatus of digestion adapted to the food. Nothing certainly can be mare curious than the vicarious action of the stomach and mouth. We see, for example, that where the bill precludes mastication in the mouth, it is performed in the stomach; and then muscles are found in the stomach as powerful as those of the jaws and teeth; and to the teeth, or what is equivalent to them, we may any that they are continually renewed. In fact, no mechanical structure of jaws and teeth could answer the
III. But to proceed with our compensations. A very numerous and comprehensive tribe of terrestrial animals are entirely without feet-yet locomotive, and in a very considerable degree swift in their motion. How is the want of feet compensated? It is done by the disposition of the muscles and fibres of the trunk. In consequence of
purposes of nature here: no union of bone and enamel. in the tooth could have withstood the attrition of the gizzard; and one of the most beautiful and interesting appliances of nature is the substitution, through the instinct of the animal, of small stones of hard texture, generally consisting of silex, introduced within the grasp and action of this organ. It is a further proof that the mastication, if we may use the term, is more perfect in the gizzard than where there is the most complex structure of teeth, and therefore that it is the means of extracting the greater quantity of nutritious matter. Accordingly, there are gizzards in most classes of animals. They are not only found in birds, but in reptiles. The sea-turtle has what is termed a muscular stomach. Among fishes, the mullet and the gillaroo trout have muscular stomachs. The cuttle-fish, the nautilus, and even the earth-worm, have a crop and gizzard; and insects, according as they live on a leaf or suck the blood, have the same difference in the internal arrangement of the structure for assimilation as that which distinguishes the ox from the lion.
the just collocation and by means of the joint action of longitudinal and annular fibres-that is to say, of strings and rings-the body and train of reptiles are capable of being reciprocally shortened and lengthened, drawn up and stretched out. The result of this action is a progressive and in some cases a rapid movement of the whole body, in any direction to which the will of the animal determines it. The meanest creature is a collection of wonders. The play of the rings in an earth-worm, as it crawls, the undulatory motion propagated along the body, the beards or prickles with which the annuli are armed, and which the animal can either shut up close to its body, or let out to lay hold of the roughness of the surface upon which it creeps, and the power arising from all these of changing its place and position, afford, when compared with the provisions for motion in other animals, proofs of new and appropriate mechanism. Suppose that we had never seen an animal move upon the ground without feet, and that the problem was: Muscular action, i. e., reciprocal contraction and relaxation being given, to describe how such an animal might be constructed capable of voluntarily changing place: Something, perhaps, like the organization of reptiles might have been hit upon by the ingenuity of an artist ; or might have been exhibited in an
automaton, by the combinetion of springs, spirad wires, and ringlets ; but to the solution of the problem would not he denied, surely, the praise of invention and of successful thought: least of all could it ever be questioned whether intelligence had been employed about it or not ${ }^{75}$:

[^90]the surface, and move only with the current. There is every reason to believe that the air, whieh is the principal means of change of place, is secreted by the animal.

From some of these animals tentacula hang down into the water for seizing their food, and perhaps for directing their progress. They have a power of distending them, or erecting them by forcing water into their texture, by the contraction of vesicles near their base. Varieties of these animals hoist a plate or crest out of the water, which has a still greater resemblance to a sail.

We have already noticed the fins of fishes, the wing of the bird, and the web-foot of the duck. "The meanest creature is, indeed, a collection of wonders." In the earth-worm or the caterpillar, the head, or the anterior part of the body, is projected (and it is a difficult problem to produce extension by contraction) till it touches the ground, and slightly adheres to it, when the posterior part of the body is drawn forwards. In many worms or caterpillars there are holders discoverable upon minute inspection, and their anatomy exhibits a perfect set of muscles attached to those exterior rough points,-by which it is made evident that each of them is a foot. But nothing is more interesting than to see the change of the larva to the winged insect, where these muscles and their appropriate nerves disappear: and new muscles, and new nerves, and new energies direct the creature that crept an inch in an hour to outstrip, as we have said, the fleetest horse or to rise upon the wind; for those who travel by the new rail-roads observe bees to fly
round them, and therefore to move above sixty miles an hour. The contrasts are the most curious between the fight of the bat and the motion of the mole; the same organization being calculated, with slight adaptation, for the atmosphere, and for moving under the earth. We might almost give the instance of the perforation of solid calcareous rock by the boring mollusca, which, by late observations, neems to be accomplished by means of the foot.

CHAPTER XVII.

THE RELATION OF ANIMATED BODIES TO INANIMATE NATURE.

We have already considered relation, and under different views; but it was the relation of parts to parts, of the parts of an animal to other parts of the same animal, or of another individual of the same species.

But the bodies of animals hold, in their constitution and properties, a close and important relation to natures altogether external to their own : to inanimate substances, and to the specific qualities of these; e.g., they hold a strict relation to the elements by which they are surrounded.
I. Can it be doubted, whether the wings of birds bear a relation to air, and the fins of fish to water? They are instruments of motion severally suited to the properties of the medium in which the motion is to be performed; which properties are different. Was not this difference contemplated when the instruments were differently constituted?
II. The structure of the animal ear depends
for its use not simply upon being surrounded by a fluid, but upon the specific nature of that fluid. Every fluid would not serve: its particles must repel one another; it must form an elastic medium : for it fs by the successive pulses of such a medium that the undulations excited by the surrounding body are carried to the organ; that a communication is formed between the object and the sense; which must be done, before the internal machinery of the car, subtile as it is, can act at all.
III. The organs of voice and nespiration are, no less than the ear, indebted, for the success of their operation, to the peculiar qualities of the sluid in which the animal is immersed. They, therefore, as well as the ear, are constituted upon the supposition of such a fluid, i.e., of a fluid with such particular properties, being always present. Change the properties of the fluid, and the organ cannot act ; change the organ, and the properties of the fluid would be lost. The structure, therefare, of our organs, and the properties of our atmosphere, are made for one another. Nor does it alter the relation, whether you allege the orga to be made for the element (which seems the moost natural way of considering it), or the element as prepared for the organ.
IV. But there is another fluid with which we
have to do; with properties of its own; with laws of acting, and of being acted upon, totally different from those of air and water: and that is light. To this new, this singular element-to qualities perfectly peculiar, perfectly distinct and remote from the qualities of any other substance with which we are aoquainted-an organ is adapted, an instrument is correctly adjusted, not less peculiar amongst the parts of the body, not less singular in its form and in the substance of which it is composed, not less remote from the materials, the model, and the analogy of any other part of the animal frame, than the element to which it relates is specific amidst the substances with which we converse. If this does not prove appropriation, I desire to know what would prove it.

Yet the element of light and the organ of vision, however related in their office and use, have ne connexion whatever in their original. The action of rays of light upon the surfaces of animals has no tendency to breed eyes in their heads. The sun might shine for ever upon living bodies, without the smallest approach towards producing the sense of sight. On the other hand also, the animal eye does not generate or emit light.
V. Throughout the universe there is a wonderful proportioning of one thing to another. The size of animals, the human animal especially,
when considered with respect to other animals, or to the plants which grow around him, is such as a regard to his conveniency would have pointed out. A giant or a pigmy could not have milked goats, reaped corn, or mowed grass ; we may add, could not have rode a horse, trained a vine, shorn a sheep, with the same bodily ease as we do, if at all. A pigmy would have been lost amongst rushes, or carried off by birds of prey ${ }^{7 n}$.

It may be mentioned, likewise, that the model and the materials of the human body being what they are, a much greater bulk would have broken down by its own weight. The persons of men who much exceed the ordinary stature betray this tendency.
VI. Again (and which includes a vast variety of particulars, and those of the greatest importance), how close is the suitableness of the earth and sea to their several inhabitants; and of these inhabitants to the places of their appointed residence!

Take the earth as it is; and consider the correspondency of the powers of its inhabitants with the properties and condition of the soil which they tread. Take the inhabitants as they are;

[^91]and consider the .substances which the earth yields for their use. They can scratch its surface, and its surface supplies all which they want. This is the length of their faculties; and such is the constitution of the globe, and their own, that this is sufficient for all their occasions.

When we pass from the earth to the sea, from land to water, we pass through a great change: but an adequate change accompanies us of animal forms and functions, of animal capacities and wants; so that correspondency remains. The earth in its nature is very different from the sea, and the sea from the earth, but one accords with its inhabitants as exactly as the other.
VII. The last relation of this kind which I shall mention is that of sleep to night; and it appears to me to be a relation which was expressly intended. Two points are manifest, first, that the animal frame requires sleep; secondly, that night brings with it a silence and a cessation of activity which allows of sleep being taken without interruption and without loss. Animal existence is made up of action and slumber; nature has provided a season for each. An animal which stood not in need of rest would always live in daylight. An animal which, though made for action, and delighting in action, must have its strength repaired by sleep, meets, by its consti-
tution, the returns of day and night. In the human species, for instance, were the bustle, the labour, the motion of life upheld by the constant presence of light, sleep could not be enjoyed without being disturbed by noise, and without expense of that time which the eagerness of private interest would not contentedly resign. It is happy, therefore, for this part of the creation, I mean that it is conformable to the frame and wants of their constitution, that nature, by the very disposition of her elements, has commanded, as it were, and imposed upon them, at moderate intervals, a general intermission of their toils, their occupations, and pursuits.

But it is not for man, either solely or principally, that night is made. Inferior but less perverted natures taste its solace, and expect its return with greater exactness and advantage than he does. I have often observed, and never observed but to admire, the satisfaction, no less than the regularity, with which the greatest part of the irrational world yield to this soft necessity, this grateful vicissitude; how comfortably the birds of the air, for example, address themselves to the repose of the evening, with what alertness they resume the activity of the day.

Nor does it disturb our argument to confess that certain species of animals are in motion
during the night and at rest in the day. With respect even to them, it is still true that there is a change of condition in the animal, and an external change corresponding with it. There is still the relation, though inverted. The fact is that the repose of other animals sets these at liberty, and invites them to their food or their sport.

If the relation of sleep to night, and, in some instances, its converse, be real, we cannot reflect without amazement upon the extent to which it carries us. Day and night are things close to us; the change applies immediately to our sensations; of all the phenomena of nature, it is the most obvious and the most familiar to our experience; but, in its cause, it belongs to the great motions which are passing in the heavens. Whilst the earth glides round her axle she ministers to the alternate necessities of the animals dwelling upon her surface, at the same time that she obeys the influence of those attractions which regulate the order of many thousand worlds. The relation, therefore, of sleep to night is the relation of the inhabitants of the earth to the rotation of their globe; probably it is more, it is a relation to the system of which that globe is a part; and, still further, to the congregation of systems of which theirs is only one. If this ac-
count be true, it connects the meanest individual with the universe itself,-a chicken roosting upon its perch with the spheres revolving in the firmament ${ }^{7}$.
${ }^{7}$ Nothing is more true than that the strength of the bones and the power of the muscles stand in intimate relation with the weight of the body, that is also, in relation with the attraction of the globe itself. It is no less certain that many of the living properties of animals, the condition of the nervous system, and the alternation of exertion and repose in the muscular system, are related to the change of day and night, or to the revolving of our planet upon its axis. In man we may see a slight deviation in his habits and occupations from this correspondence with the succession of light and darkness; yet he enjoys a return of energy and elasticity of spirits, which is followed by weariness and exhaustion; and health will not long continue without yielding to the alternate condition of activity and repose. In nothing do we see the benevolence of the Creator more than in the continued gratification consequent on this arrangement alone, and more especially in the brutes. It is not a mere effect of light and the freshness of the morning which produces the almost universal animation and activity of that time of day ; for to many animals the light of day is the signal to seek repose; and that it is not the mere necessity which brings animals abroad at night, in order to feed secluded, or escape their enemies, we know from this, that
VIII. But if any one object to our representation, that the succession of day and night, or the
their organs are adapted to the obscurer light, and not their organs only but their propensities; for they are as full of activity and enjoyment as the things of day. The history of pulmonary and other complaints indicates a curious connexion between the functions of the body and the revolution of time or alternations of day and night.

But the most remarkable accommodation of the economy of animals, and of the property of life itself in them, regards the changes of the year rather than the diurnal change. How much this prevails in the vegetable world we have only to look around us fully to comprehend. With the diminution of heat vegetation is nipped, the ova of insects locked up, and the food of many animals withdrawn. Some animals could not be protected by an instinct of migration, being without the means of passage: the bat could not fly away with the swallow, nor the hedgehog and dormouse travel with the deer. To sustain the animal heat against the low temperature of the surrounding atmosphere requires a vigorous circulation of the blood and a plentiful and uninterrupted supply of food. Many animals must therefore have died during the winter had not nature supplied a means of their continuance in life beyond the ingenuity of man to conceive. The warmth of their clothing, and the instincts to build themselves a warm habitation, which we should almost say were the exercise of ingenuity, are
rotation of the earth upon which it depends, is not resolvable into central attraction, we will refer him to that which certainly is,-to the change of the seasons. Now the constitution of animals susceptible of torpor bears a relation to winter similar to that which sleep bears to night. Against not only the cold, but the want of food, which the approach of winter induces, the Preserver of the world has provided in many animals by migration, in many others by torpor. As one example out
insufficient. To sustain life they must hold it by a new tenure. Accordingly the necessity for food is removed; the activity of the circulation is diminished remarkably; a torpor seizes upon every living faculty, and they fall into what seems a long sleep. Yet it is not sleep, but a new condition of existence, in which life is preserved without the necessity for food, and when all the functions of the system are let down to a lower state of activity. And justly, therefore, it has been said that in these things we trace the benevolence of the Creator, "who did not cast his living creatures into the world to prosper or perish as they might find it suited to them or not, but fitted together with the nicest skill the world and the constitution which he gave to its inhabitants; so fashioning it, that light and darkness, sun and air, moist and dry, should become their ministers and benefactors, the unwearied and unfailing causes of their well-being.'-Whewell's Bridgewater Treatise.
of a thousand, the bat, if it did not sleep through the winter, must have starved; as the moths and flying insects upon which it feeds disappear. But the transition from summer to winter carries us into the very midst of physical astronomy, that is to say, into the midst of those laws which govern the solar system at least, and probably all the heavenly bodies.

CHAPTER XVIII.

INSTINCTS.

The order may not be very obvious by which I place instincts next to relations. But I consider them as a species of relation. They contribute, along with the animal organization, to a joint effect, in which view they are related to that organization. In many cases they refer from one animal to another animal; and, when this is the case, become strictly relations in a second point of view.

An instinct is a propensity prior to experience and independent of instruction. We contend that it is by instinct that the sexes of animals seek each other; that animals cherish their offspring; that the young quadruped is directed to the teat of its dam ; that birds build their nests and brood with so much patience upon their eggs; that insects which do not sit upon their eggs deposit them in those particular situations in which the young when hatched find their appropriate food: that it is instinct which carries the salmon, and
some other fish, out of the sea into rivers, for the purpose of shedding their spawn in fresh water.

We may select out of this catalogue the incubation of eggs. I entertain no doubt but that a couple of sparrows hatched in an oven, and kept separate from the rest of their species, would proceed as other sparrows do in every office which related to the production and preservation of their brood. Assuming this fact ${ }^{73}$, the thing is inexpli-
${ }^{73}$ There can be very little doubt of this assumption being according to the fact. Nevertheless, as the experiment has probably not been actually made, there is no harm in mentioning one or two examples of the same import, and which are ascertained by repeated observation. When caterpillars bred upon a tree are shaken off and fall for the first time upon the ground, they immediately regain the tree by crawling up as quick as they can. Again-it is a very general law of insects, that the grub feeds upon a food which the parent does not eat, and yet the latter makes provision for the grub. Thus the solitary wasp deposits its eggs, each in a hole, and then collects a certain number of green worms, which she rolls up and deposits in the same hole, over the egg. When the grub is hatched, it feeds upon these worms until transformed into a young wasp. And bere two things are remarkable : first, the wasp itself never feeds upon the worm, or indeed on any animal food; and next, M. Reaumur found that she provides just
cable upon any other hypothesis than that of an instinct impressed upon the constitution of the animal. For, first, what should induce the female bird to prepare a nest before she lays her eggs? It is in vain to suppose her to be possessed of the faculty of reasoning; for no reasoning will reach the case. The fulness or distension which she might feel in a particular part of the body, from the growth and solidity of the egg within her, could not possibly inform her that she was about to produce something which, when produced, was to be preserved and taken care of. Prior to experience there was nothing to lead to this inference, or to this suspicion. The apalogy was all against it; for, in every other instance, what issued from the body was cast out and rejected.

But, secondly, let us suppose the egg to be produced into day; how should birds know that their eggs contain their young? There is no-
enough of the worms to eustain the grub till it becomes a fly, and changes its food. Our author dwells afterwards upon the application to the argument of the fact that the parent insect never sees its young. The architecture of bees "affords perhaps the most striking illustration; for those which have been taken without ever having any communication with the former race, build precisely in the accustomed manner. See the next note.
thing either in the aspect or in the internal composition of an egg which could lead even the most daring imagination to conjecture that it was hereafter to turn out from under its shell a living perfect bird. The form of the egg bears not the rudiments of a resemblance to that of the bird. Inspecting its contents, we find still less reason, if possible, to look for the result which actually takes place. If we should go so far as, from the appearance of order and distinction in the disposition of the liquid substances which we noticed in the egg, to guess that it might be designed for the abode and nutriment of an animal (which would be a very bold hypothesis), we should expect a tadpole dabbling in the slime, much more than a dry, winged, feathered creature, a compound of parts and properties impossible to be used in a state of confinement in the egg, and bearing no conceivable relation, either in quality or material, to anything observed in it. From the white of an egg, would any one look for the feather of a goldfinch? or expect from a simple uniform mucilage the most complicated of all machines, the most diversified of all collections of substances? Nor would the process of incubation, for some time at least, lead us to suspect the event. Who that saw red streaks shooting in the fine membrane which divides the white from the
-yolk would suppose that these were about to become bones and limbs? Who that espied two discoloured points first making their appearance in the cicatrix, would have had the courage to predict that these points were to grow into the heart and head of a bird? It is difficult to strip the mind of its experience. It is difficult to resuscitate surprise when familiarity has once laid the sentiment aslecp. But could we forget all that we know, and which our sparrows never knew, about oviparous gencration-could we divest ourselves of cvery information but what we derived from reasoning upon the appearances or quality discovered in the objects presented to us-I am convinced that Harlequin coming out of an egg upon the stage is not more astonishing to a child than the liatching of a chicken both would be, and ought to be, to a philosopher ${ }^{\text {T}}$.

[^92]But admit the sparrow by some means to know that within that egg was concealed the principle of a future bird: from what chemist was she to learn that warmth was necessary to bring it to maturity, or that the degree of warmth imparted by the temperature of her own body was the degree required?

To suppose, therefore, that the female bird acts in this process from a sagacity and reason of her own, is to suppose her to arrive at conclusions which there are no premises to justify. If our sparrow, sitting upon her eggs, expect young sparrows to come out of them, she forms, I will venture to say, a wild and extravagant expectation, in opposition to present appearances and to probability: She must have penetrated into the order of nature farther than any faculties of ours will carry us; and it hath been well observed, that this decp sagacity, if it be sagacity, subsists in
the chicken employs is a small protuberauce on its upper mandible, called the lill-scale, which has no other use, and accordingly drops off soon after the bird is hatched. If any one should consider this as a different operation in kind from those usually ascribed to instinct in animals that are formed, a little reflection will probably show him the impossibility of drawing any such line of distinction. See the Dissertation on Instinct, Appendix.
conjunction with great stupidity, even in relation to the same subject. "A chemical operation," eays Addison, " could not be followed with greator art or diligence than is seen in hatching a chicken; yet is the process carried on without the least glimmering of thought or common sense. The hen will mistake a piece of chalk for an egg-is insensible of the increase or diminution of their namber-does not distinguish between her own and those of another species-is frightened when her supposititious breed of ducklings take the water."

But it will be said, that what reason could not do for the bird, observation, or instruction, or tradition might. Now if it be true that a couple of sparrows, brought up from the first in a state of separation from all other birds, would build their nest, and brood upon their eggs, then there is an end of this solution. What can be the traditionary knowledge of a chicken hatched in an oven?

Of young birds taken in their nests, a few species breed when kept in cages; and they which do so build their nests nearly in the same manner as in the wild state, and sit upon their eggs. This is sufficient to prove an instinct without having recourse to experiments upon birds hatched by artificial heat, and deprived from their birth of all communication with their species; for we can
hardly bring ourselves to believe that the parent bird informed her unfledged pupil of the history of her gestation, her timely preparation of a nest, her exclusion of the eggs, her long incubation, and of the joyful eruption at last of her expected offspring: all which the bird in the cage must have learnt in her infancy if we resolve her conduct into institution.

Unless we will rather suppose that she remembers her own escape from the egg-had attentively observed the conformation of the nest in which she was nurtured-and had treasured up her remarks for future imitation; which is not only extremely improbable (for who that sees a brood of callow birds in their nest can believe that they are taking a plan of their habitation?) but leaves unaccounted for one principal part of the difficulty, " the preparation of the nest before the laying of the egg." This she could not gain from observation in her infancy.

It is remarkable also, that the hen sits upon eggs which she has laid without any communication with the male, and which are therefore neeessarily unfruitful. That secret she is not let into. Yet if incubation had been a subject of instruction or of tradition, it should seem that this distinction would have formed part of the lesson: whereas the instinct of nature is calculated
for a state of nature-the exception here alluded to taking place chiefly, if not solely, amongst domesticated fowls, in which nature is forced out of her course.

There is another case of oviparous economy, which is still less likely to be the effect of education than it is even in birds, namely, that of moths and butterflies, which deposit their eggs in the precise substance-that of a cabbage, for example -from which, not the butterfly herself, but the caterpillar which is to issuc from her egg, draws its appropriate food. The butterfly cannot taste the cabbage : cabbage is no food for her; yet in the cabbage, not by chance, but studiously and electively, she lays her eggs. There are, amongst many other kinds, the willow-caterpillar and the cabbage-caterpillar; but we never find upon a willow the caterpillar which eats the cabbage, nor the converse. This choice, as appears to me, cannot in the butterfly proceed from instruction. She had no teacher in her caterpillar state. She never knew her parent. I do not see, therefore, how knowledge acquired by experience, if it ever were such, could be transmitted from one generation to another. There is no opportunity either for instruction or imitation. The parent race is gone before the new brood is hatched. And if it be original reasoning in the butterfly, it is profound
reasoning indeed. She must remember her caterpillar state, its tastes and habits, of which memory she shows no signs whatever. She must conclude from analogy (for here her recollection cannot serve her), that the little round body which drops from her abdomen will at a future period produce a living creature, not like herself, but like the caterpillar which she remembers herself once to have been. Under the influence of these reflections, she goes about to make provision for an order of things which she concludes will some time or other take place. And it is to be observed, that not a few out of many, but that all butterflies argue thus; all draw this conclusion; all act upon it.

But suppose the address, and the selection, and the plan, which we perceive in the preparations which many irrational animals make for their young, to be traced to some probable origin, still there is left to be accounted for that which is the source and foundation of these phenomena, that which sets the whole at work, the $\sigma \tau 0 g \gamma n$, the parental affection, which I contend to be inexplicable upon any other hypothesis than that of instinct.

For we shall hardly, I imagine, in brutes, refer their conduct towards their offspring to a sense of duty or of decency, a care of reputation, a com-
pliance with public manners, with public laws, of with rules of life built upon a long experience of their utility. And all attempts to account for the parental affection from association, I think, fail With what is it associated? Most immediately with the throes of parturition, that is, with pain, and terror, and disease. The more remote, but not less strong association, that which depends apon analogy, is all against it. Everything clse which proceeds from the body is cast away and rejected. In birds is it the egg which the het loves? or is it the expectation which she cherishes of a future progeny that keeps her upon her nest? What cause has she to expect delight from her progeny? Can any rational answer be given to the question, why, prior to experience, the brooding hen should look for pleasure from her chickens? It does not, I think, appear that the cuckoo evet knows her young ; yet, in her way, she is as careful in making provision for them as any other bird. She does not leave her egg in every hole.

The salmon suffers no surmountable obstacle to oppose her progress up the stream of fresh rivers. And what does she do there? She sheds a spawn, which she immediately quits in order to return to the sea; and this issue of her body she never afterwards recognizes in any shape whatever. Where shall we find a motive for her efforts
and her perseverance? Shall we seek it in argumentation or in instinct? The violet crab of Jamaica performs a fatiguing march of some months' continuance from the mountains to the sea-side. When she reaches the coast; she casts her spawn into the open sea, and sets out upon her return home.

Moths and butterflies, as hath already been observed, seek out for their eggs those precise situations and substances in which the offspring caterpillar will find its appropriate food. That dear caterpillar the parent butterfly must never see. There are no experiments to prove that she would retain any knowledge of it if she did. How shall we account for her conduct? I do not mean for her art and judgment in selecting and securing a maintenance for her young, but for the impulse upon which she acts. What should induce her to exert any art, or judgment, or choice, about the matter? The undisclosed grub, the animal which she is destined not to know, can hardly be the object of a particular affection, if we deny the influence of instinct. There is nothing therefore left to her, but that of which her nature seems incapable, an abstract anxiety for the general preservation of the species-a kind of patriotism -a solicitude lest the butterfly race should cease from the creation.

Lastly, the principle of association will not explain the discontinuance of the affection when the young animal is grown up. Association operating in its usual way would rather produce a contrary effect. The object would become more necessary by habits of society; whereas birds and beasts, after a certain time, bavish their offspring, disown their acquaintance, seem to have even no knowledge of the objects which so lately engrossed the attention of their minds and occupied the industry and labour of their bodies. This change, in different animals, takes place at different distances of time from the birth; but the time always corresponds with the ability of the young animal to maintain itself, never anticipates it. In the sparrow tribe, when it is perceived that the young brood can fly and shift for themselves, then the parents forsake them for ever ; and, though they continue to live together, pay them no more attention than they do to other birds in the same flock*. I believe the same thing is true of all gregarious quadrupeds ${ }^{\text {Ts }}$.

> * Goldsmith's Natural History, vol. iv. p. 244.

[^93]In this part of the case the variety of resources, expedients, and materials which animals of the same species are said to have recourse to under different circumstances, and when differently supplied, makes nothing against the doctrine of instincts. The thing which we want to account for is the propensity. The propensity being there, it is probable enough that it may put the animal upon different actions according to different exigencies. And this adaptation of resources may look like the effect of art and consideration rather than of instinct; but still the propensity is instinctive. For instance, suppose what is related of the woodpecker to be true, that in Europe she deposits her eggs in cavities which she scoops out in the trunks of soft or decayed trees, and in which cavities the eggs lic concealed from the eye, and in some sort safe from the hand of man, but that, in the forests of Guinea and the Brazils, which man seldom frequents, the same bird hangs
duced by power and weakness, is of this description. A helpless infant excites much stronger sympathy in the mother than the child that can shift for itself; and hence the partiality, accompanied by blindness to defects, which most parents entertain towards children whose natural deficiency, whether bodily or mental, throws them on their care long after the season of infancy.
her nest on the twigs of tall trees, thereby placing them out of the reach of monkeys and snakes-i.e., that in each situation she prepares against the danger which she has most occasion to apprehend. Suppose. I say, this to be true, and to be alleged, on the part of the bird that builds these nests, as evidence of a reasoning and distinguishing precaution: still the question returns, whence the propensity to build at all?

Nor does parental affection aecompany generation by any universal law of animal organization, if such a thing were intelligible. Some animals cherish their progeny with the most ardent fondness, and the most assiduous attention; others entirely neglect them; and this distinction always meets the constitution of the young animal with respect to its wants and capacities. In many, the parental care extends to the young animal; in others, as in all oviparous fish, it is confined to the egg, and even as to that, to the disposal of it in its proper element. Also, as there is generation without parental affection, so is there parental instinct, or what exactly resembles it, without generation. In the bee tribe, the grub is nurtured neither by the father nor the mother, but by the neutral bee. Probably the case is the same with ants.

I am not ignorant of the theory which resolves
instinct into sensation, which asserts that what appears to have a view and relation to the future, is the result only of the present disposition of the animal's body, and of pleasure or pain experienced at the time. Thus the incubation of eggs is accounted for by the pleasure which the bird is supposed to receive from the pressure of the smooth convex surface of the shells against the abdomen, or by the relief which the mild temperature of the egg may afford to the heat of the lower part of the body, which is observed at this time to be increased beyond its usual state. This present gratification is the only motive with the hen for sitting upon her nest; the hatching of the chickens is, with respect to her, an accidental consequence. The affection of viviparous animals for their young is in like manner solved by the relief, and perhaps the pleasure, which they perceive from giving suck. The young animal's seeking, in so many instances, the teat of its dam, is explained from its sense of smell, which is attracted by the odour of milk. The salmon's urging its way up the stream of fresh-water rivers is attributed to some gratification or refreshment which, in this particular state of the fish's body, she receives from the change of element. Now of this theory it may be said,-

First, that of the cases which require solution,
there are few to which it can be applied with tolerable probability; that there are none to which it can be applied without strong objections, furnished by the circumstances of the case. The attention of the cow to its calf, and of the ewe to its lamb, appear to be prior to their sucking. The attraction of the calf or lamb to the teat of the dam, is not explained by simply referring it to the sense of smell. What made the scent of milk so agreeable to the lamb that it should follow it up with its nose, or seek with its mouth the place from which it proceeded? No observation, no experience, no argument could teach the newdropped animal that the substance from which the scent issued was the material of its food. It had never tasted milk before its birth. None of the animals which are not designed for that nourishment ever offer to suck, or to seek out any such food. What is the conclusion, but that the sugescent parts of animals are fitted for their use, and the knowledge of that use put into them?

We assert, secondly, that, even as to the cases in which the hypothesis has the fairest claim to consideration, it does not at all lessen the force of the argument for intention and design. The doctrine of instinct is that of appetencies, superadded to the constitution of an animal, for the
effectuating of a purpose beneficial to the species. The above-statcd solution would derive these appetencies from organization; but then this organization is not less specifically, not less precisely, and, therefore, not less evidently adapted to the same ends, than the appetencies themselves would be upon the old hypothesis. In this way of considering the subject, sensation supplies the place of foresight: but this is the effect of contrivance on the part of the Greator. Let it be allowed, for example, that the hen is induced to brood upon her eggs by the enjoyment or relief which, in the heated state of her abdomen, she experiences from the pressure of round smooth surfaces, or from the application of a temperate warmth. How comes this extraordinary heat or itching, or call it what you will, which you suppose to be the cause of the bird's inclination, to be felt just at the time when the inclination itself is wanted: when it tallies so exactly with the internal constitution of the egg, and with the help which that constitution requires in order to bring it to maturity? In my opinion, this solution, if it be accepted as to the fact, ought to increase, rather than otherwise, our admiration of the contrivance ${ }^{78}$. A gardener light-

[^94]ing up his stoves, just wher he wants to force his frait, and when his trees require the heat, gives
of attributes, the truth here glanced at is of extreme importance, and it pervades the whole of Natural Theology. It will be more fully illustrated in the Appendix, and in the notes to the subsequent chapters. When sceptics think they have destroyed one reason for believing in the skill or in the goodness of the Deity, by an explanation of the means used for producing some given effect, they only remove our admiration and our gratitude from one point to another, and often augment both the one and the other. Suppose it were discovered, contrary to all probability, that the bee makes the angles of $109^{\circ} 28^{\prime}$ and $70^{\circ} 32^{\prime}$ by means of some bodily confermation which secures this result,-some form of its own parts answering to those angles, if such a thing can be conceived; the wonder is only removed from the working of the insect without a tool to its using a tool provided for it by the intelligence which had solved the problem of maxima and minima, whence this conformation is a corollary. Again,-the loss of one sense, as the sight t_{2} quickens our perceptions through the organs of those senses which remain,-as touch and hearing. It is most probable that this effect is produced by the influence of habit, and has no direct connexion with the loss sustained. But habit might have had no such effect, and it might have blunted instead of sharpening; its effect tends to lessen the evil of the loss sustained; and if produces this advantage just as much as if the com-
mot a more certain evidence of design. So again; when a male and female sparrow come together, they do not meet to confer upon the expediency of perpetuating their species. As an abstract proposition, they care not the value of a barleycorn whether the species be perpetuated, or not: they follow their sensations, and all those consequences ensue, which the wisest counsels could have dictated, which the most solicitous care of futurity, which the most anxious concern for the
pensation had been the direct and immediate consequence of that loss. We are not here arguing the question of evil : that will be treated of hereafter, and it is common to both suppositions ; both to the case of immediate and of mediate compensation. Again,-suppose, in generalizing, we could resolve all intellectual phenomena into some one principle, as association,-all moral into some other, as habit,-all physical into some third, as gravi-tation;-nay, suppose the doctrines of some materialists to prevail, and that all mental and all physical phenomena were resolvable into the operations of some subtile fluid,-this would surely not weaken the arguments for the unity of the Deity, if indeed it did not rather strengthen them; it would in no degree detract from our conviction of his skill, nor even of the variety of its operations ; and it would leave the argument as to goodness exactly where it stood before.-See Appendix, Dissertation upon Evil.
sparrow-world, could have produced. But how do these consequences ensue? The sensations, and the constitution upon which they depend, are as manifestly directed to the purpose which we see fulfilled by them; and the train of intermediate effects as manifestly laid and planned with a view to that purpose: that is to say, design is as completely evinced by the phenomena, as it would be, even if we suppose the operations to begin or to be carried on, from what some will allow to be alone properly called instincts, that is, from desires directed to a future end, and having no accomplishment or gratification distinct from the attainment of that end.

In a word: I should say to the patrons of this opinion, Be it so; be it that those actions of animals which we refer to instinct are not gone about with any view to their consequences, but that they are attended in the animal with a present gratification, and are pursued for the sake of that gratification alone; what does all this prove, but that the prospection, which must be somewhere, is not in the animal, but in the Creator?

In treating of the parental affection in brutes, our business lies rather with the origin of the principle, than with the effects and expressions of it. Writers recount these with pleasure and
admiration. The conduct of many kinds of animals towards their young has escaped no observer, no historian of nature "How will they caress them," says Derham, "with their affectionate notes; lull and quiet them with their tender parental voice; put food into their mouths; cherish and keep them warm; teach them to pick, and eat, and gather food for themselves; and, in a word, perform the part of so many nurses, deputed by the Sovereign Lord and Preserver of the world to help such young and shiftless creatures!' Neither ought it, under this head, to be forgotten, how much the instinct costs the animal which feels it; how much a bird, for example, gives up by sitting upon her nest; how repugnant it is to her organization, her habits and her pleasures. An animal, formed for liberty, submits to confinement, in the very season when every thing invites her abroad: what is more, an animal delighting in motion, made for motion, all whose motions are so ensy, and so free, hardly a moment, at other times, at rest, is, for many hours of many days together, fixed to her nest, as close as if her limbs were tied down by pins and wires. For my part, I never see a bird in that situation but I recognise an invisible hand, detaining the contented prisoner from her fields and groves, for the
purpose, as the event proves, the most worthy of the sacrifice, the most important, the most beneficial.

But the loss of liberty is not the whole of what the procreant bird suffers. Harvey tells us that he has often found the female wasted to skin and bone by sitting upon her eggs.

One observation more, and I will dismiss the subject. The pairing of birds, and the non-pairing of beasts, forms a distinction between the two classes, which shows that the conjugal instinct is modified with a reference to utility founded on the condition of the offspring. In quadrupeds, the young animal draws its nutriment from the body of the dam. The male parent neither does, nor can contribute any part to its sustentation. In the winged race, the young bird is supplied by an importation of food, to procure and bring home which, in a sufficient quantity for the demand of a numerous brood, requires the industry of both parents. In this difference, we see a reason for the vagrant instinct of the quadruped, and for the faithful love of the feathered mate.

CHAPTER XIX.

OF 1NSECTS.

We are not writing a system of natural history; therefore we have not attended to the classes into which the subjects of that science are distributed. What we had to observe concerning different species of animals, fell easily, for the most part, within the divisiong which the course of our argument led us to adopt. There remain, however, some remarka upon the insect tribe, which could not properly be introduced under any of these heads; and which therefore we have collected into a chapter by themselves.

The structure, and the use of the parts, of insects, are less understood than that of quadrupeds and birds, not only by reason of their minuteness, or the minuteness of their parts (for that minuteness we can, in some measure, follow with glasses), but also by reason of the remoteness of their manners and modes of life from those of larger animals. For instance: Insects, under all their varieties of form, are endowed with
anfenne ${ }^{77}$, which is the name given to those long feclers that rise from each side of the head : but to what common use or want of the insect kind a provision so universal is subservient has not yet been ascertained; and it has not been ascertained, because it admits not of a clear, or very probable, comparison, with any organs which we possess ourselves, or with the organs of animals which resemble ourselves in their functions and faculties, or with which we are better acquainted

[^95]than we are with insects. We want a ground of analogy. This difficulty stands in our way as to some particulars in the insect constitution, which we might wish to be acquainted with. Nevertheless, there are many contrivances in the bodies of insects, neither dubious in their use, nor obscure in their structure, and most properly mechanical. These form parts of our argument.
I. The elytra, or scaly wings of the genus of scarabæus or beetle, furnish an example of this kind. The true wing of the animal is a light, transparent membrane, finer than the finest gauze, and not unlike it. It is also, when expanded, in proportion to the size of the animal, very large. In order to protect this delicate structure, and, perhaps, also to preserve it in a due state of suppleness and humidity, a strong, hard case is given to it in the shape of the horny wing which we call the elytron. When the animal is at rest, the gauze wings lie folded up under this impenetrable shield. When the beetle prepares for flying, he raises the integument, and spreads out his thin membrane to the air. And it cannot be observed without admiration, what a tissue of cordage, i. e. of muscular tendons, must run in various and complicated, but determinate directions, along this fine surface, in order to enable the animal, cither to gather it up into a certain pre-
cise form, whenever it desires to place its winge under the whelter which nature hath given to them; or to expand again their folds when wanted for action.

In some insects the elytra cover the whole body" ; in others, half; in others only a small part of it ${ }^{10}$; but in all ${ }^{80}$, they completely hide and cover the true wingr. Also,

Many or most of the beetle species lodge in
${ }^{70}$ From this circumstance beetles (the tribe of insects to which the above description applies) have received the name of Coleoptera, from two Greek words signifying sheath and wing.
${ }^{n}$ A tribe of insects called the Brachelytra (or Staphylinus of Linnæus) possess wing cases of this description.
${ }^{\infty}$ These are exceptions. In the genera Molorchus, Sitaris (and others might be enumerated among the beetle tribe), the wing cases are small and narrow, and leave the wings exposed. The species of the genus Molorchus, however, do not require such protection for their wings, since they live in flowers. The habits of the Sitaris are not so well known ; they are said to live in the nests of certain species of bees.

In the earwig the elytra do not entirely cover the wings ; but the portion of the wing exposed is of a hornlike substance, like the elytra, whilst the remaining part of the wing is extremely delicate.
holes in the earth, environed by hard, rough substances, and have frequently to squeeze their way through narrow passages; in which situation, wings so tender, and so large, could scarcely have escaped injury, without both a firm covering to defend them, and the capacity of collecting themselves up under its protection ${ }^{\text {日1 }}$.
II. Another contrivance, equally mechanical, and equally clear, is the awl, or borer, fixed at

the tails of various species of flies; and with which they pierce, in some cases, plants; in

[^96]others, wood; in others", the skin and flesh of animals; in others, the coat of the chrysalis of
and very strong, and burrow in the ground by means of their fore legs.

A great analogical resemblance also exists between an insect called the mole-cricket and the mole, their habits also being similar.

* Almost every caterpillar (perhaps, without exception) has its peculiar parasites among the ichneumonidæ, a different tribe of insects: the same ichneumon almost invariably choosing the same caterpillar to deposit its egge upon or in ; and as the situations in which different caterpillars feed are very various, so is the structure of their parasites. The ichneumons which infest internal feeding caterpillars (i. e., such as feed in the trunk of a tree, or the stem of a plant) are furnished with long ovipositors to enable them to reach the caterpillar through some hole or chink where they themselves cannot get.

Eien the ichneumons are not free from parasites. There are instances where four or five different parasitical insects have been found in the same chrysalis (as that of the Trichiosoma leucorum, a saw-fly), each one feeding upon the other. Thus several larve of an ichneumon may be found feeding upon the iuside of a chrysalis; and when these larvæ turn into pupæ or chrysalides, some of the chalcididx, a different tribe of flies, will feed upon them, and even some of the last may in their turn be eaten up.
insects of a different species from their own; and in others, even lime, mortar, and stone ${ }^{8 \pi}$. I need not add, that having pierced the substance, they deposit their eggs in the hole. The descriptions which naturalists give of this organ are such as the following: It is a sharp-pointed instrument, which, in its inactive state, lies concealed in the extremity of the abdomen, and which the animal draws out at pleasure, for the purpose of making a puncture in the leaves, stem, or bark, of the particular plant, which is suited to the nourishment of its young. In a sheath, which divides and opens whenever the organ is used, there is inclosed a compact, solid, dentated stem, along which runs a gutter or groove, by which groove, after the penetration is effected, the egg, assisted, in some cases by a peristaltic motion, passes to its destined lodgment. In the cestrum or gadfly, the wimble ${ }^{84}$ draws out like the pieces of a spyglass : the last piece is armed with three hooks,

[^97]and is able to bore through the hide of an ax. Can any thing more be necessary to display the mechanism, than to relate the fact?
III. The stings ${ }^{\text {os }}$ of insects, though for a different purpose, are, in their structure, not unlike the piercer. The sharpneas to which the point in all of them is wrought; the temper and firmness of the substance of which it is composed; the strength of the muscles by which it is darted out, compared with the smallness and weakness of the insect, and with the soft and friable texture of the rest of the body,-are properties of the sting to be noticed, and not a little to be admired. The sting of a bee will pierce through a goat-skin glove. It penetrates the human flesh more readily than the finest point of a needle. The action of the sting affords an example of the union of chemistry and mechanism, such as, if it be not a proof of contrivance, nothing is. First, as to the chemistry : how highly concentrated must be the venom, which, in so small a quantity, can produce such powerful effects! And in the bee we may observe that this venom is made from honey, the only food of the insect, but the last material from which I should have expected that an exalted poison could, by any process or diges-

[^98]tion whatsoever, have been prepared. In the next place, with respect to the mechanism, the sting is not a simple but a compound instrument. The visible sting, though drawn to a point exquisitely sharp, is in strictness only a sheath, for, near to the extremity, may be perceived by the microscope two minute orifices, from which orifices, in the act of stinging, and, as it should seem, after the point of the main sting has buried itself in the flesh, are launched out two subtile rays, which may be called the true or proper stings, as being those through which the poison is infused into the puncture already made by the exterior sting. I have said that chemistry and mechanism are here united: by which observation I meant, that all this machinery would have been useless, telum imbelle, if a supply of poison, intense in quality, in proportion to the smallness of the drop, had not been furnished to it by the chemical elaboration which was carried on in the insect's body; and that, on the other hand, the poison, the result of this process, could not have attained its effect, or reached its enemy, if, when it was collected at the extremity of the abdomen, it had not found there a machinery fitted to conduct it to the external situations in which it was to operate, viz. an awl to bore a hole, and a syringe to
inject the fluid. Yet these attributes, though combined in their action, are independent in their origin. The venom does not breed the sting; nor does the sting concoct the venom.
IV. The proboscis", with which many insects are endowed, comes next in order to be con-

sidered. It is a tube attached to the head of the animal; in the bee, it is composed of two

* The part called proboscis in the bee consists of a central stalk, or tongue, a, (Fig. l,) and four lateral pieces, or jaws, two of which spring from the base, and two have their origin near the middle. The apical half of the stalk is soft and flexible, rather flat, and covered with minute hairs: it is chiefly this part of the proboscis which is used in collecting honey. Honey is not sucked up as is generally supposed, but licked up, and then conveyed to the cesophagus. The four lateral pieces when closed form a sheath to protect the tongue, and
pieces, connected by a joint: for, if it were constantly extended, it would be too much exposed to accidental injuries; therefore, in its indolent state, it is doubled up by means of the joint, and in that position lies secure under a scaly penthouse ${ }^{87}$. In many species of the butterfly, the proboscis, when not in use, is coiled up like a watch-spring. In the same bee, the proboscis serves the office of the mouth, the insect having no other ${ }^{38}$; and how much better adapted it is, than a mouth would be, for the collecting of the proper nourishment of the animal is sufficiently evident. The food of the bee is the nectar of flowers; a drop of syrup, lodged deep in the bottom of the corollæ, in the recesses of the petals, or down the neck of a monopetalous glove. Into these cells the bee
other parts of the central stalk. Fig. 2 represents the profile of a butterify's head; a is the compound eye, and b the proboscis partially unfolded; c and d show portions of the tubes forming the proboscis highly magnified.
${ }^{87}$ There is an indentation in the under side of the head to receive the proboscis when folded up.
${ }^{89}$ A bee has the same number of parts to its mouth as any other insect; the only difference between that of a bee and a beetle is, that some of the parts are more developed in the former: viz., the labium, tongue, and maxillæ.
thrusts its long narrow pamp, through the cavity of which it sucks ${ }^{30}$ up this precious fluid, inaccessible to every other approach. It is observable also, that the plant is not the worse ${ }^{20}$

[^99]for what the bee does to it. The harmless plunderer rifles the sweets, but leaves the flower uninjured. The ringlets of which the proboscis of the bee is composed, the muscles by which it is extended and contracted, form so many microscopical wonders. The agility also with which it is moved can hardly fail to excite admiration. But it is enough for our purpose to observe, in general, the suitableness of the structure to the use of the means to the end, and especially the wisdom by which nature has departed from its most general analogy, (for animals being furnished with mouths are such,) when the purpose could be better answered by the deviation.

In some insects the proboscis, or tongue, or trunk, is shut up in a sharp-pointed sheath, which sheath ${ }^{\text {21 }}$, being of a much firmer texture than the
yield the most farina; whereas in others (the apida) honey with very little farina is stored up for the young.
${ }^{91}$ The mouth of the common flea (Pulex irritans) is of this nature; it is composed of seven pieces, a pair of mandibles, a pair of maxilla, two palpi or feelers, and a congue. The uses of these pieces appear to be as follows:-the mandibles, which are short, strong, and sharp, are to cut through the outer skin; the maxilla; which are long and shaped like lancets, are to pierce still deeper so as to cause bleeding: the tongue is then used to lick and convey the blood to the cesophagus;
proboscis itself, as well as sharpened at the point, pierces the substance which contains the food, and then opens within the wound, to allow the enclosed tube, through which the juice is extracted, to perform its office. Can any mechanism be plainer than this is, or surpass this?
V. The metamorphosis of insects from grubs into moths and flies is an astonishing process. A hairy caterpillar is transformed into a butterfly. Observe the change. We have four beautiful wings where there were none before-a tubular proboscis in the place of a moutl with jaws and teeth ${ }^{83}$,
and the palpi are to direct these operations, conveying information to the animal by feeling or touch. These same seven parts (forming the mouth, and technically called trophi) are to be found in almost all insects, but constructed in different ways to suit the various habits of the species.
${ }^{02}$ The mouth of the caterpillar, or larva state of insects, has, in the greater portion of the species, the same number of parts as that of the perfect insect. In the pupa state some of these parts become nearly or quite obliterated, whilst others are much more developed to suit the habits of the animal in its next or perfect state of existence ; and thus, of course, in some instances, where there is but little difference between the habits of the larva and those of the perfect insect, there is likewise but little difference in the structure of the mouth,
six long legs instead of fourteen fect. In another case we see a white, smooth, soft worm turned
as, for instance, in locusts, grasshoppers, and cockroaches.

In the butterfly tribe the maxillæ or under-jaws of the caterpillar become in the perfect insect elongated into two tubes (see Cut), which may be joined together at the pleasure of the animal, by means of projecting ridges (furnished with a sort of hook somewhat like the laminæ of feathers), in such a way as to leave

HUMBLE BEE。
a, a, mandib.es ; b, b, maxillæ;

c, c, maxillary palpi; e, e, labial palpi;
d, d, labium; f, tongue ; g, neck.
a third tube between the two. It is through the central tube that the nectar is pumped or sucked up; the two
into a black, hard, crustaceous beetle with gauze wings. These, as I said, are astonishing processes, and must require, as it should seem, a proportionably artificial apparatus. The hypothesis which appears to me most probable is, that, in the grub, there exist at the same time three animals, one within another, all nourished by the same digestion, and by a communicating circulation, but in different stages of maturity ${ }^{98}$. The
outer tubes Reaumur imagines are for the reception of air; if this be the case, it may possibly be that air which is discharged from the central tube to create the necessary vacuum. The mandibles, or upper jaws, and other parts conspicuous in the caterpillar, are to be found only in a rudimentary state in the butterfly,-yet they do exist.

* The following observations do not exactly support the opinion of Dr. Paley. It is more probable that the parts which are to appear in the perfect insect do not exist in the larve., where there is not much difference between the larva and pupa excepting at the time just previous to its becoming a pupa, at which time the larva is motionless and torpid. The caterpillar of a moth, when about to turn into a pupa, provides for the protection of the latter state, either by surrounding itself with a web, or by some other means. Soon after this is accomplished the caterpillar becomes motionless, or nearly so; it can neither eat nor crawl. At this time,
latest discoveries made by naturalists seem to favour this supposition. The insect already equipped with wings, is descried under the membranes both of the worm and nymph. In some species the proboscis, the antennæ, the limbs, and wings of the fly have been observed to be folded up within the body of the caterpillar, and with
and not before, the parts of the pupa are forming within the skin of the caterpillar, which may be easily seen by dissection. When the difference between the larva and the perfect insect is great this is always the case, and the pupa is passive; but when the difference is not so considerable the case is different. The larva of a grasshopper scarcely differs from the perfect insect it is to become, except in wanting wings; the pupa differs only in having rudimentary instead of perfect wings; it casts its skin; it is then the perfect insect, excepting that the wings are crippled, and these very rapidly expand. In this latter case it is seen that there is but little difference between the three stages, and the change from the caterpillar to the moth is very great, and takes place only during the torpid state of the former, which state is to allow of its taking place. In the case of the grasshopper, where the changes are but slight, we should imagine but little of this torpidity would be required; and such appears to be the case, for the pupæ of grasshoppers, and allied insects, are always as active as either the larva or perfect insect.
such nicety as to occupy a small space only under the two first wings. This being so, the outermost animal which, besides its own proper character, scrves as an integument to the other two, being the farthest advanced, dies, as we suppose, and drops off first. The second, the pupa or chrysalis, then offers itself to observation. This also, in its turn, dics; its dead and brittle husk falls to pieces, and makes way for the appearance of the fly or moth. Now if this be the case, or indeed whatever explication be adopted, we have a prospective contrivance of the most curious kind; we have organizations three deep, yet a vascular system which supplies nutrition, growth, and life to all of them together.
VI. Almost all insects are oviparous. Nature keeps her butterflies, moths, and caterpillars lockedup during the winter in their egg-state; and we have to admire the various devices to which, if we may so speak, the same nature hath resorted for the security of the egg. Many insects enclose their eggs in a silken web; others cover them with a coat of hair torn from their own bodies; some glue them together; and others, like the moth of the silk-worm, glue them to the leaves upon which they are deposited, that they may not be shaken off by the wind, or washed away by rain. Some, again, make incisions into leaves,
and hide an egg in each incision; whilst some envelope their eggs with a soft substance which forms the first aliment of the young animal; and some again make a hole in the earth, and, having stored it with a quantity of proper food, deposit their eggs in it. In all which we are to observe, that the expedient depends not so much upon the address of the animal, as upon the physical resources of his constitution.

The art also with which the young insect is coiled $u p$ in the egg presents, where it can be examined, a subject of great curiosity. The insect, furnished with all the members which it ought to have, is rolled up into a form which seems to contract it into the least possible space; by which contraction, notwithstanding the smallness of the egg, it has room enough in its apartment, and to spare. This folding of the limbs appears to me to indicate a special direction; for if it were merely the effect of compression, the collocation of the parts would be more various than it is. In the same species, I believe, it is always the same.

These observations belong to the whole insect tribe, or to a great part of them. Other observations are limited to fewer species, but not, perhaps, less important or satisfactory.
I. The organization in the abdomen of the silk-
worm or spider, whereby these insects form their thread, is as incontestably mechanical as a wiredrawer's mill. In the body of the silkworm are

two bags, remarkable for their form, position, and use. They wind round the intestine; when drawn out they are ten inches in length, though the animol itself be only two. Within these bags is collected a glue; and, conamunicating with the bags, are two paps or outlets, perforated like a grater by a number of amall holes. The glue or gum, being passed through these minute apertures, forms hairs of alnoost inaperceptible fineness; and these hairs, when joined, compose the silk which we wind off from the cone in which the silkworm has wrapped iteelf up: in the spider, the web is formed from this thread. In both cases, the extremity of the thread, by means of its adhesive quality, is first attached by the animal to some external hold; and the end being now fastened to a point, the insect, by turning round its body, or by receding from that point, draws out the thread through the holes above described, by an operation, anath been observed, exactly similar to the drawing of wire. The thread, like the wire, in formed by the bole through which it pasmes. In
ore respect there is a difference. The wire is the metal unaltered, except in figure. In the animal process the nature of the sulstance is somewhat changed as well as the form; for, as it exists within the insect, it is 2 soft, clammy gum or glue. The thread acquires, it is probable, its firmness and tenacity from the action of the air upon its surface in the moment of exposure; and a thread so fine is almost all surface. This property, however, of the paste is part of the contrivance.

The mechanism itself consists of the bags or reservoirs into which the glue is collected, and of the external holes communicating with these bags; and the action of the machine is seen in the forming of a thread, as wire is formed, by forcing the material already prepared through holes of proper dimensions. The secretion is an act too subtile for our discernment, except as we perceive it by the produce. But one thing answers to another; the secretory glands to the quality and consistence required in the secreted substance; the bag to its reception. The outlets and orifices are constructed not merely for reliern ing the reservoirs of their burden, but for mamufacturiag the contents into a form and texture of great external use, or rather, indeed, of futare tecessity, to the life wnd fumctions of the insoct.
II. Bees, under one character or other, have furnished every naturalist with a set of observations. I shall, in this place, confine myself to one; and that is the relation which obtains between the wax and the honey. No person who has inspected a bee-hive can forbear remarking how commodiously the honey is bestowed in the comb, and, amongst other advantages, how effectually the fermentation of the honey is prevented by distributing it into small cells. The fact is, that when the honey is separated from the comb, and put into jars, it runs into fermentation with a much less degree of heat than what takes place in a hive. This may be reckoned a nicety; but, independently of any nicety in the matter, I would ask, what could the bee do with the honey if it had not the wax? how, at least, could it store it up for winter? The wax, therefore, answers a purpose with respect to the honey; and the honey constitutes that purpose with respect to the wax. This is the relation between them. But the two substances, though together of the greatest use, and without each other of little, come from a different origin. The bee finds the honey, but makes the wax. The honey is lodged in the nectaria of flowers, and probably undergoes little alteration-is merely collected; whereas the wax is a ductile tenacious paste, made out of a dry
powder ${ }^{94}$, not simply by kneading it with a liquid, but by a digestive process in the body of the bee. What account can be rendered of facts so circumstanced, but that the animal, being intended to feed upon honey, was, by a peculiar extcrnal configuration, enabled to procure it? That, moreover, wanting the honey when it could not be procured at all, it was further endued with the no less necessary faculty of constructing repositories for its preservation?. Which faculty, it is evident, must depend primarily upon the capacity of providing suitable materials. Two distinct functions go to make up the ability. First, the power in the bee, with respect to wax, of loading the farina of flowers upon its thighs. Microscopic observers speak of the spoon-shaped appendages with which the thighs of bees are beset for this very purpose; but, inasmuch as the art and will of the bee may be supposed to be concerned in this operation, there is, secondly, that which doth not rest in art or will-a digestive faculty, which converts the loose powder into a stiff substance. This is a just

[^100]account of the honey and the honey-comb; and thin account, through every part, carries a creative intelligence along with it ${ }^{\circ}$.

The sting also of the bee has this relation to the honey, that it is necessary for the protection of a treasure which invites so many robbers.
III. Our business is with mechanism. In the pasorpa tribe of insects, there is a forceps in the tail of the male insect with which he catches and holds the female. Are a pair of pincers more mechanical than this provision in its structure? or is any structure more clear and certain in its design*?

[^101]IV. St. Pierre tells us*, that in a fly with six feet (I do not remember that he describes the species), the pair next the head and the pair next the tail have brushes at their extremities, with which the fly dresses, as there may be occasion; the anterior or the posterior part of its body; but that the middle pair have no such brushes, the situation of these legs not admitting of the brushes, if they were there, being converted to the same use: This is a very exact mechanical distinction".
V. If the reader, looking to our distributions of science, wish to contemplate the chemistry as well as the mechanism of nature; the insect creation will afford him an example. I refer to the light in the tail of a glow-worm. Two points seem to be agreed upon by naturalists concerning it:
allied to the rose beetle) the males have the tibise of the
middle pair of legs curved for the same purpose.
"The stag-beetle (Lucanus cervus) cleans its an-
tennæ "by drawing them between the thigh of the fore-
leg and the underside of the thorax, in both of which
parts a velvet-like patch of hair is to be observed, which
is well adapted for such parpose." See this, and other
peculiarities in. the same insect, in the first Part of the
Entomological Society's Transactions, in 'The Journal:
of Proceedings,' page 6.

* Vol. i. p. 348.
firut, that it is phosphoric; secondly, that its use is to attract the male insect. The only thing to be inquired after is the singularity, if any such there be, in the natural history of this animal, which should render a provision of this kind more necessary for it than for other insects. That singularity seems to be the difference which subsists between the male and the female, which difference is greater than what we find in any other species of animal whatever. The glow-worm is a female caterpillar, the male of which is a fly, lively, comparatively small, dissimilar to the female in appearance, probably also as distinguished from her in habits, pursuits, and manners, as he is unlike in form and external constitution. Here then is the adversity of the case. The caterpillar cannot meet her companion in the air. The winged rover disdains the ground. They might never therefore be brought together did not this radiant torch direct the volatile mate to his sedentary female ${ }^{n}$.

[^102]In this example we also see the resources of art anticipated. One grand operation of chemistry is the making of phosphorus; and it was thought an ingenious device to make phosphoric matches supply the place of lighted tapers. Now this very thing is done in the body of the glow-worm. The phosphorus is not only made, but kindled, and caused to emit a steady and genial beam, for the purpose which is here stated, and which I believe to be the true one ${ }^{29}$.
VI. Nor is the last the only instance that entomology affords, in which our discoveries, or
but apterous female insects are not unfrequent; thus many species of moths have no wings. The two circumstances of the sedentary habits of the female, and the males flying by night only, seems to show the use of the light. See the next note.
${ }^{20}$ There exists some controversy among naturalists as to the use of the glow-worm's light. The doubt has been chiefly raised by the observation that the insect is luminous, though in an imperfect degree, when in the state in which it cannot propagate, as mentioned in the last note; and that other insects are attracted by light as well as the male glow-worm. The preponderance of the argument is decidedly in favour of the supposition adopted by our author, and which is also the commonly received opinion. The particulars of the discussion will be given in the Appendix.
rather our projeets, tamn out to be imitations of nature. Some years ago, a plan was auggented, of producing propulsion by re-action in this way: by the force of a steam-engine, a stream of waterwae to be shot out of the stern of a boat, the inspulse of which stream upon the water in the riverwas to push the boat itelf forward; it is in truth the principle by which sky-rockets ascend in the air. Of the use or practicability of the plan I: am. not speaking; nor is it my concern to praise its ingenuity; but it is certainly a contrivance. Now, if. naturalists are to be believed, it is exactly the device.which nature has made use of for the motion of some species of aquatic insects. The larva of the dragon-fly, according. to Adams, swims by ejecting water from its tail-is driven forward by the re-action of water in the pool upon the current issuing in a direction backward from its body.
VII. Again : Europe has lately been surprised by the elevation of bodies in the air by means of a balloon. The discovery consisted in finding out a manageable substance, which was, bulk for bulk, lighter than air; and the application of the discovery was to make a body composed of this substance bear up, along with its own weight, some heavier body which was attached to it. This expedient, so new to us, proves to be no other than what the Author of nature has employed in the
gossamer spider. We frequently see this spider's thread floating in the air; and extended from hedge to hedge across a road or brook of four or five yards width. The animal which forms the: thread has no wings wherewith to fly from one. extremity to the other of this line, nor muscles to enable it to spring or dart to so great a distance: yet its Creator hath laid for it a path in the atmosphere; and after this manner. Though the animal itself be hearier than air, the thread which it spins from its bowels is specifically lighter. This is its balloon. The spider, left to itself, woulddrop to the ground; but being tied to its thread, both are'supported. We have here a very peculiar provision; and to a contemplative eye it is a gratifying spectacle to see this insect wafted on her thread, sustained by a levity not her own, and traversing regions which, if we examinedionly the body of the animal, might seem to have been forbidden to its nature ${ }^{100}$.

[^103]
J

I must now crave the reader's permission to introduce into this. place, for want of a better, an .observation or two upon the tribe of animals, whether belonging to dand or water, which are covered by shells.

Helix appersa of Müller,-common garden snail; but the cut represents what is called a left-handed shell, and a rarity.
I. The shells of snails are a wonderful, a mechanical, and, if one might so speak concerning the works of nature, an original contrivance. Other animals have their proper retreats, their hybernacula also, or winter-quarters, but the snail carries these about with him. He travels with his tent; and this tent, though, as was necessary, both light and thin, is completely impervious $\mathrm{e}^{\text {ither to moisture or air. The young snail comes }}$
out of its egg with the shell upon its back; and" the gradual enlargement-which the shell receives is derived from the. slime excreted by the animal's skin. Now the aptness of this excretion to the purpose, its property of hardening into a shell, and the action, whatever it be, of the animal, whereby it avails itself of its gift; and of the constitution of its glands (to say nothing of the work being commenced before the animal is born), are thing which can, with no probability, be referred to any other cause than to express design; and that not on the part of the animal alone, in which design, though it might build the house, it could not have supplied the material. The will of the animal could not determine the quality of the excretion. Add to which, that the shell of the snail, with its pillar and convolution, is a very artificial fabric; whilst a snail, as it should seem, is the most numb and unprovided of all artificers. In the midst of variety there is likewise a regularity which could hardly be expected. In the same species of snail the number of turns is usually, if not always, the same. The sealing up of the mouth of the shell by the snail is also well calculated for its warmth and security; but the cerate is not of the same substance with the shell.
II. Much of what has been observed of snails
belongs to shell-fish and their shelles, particularly to thoe of the univalve kind; with the addition

Spondylus-prickly oyster.
of. two remarks-one of which is upon the great. strength and hardness of most of these shells. I do not know whether, the weight being given, art can produce so strong a case as are some of these shells; which defensive strength. suits well with

Ostrea crista galli, of Lamarck, Mytilus crista galli of Linnæusthe cockitw-comb oyster.
the life of an animal that has often to sustain the dangers of a stormy element and a rocky bottom, as well as the attacks of voracious fish. The: other remark is upon the property, in the animalexcretion, not only of congealing, but of congealing or, as a builder would call it, setting, in water, and into a cretaceous substanee, firm and hard. This property is much more extraordinary, and, chemically speaking, more specific, than that of hardening in the air, which may be reekoned akind of exsiccation, like the drying of clay inta bricks.
III. In the bivalve order of shell-fish, cockles, mussels, oysters, \&c., what contrivance can be so simple or so clear as the insertion, at the back, of

Cardium cardissa-Venus' heart cockle.
a tough tendinous substanee that becomes at onee the ligament which binds the two shells-together, and the hinge upon which they open and shut?
IV. The shell of a lobster's tail, in its articular:
tions and overlappings, represents the jointed part of a coat of mail ; or rather, which I believe to be the truth, a coat of mail is an imitation of a lobster's shell. The same end is to be answered by both; the same properties, therefore, are required in both, namely, hardness and flexibility-a covering which may guard the part without obstructing its motion. For this double purpose the art of man, expressly exercised upon the subject, has not been able to devise anything better than what nature presents to his observation. Is not this therefore mechanism, which the mechanic, having a similar purpose in view, adopts? Is the structure of a coat of mail to be referred to art? Is the same structure of the lobster, conducing to the same use, to be referred to anything less than art?

Some who may acknowledge the imitation, and assent to the inference which we draw from it in the instance before us, may be disposed, possibly, to ask, why such imitations are not more frequent than they are, if it be true, as we allege, that the same principle of intelligence, design, and mechanical contrivance was exerted in the formation of natural bodies as we employ in the making of the various instruments by which our purposes are served? The answers to this question are, first, that it seldom happens that precisely the same
purpose, and no other, is pursued in any work which we compare of nature and of art; secondly, that it still more seldom happens that we can imitate nature if we would. Our materials and our workmanship are equally deficient. Springs and wires, and cork and leather, produce a poor substitute for an arm or a hand. In the example which we have selected, I mean a lobster's shell compared with a coat of mail, these difficulties stand less in the way than in almost any other that can be assigned; and the consequence is, as we have seen, that art gladly borrows from nature' her contrivance, and imitates it closely.

But to return to insects. I think it is in this closs of animals above all others, especially when we take in the multitude of species which the microscope discovers, that we are struck with what Cicero has called "the insatiable variety of nature." There are said to be six thousand species of flies; seven hundred and sixty butterflies; each different from all the rest (St. Pierre) ${ }^{101}$. The same writer

[^104]tells us, from his own observation, that thintyseven species of winged insects, with distinctions well expressed, visited a single strawberry-plant in the course of three weeks*. Ray observed, within the compass of a mile or two of his own house, two hundred kinds of butterfies ${ }^{106}$, nocturnal and diurnal. He likewise asserts, but, F think, without any grounds of exact computation, that the number of species of insects, reckoning all sorts of them, may not be short of ten thousand \dagger. And in this vast variety of animal forms (for the observation is not confined to insects, though more applicable perhaps to them than to any other class), we are sometimes led to take notice of the different methods, or rather of the studiously diversified methods, by which one and the same purpose is attained. In the article of breathing, for example, which was to be provided for in some
sand, since the publication of which many new species have been discovered. We are now speaking of true insocta,-amimals having six legs, ac.,-and not inclading crabs, spiders, scorpions, and others, which have been classed with insects.
${ }^{108}$ Ray must mean butterflies and moths,-we have not one hundred species of butterflies in this country; and besides, no butterflies are " nocturnal."

[^105]way or other, besides the ordinary varieties of lungs, gills, and breathing-holes (for insects in general respire, not by the mouth, but through holes in the sides), the nymphe of gnats have an apparatus to raise their backs to the top of the water, and so take breath. The hydrocanthari do the like by thrusting their tails out of the water.* The maggot of the eruca labra has a long tail, one part sheathed within another (but which it can draw out at pleasure), with a starry tuft at the end, by which tuft, when expanded upon the surface, the insect both supports itself in the water, and draws in the air which is necessary. In the article of natural clothing, we have the skins of animals invested with scales, hair, feathers, mucus, froth, or itself turned into a shell: or crust. In the no less necessary article of offence and defence, we have teeth, talons, beaks, horns, stings, prickles, with (the most singular expedient for the same purpose) the power of giving the electric shock, and, as is credibly related of some animals, of driving away their pursuers by an intolerable fotor, or of blackening the water through which they are pursued. The consideration of these appearances might induce us to believe that variety itself, distinct from every other reason, was a motive in the mind of the Creator or with the agents of his will.
$$
\text { * Dechaso, p. } 7
$$

To thin great variety in organised life the Deity has given, or perhaps there arises out of it, a corresponding variety of animal appetites. For the final cause of this we have not far to seek. Did all animals covet the same clement, retreat, or food, it is evident how much fewer could be supplied and accommodated than what at present live conveniently together, and find a plentiful subsistence. What one nature rejects another delights in. Food which is nauseous to one tribe of animals becomes, by that very property which makes it nauseous, an alluring dainty to another tribe. Carrion is a treat to dogs, ravens, vultures, fish ${ }^{103}$. The exhalations of corrupted substances attract flies by crowds. Maggots revel in putrefaction ${ }^{104}$.

[^106]most striking instances of the discoveries of man having been anticipated by the lower animals; and is another remarkable proof how many more might have been made by closely attending to their habits,-perhaps a more remarkable proof than those referred to in the text of this chapter, and hinted at in chapter viii., where the author is treating of the vertebre and ribs. It is certain that some of the most material improvements in paper-making recently introduced, as the use of other substances besides rags, and the obtaining toughness by means of long fibres, had been known to the wasp from its first creation. Its whole process in making what is called wasp-paper is precisely that of the best paper-makers. This will be illustrated in the Appendix. It is only mentioned here as another among the striking instances of the Divine agency through the operations of unreasoning animals-instances which fill the contemplative miud with the most profound and pleasing admiration, and dispose it to the enjoyment and the duty of heartelt devotion.

The migration of birds is another subject full of instruction regarding the great questions conuected with instinct, and is reserved for the Appendix. Observation seems at variance with the notion of the older birds teaching the yearlings; indeed, the two classes have been found not to travel together. But the agitation universally observed in birds of passage kept in cages, at the season of migration, proves clearly that no experience nor instruction will account for the change of place. See Mr. W. Herbert's excellent remarks on this
imetinct, and on the similar instincts respecting choice of foed, which mokes birds bred in a cage at once select their appointed food when shown them for the frist time. White's Selbourne, edit. 1833, p. 41, et sel. The facts respecting carrier-pigeons and other animals finding their way through countries in the knowledge of which they never could have been trained, belong to the same class, and will be particularly disscussed in the Appendix-Dissertation upon Instinct.

The doctrine of conflicting instincts will be considered nuder the head of conflicting contrivances in the lissertations upon Evil, and adverted to in the Notes on the lest Chapter. Such apparent conflicts afford no ground whatever for the sceptical argument as to design; and they in no way strengthen the sceptical argument drawn, and inaccurately drawn, from other sources, respecting benevolence.

CHAPTER XX.

OF PLANTS.

I trink a designed and studied mechanism to be in general more evident in animals than in plants; and it is unnecessary to. dwell upon a weaker argument where a stronger is at hand. There are, however, a few observations upon the vegetable kingdom which lie so dinectly in our way, that it would be improper to pass by them without notice.

The one great intention of nature in the structure of plants seems to be the perfecting of the seed, and, what is part of the same intention, the preserving of it until it be perfected. This intention shows itself, in the first place, by the care which appears to be taken to protect and ripen, by every advantage which can be given to them of situation in the plant, those parts which most immediately contribute to fructification, viz., the antheree, the stamina, and the stigmata. These parts are usually lodged in the centre, the recesses, or the labyrinths of the flower-during their tender and immature state are shut up in the stalk, or sheltered in the bud-as moon as they have
acquired firmness of texture sufficient to bear exposure, and are ready to perform the important office which is assigned to them, they are disclosed to the light and air by the bursting of the stem or the expansion of the petals; after which they have, in many cases, by the very form of the flower during its blow, the light and warmth reflected upon them from the concave side of the cup. What is called also the sleep of plants is the leaves or petals disposing themselves in such a manner as to shelter the young stems, buds, or fruit. They turn up, or they fall down, according as this purpose renders either change of position requisite. In the growth of corn, whenever the plant begins to shoot, the two upper leaves of the stalk join together, embrace the ear, and protect it till the pulp has acquired a certain degree of consistency. In some water-plants the flowering and fecundation are carried on within the stem, which afterwards opens to let loose the impregnated seed*. The pea, or papilionaceous, tribe enclose the parts of fructification within a beautiful folding of the internal blossom, sometimes called, from its shape, the boat or keel-itself also protected under a penthouse formed by the external petals. This structure is very artificial; and

[^107]what adds to the value of it, though it may diminish the curiosity, very general. It has also this further advantage (and it is an advantage strictly mechanical), that all the blossoms turn their backs to the wind whenever the gale blows strong enough to endanger the delicate parts upon which the seed depends. I have observed this a hundred times in a field of peas in blossom. It is an aptitude which results from the figure of the flower, and, as we have said, is strictly mechanical, as much so as the turning of a weather-board or tin cap upon the top of a chimney. Of the poppy, and of many similar species of flowers, the head while it is growing hangs down, a rigid curvature in the upper part of the stem giving to it that

Papaver rhaas-Poppy.
position; and in that position it is impenctrable by rain or moisture. When the head has acquired its size and is ready to open, the stalk erects itself for the purpose, as it should seem, of presenting the flower, and with the flower the instruments of fructification, to the genial influence of the sun's rays. This always struck me as a curious property, and specifically as well as originally provided for in the constitution of the plant; for if the stem be ouly bent by the weight of the head, how comes it to straighten itself when the head is the heaviest? These instances show the attention of nature to this principal object, the safety and maturation of the parts upon which the seed depends.

In trees, especially in those which are natives of colder climates, this point is taken up earlier. Many of these trees (observe in particular the ash and the horse-chestnut) produce the embryos of the leaves and flowers in one year, and bring them to perfection the following. There is a winter therefore to be gotten over. Now what we are to remark is, how nature has prepared for the trials and severities of that season. These tender embryos are, in the first place, wrapped up with a compactness which no art can imitate; in which state they compose what we call the bud. This is not all: The bud itself is enclosed in
scales; which scales are formod from the remains of past leaves, and the rudiments of future ones ${ }^{103}$. Neither is this the whole. In the coldest climaates, a third preservative is added, by the bud having a coat of gum or resin, which, being cangealed, resists the strongest frosts. On the approach of warm weather, this gum is softened, and ceases to be ain hindrance to the expansion of the leaves and flowers. All this care is part of that system of provisions which has for its object and consummation the production and perfecting of the seeds.

The seeds themselves are packed up in a capeale, a vessel composed of coats, which, compared with the rest of the flower, are strong and toukg.
${ }^{105}$ This is not exactly true. Buds are not enclosed in seales formed from the remains of past leaves, except in a sew rare instances, to which it cannot be supposed that the axthor refers; neither are they protected by what can correctly be called the rudiments of future leaves, or are only protected in part. The extensive scales of a bud, those in which the office of protection more especially resides, are rudimentary leaves, which are formed at the end of the season, when the force of development in the vegetable system is weak and im. perfect; they do not become leaves another season, but are simply thrown off by the expansion of the leaves which umfold from within them.

From this vessel projects a tube, through which tube the farina, or some subtile fecundating effluvium that issues from it, is admitted to the seed. And here also occurs a mechanical variety, accommodated to the different circumstances under which the same purpose is to be accomplished. In flowers which are erect, the pistil is shorter than the stamina; and the pollen, shed from the anthere into the cup of the flower, is caught in its descent by the head of the pistil, called the stigma. But how is this managed when the flowers hang down (as does the crown-imperial for instance), and in which position, the farina, in its fall, would be carried from the stigma, and not towards it? The relative length of the parts is now inverted. The pistil in these flowers is usually longer, instead of shorter, than the stamina, that its protruding summit may receive the pollen as it drops to the ground. In some cases (as in the nigella), where the shafts of the pistils or stiles are disproportionably long, they bend down their extremities upon the anthere, that the necessary approximation may be effected.
But (to pursue this great work in its progress), the impregnation, to which all this machinery relates, being completed, the other parts of the flower fade and drop off, whilst the gravid seedvessel, on the contrary, proceeds to increase its
bulk, always to a great, and, in some species (in the gourd, for example, and melon), to a surprising comparative size; assuming in different plants an incalculable variety of forms, but all evidently conducing to the security of the seed. By virtue of this process, so necessary, but so diversified, we have the seed at length, in stonefruits and nuts, incased in a strong shell, the shell itself enclosed in a pulp or husk, by which the seed within is, or hath been, fed; or, more generally (as in grapes, oranges, and the numerous kinds of berries), plunged overhead in a glutinous syrup, contained within a skin or bladder : at other times (as in apples and pears) embedded in the heart of a firm fleshy substance; or (as in strawberries) pricked into the surface of a soft pulp.

These and many more varieties exist in what we call fruits*. In pulse, and grain, and grasses ;

[^108]in trees, and shrubs, and fowers; the variety of the seed-vessels is incomputable. We have the sceda (as in the pea tribe) regularly disposed in parchment pods, which, though soft and membranous, completely exclude the wet even in the heariest rains; the pod also, not seldom (as in the bean), lined with a fine down; at other times (as in the senna) distended like a blown bladder: or we hare the seed enveloped in wool (as in the cotton-plant), lodged (as in pines) between the hard and compact scales of a cone, or barricadoed (as in the artichoke and thistle) with spikes and
(which they might have been) realy altogether, but that they ripen in succession throughout a great part of the year; some in summer; some in autumn; that some require the slow maturation of the winter, und supply the eqring; also that the coldeat fruits grow in the hottest places. Cucumbers, pine-apples, melons, are the natural produce of warm climates, and contribute greatly, by their coolnes, to the refreshmest of the inhabitants of those countries.

I will add to this note the following observation commumicated to me by Mr. Brinkley.
"The eatable part of the cherry or peach first servee the purposes of perfecting the weed or kernel, by means of vessels pasing through the stone, and which are very virible in a peachcone. After the kernel in perfected, the atone becomes hard, and the vessele cease their functions. But the substance surrounding the stone is not then thrown awny as nselesa. That which was before only an instrusent for perfecting the kernel, now receives and retains to itself the whole of the anon's influence, and thereby becomes a grateful food to man. Also what an evident mark of design is the stone protecting the kernel ! The intervention of the stene prevent the second use from interfering with the first."-Note of the Author.
prickles; in mushrooms, placed under a penthouse; in ferns, within slits in the back part of the leaf: or (which is the most general organization of all) we find them covered by strong, close tunicles, and attached to the stem according to an order appropriated to each plant, as is seen in the several kinds of grains and of grasses.

In which enumeration, what we have first to notice is, unity of purpose under variety of expedients. Nothing can be more single than the design; more diversified than the means. Pellicles, shells, pulps, pods, husks, skin, scales armed with thorns, are all employed in prosecuting the same intention. Secondly; we may observe, that, in all these cases, the purpose is fulfilled within a just and limited degree. We can perceive, that if the seeds of plants were more strongly guarded than they are, their greater security would interfere with other uses. Many species of animals would suffer, and many perish, if they could not obtain access to them. The plant would overrun the soil; or the seed be wasted for want of room to sow itself. It is sometimes as necessary to destroy particular species of plants, as it is, at other times, to encourage their growth. Here, as in many cases, a balance is to be maintained between opposite uses. The pro-
visions for the preservation of seeds appear to be directed chiefly against the inconstancy of the elements, or the sweeping destruction of inclement seasons. The depredation of animals, and the injuries of accidental violence, are allowed for in the abundance of the increase. The result is, that out of the many thousand different plants which covcr the earth, not a single species, perhaps, has been lost since the creation.

When nature has perfected her seeds, her next care is to disperse them. The seed cannot answer its purpose, while it remains confined in the capsule. After the seeds therefore are ripened, the pericarpium opens to let them out; and the opening is not like an accidental bursting, but, for the most part, is according to a certain rule in each plant. What I have always thought very extraordinary, nuts and shells, which we can hardly crack with our teeth, divide and make way for the little tender sprout which proceeds from the kernel. Handling the nut, I could hardly conceive how the plantule was ever to get out of it. There are cases, it is said, in which the seedvessel, by an elastic jerk, at the moment of its explosion, casts the seeds to a distance. We all however know, that many seeds (those of most composite flowers, as of the thistle, dandelion, \&c.) are endowed with what are not improperly called
wings; that is, downy appendages, by which they are enabled to float in the air, and are carried oftentimes by the wind to great distances from the plant which produces them. It is the swelling also of this downy tuft within the seed-vessel that seems to overcome the resistance of its coats, and to open a passage for the seed to escape.

But the constitution of seeds is still more admirable than either their preservation or their dispersion. In the body of the seed of every species of plant, or nearly of every one, provision is made for two grand purposes: first, for the safety of the germ; secondly, for the temporary support of the future plant. The sprout, as folded up in the seed, is delicate and brittle beyond any other substance. It cannot be touched without being broken. Yet, in beans, peas, grass-seeds, grain, fruits, it is so fenced on all sides, so shut up and protected, that, whilst the seed itself is rudely handled, tossed into sacks, shovelled into heaps, the sacred particle, the miniature plant, remains unhurt. It is wonderful how long many kinds of seeds, by the help of their integuments, and perhaps of their oils, stand out against decay. A grain of mustard-seed has been known to lie in the earth for a hundred years; and, as soon as it had acquired a favourable situation, to shoot as vigorously as if just gathered from the
plant. Then, as to the mecond point, the temporary support of the future plant, the swatter etande than. In grain, and palse, and kernele, and pippins, the germ composes a very small pert of the seed. The nest consints of a mutritiones substance, from which the sprout deswry its aliment for some considerable time after it is pat forth; viz, until the fibres, shot out from the ather ead of the seed, are able to inamibe jaices from the earth, in a sufficient quantity for its demand. It is owing to this comastitution, that we see seeds sprout, and the aprouts make a cearsiderable progress, without any earth at all. It is meconomy, alse, in which we remark a clowe malogy between the sceds of plants and the egg: of animals. The same point is provided for, in the same manner, in both. In the egg, the reaidence of the living prisciple, the cicatrix, forsas a very minute part of the contents. The white and the white only is expended in the formatian of the chicken. The yodk, very little altered or diminished, is wrapped up in the abdomen of the young bird, when it quits the smell; and serves for ita nourishment, till it have learnt to piek its own food. This perfoctly resembles the first mutrition of a plant. In the plant, as well as in the amimal, the structure has ewery character of contrivance belenging to ik: in both it berals
the transition from prepared to unprepared aliment; in both, it is prospective and compensatory. In animals which sack, this intermediate nourishment is supplied by a different source.

In all subjects, the most common observations are the best, when it is their truth and strength which have made them common. There are, of this sort, two concerning plants, which it falls within our plan to notice. The first relates to, what has already been touched upon, their germination. When a grain of corn is cast into the ground, this is the change which takes place. From one end of the grain issues a green sprout; from the other, a number of white fibrous threads. How can this be explsined? Why not sprouts from both ends? why not fibrous threads from both ends? To what is the difference to be referred, but to design; to the different uses which the parts are thereafter to serve; uses which discover themselves in the sequel of the precess? The sproat, or phamule, straggles into the air; and becomen the plant, of which, from the first, it contained the radiments: the fibres shoot into the earth; and thereby both fix the plant to the ground, and collect nourishment from the soil for its suxpport. Now, what is not a little remarkable, the parts issuing from the seed take their respective directions, into whatever
position the seed itself happens to be cast. If the seed be thrown into the wrongest possible position; that is, if the ends point in the ground the reverse of what they ought to do, every thing, nevertheless, goes on right. The sprout, after being pushed down a little way, makes a bend, and turns upwards; the fibres, on the contrary, after shooting at first upwards, turn down. Of this extraordinary vegetable fact, an account has lately been attempted to be given. "The plumule (it is said) is stimulated by the air into action, and elongates itself when it is thus most excited; the radicle is stimulated by moisture, and elongates itself when it is thus most excited. Whence one of these grows upward in quest of its adapted object, and the other downward*." Were this account better verified by experiment than it is, it only shifts the contrivance. It does not disprove the contrivance; it only removes it a little farther back. Who, to use our author's own language, "adapted the objects?" Who gave such a quality to these connate parts, as to be susceptible of different "stimulation;" as to be "excited" each only by its own element, and precisely by that which the success of the vegetation requires? I say, "which the success of the

[^109]vegetation requires:" for the toil of the husbandman would have been in vain, his laborious and expensive preparation of the ground in vain; if the event must, after all, depend upon the position in which the scattered seed was sown. Not one seed out of a hundred would fall in a right direction.

Our second observation is upon a general property of climbing plants, which is strictly mechanical. In these plants, from each knot or joint, or, as botanists call it, axilla, of the plant, issue, close to each other, two shoots, one bearing the flower and fruit, the other drawn out into a wire, a long, tapering, spiral tendril, that twists itself round anything which lies within its reach. Considering that in this class two purposes are to be provided for (and together), fructification and support, the fruitage of the plant and the sustentation of the stalk, what means could be used more effectual, or, as I have said, more mechanical, than what this structure presents to our eyes? Why, or how, without a view to this double purpose, do two shoots, of such different and appropriate forms, spring from the same joint, from contiguous points of the same stalk? It never happens thus in robust plants, or in trees. "We see not," says Ray, " so much as one tree, or shrub, or herb, that hath a firm and strong stem,
and that is able to mount up and stand alone without assistance, furnished with these tundrids." Make only so simple a couparison as that betwoen a pea and a bean. Why does the pea part forth tendrils, the bean not? bat becsase the stall of the pea camot support itself, the stalk of the bean can. We may add also, as a circumstance not to be overlooked, that, in the pea tribe, these clasps do wot make their appearance till they wre wanted-till the plant has grown to a height to stand in need of support.
'This word "support" suggeats to us a reflection upon a property of grasses, of corn, and cance. The bollow stems of these classes of plants are wet at certain intervals with joints. These joints are not found in the trunks of trees, or in the solid stalks of plants. There may be other uses of these joinks ; but the fact is, and it appears to be at least one parpose designed by them, that they corroborate the stem, which by its length and bollowness would otherwise be too liable to break or bend.

Grasses are Nature's care. With these she clothes the earth-with these she sustains its inhabitants. Cattle feed upon their leaves-birds upon their smaller seeds-men upon the larger; for few readers need be told that the plants which produce owr bread com belong to this class. In
thome triben which are more generally considered as grases, their extraordinary mewns and pewers of preservation and increase, their hardiness, their almost anconquerable disposition to spread, their freaties of reviviscence, coincide with the intention of Nature concerning them. They thrive under a treatment by which other plants are destrojed. The more their leaves are consumed, the more their roots increase. The more they ane trampled upon, the thicker they grow. Many of the seemingly dry and dead leaves of graswes revive, and renew their verdure in the spring ${ }^{106}$. In lofty mourtains, where the summer heats are not sufficient to ripen the seeds, grasses aboand which are viviparous, and consequently able to propagate themselves without seed. It is an observation likewise which has often been made, that herbivorous animals attach themselves to the learves of grasses, and if at liberty in their pastares to range and choose, leave untouched the straws which sapport the flowers*.
${ }^{16}$ Here, to be correct, we should read "Many grasses whose leaves are so dry and withered that the plants appear dead, revive and renew their existence in the mpring by purbing forth new leaves from the bowom © the former ones. ${ }^{29}$

[^110]The general properties of vegetable nature, or properties common to large portions of that kingdom, are almost all which the compass of our argument allows us to bring forward. It is impossible to follow plants into their several species. We may be allowed, however, to single out three or four of these species as worthy of a particular notice, either by some singular mechanism, or by some peculiar provision, or by both.
I. In Dr. Darwin's Botanic Garden (1.395, note) is the following account of the vallisneria, as it has been observed in the river Rhone:"They have roots at the bottom of the Rhone. The flowers of the female plant float on the surface of the water, and are furnished with an elastic spiral stalk, which extends or contracts as the water rises or falls-this rise or fall, from the torrents which flow into the river, often amounting to many feet in a ferv hours. The flowers of the male plant are produced under water; and as soon as the fecundating farina is mature, they separate themselves from the plant, rise to the surface, and are wafted by the air, or borne by the currents, to the female flowers." Our attention in this narrative will be directed to two particulars: first, to the mechanism, the "elastic spiral stalk," which lengthens or contracts itself according as the water rises or falls; secondly, to the provision
which is made for bringing the male flower, which is produced under water, to the female flower, which floats upon the surface.
II. My second example I take from Withering's Arrangement, vol.ji. p. 209, ed. 3. "The cuscuta furopea is a parasitical plant. The seed opens,

and puts forth a little spiral body, which does not scek the carth to take root, but climbs in a spiral direction, from right to left, up other plants, from which, by means of vessels, it draws its nourishment." The "little spiral body" proceeding from the seed is to be compared with the fibres which seeds send out in ordinary cases; and the comparison ought to regard both the form of the threads and the direction. They are straight; this is spiral. They shoot downwards; this points up-

wards. In the rule and in the exception we equally perceive design ${ }^{107}$.

${ }^{107}$ This statement is incorrect. When the seed of cuscuta opens, it puta forth a little thread-shaped body, namely, a young root, which, as in other plants, plunges into the earth, and from the opposite end elevates a young and slender stem. The latter, after a little while, applies itself to some neighbouring plant, and emits very short broad suckers on the side of its stem, which is placed in contact with the other plant; by these suckers it fastens itself upon the new branch, round which it twines, and as soon as it is secure in its new station its root perishes, and it ceases to have any communication with the earth. This property in the cuscuta seems to be given it in consequence of its root not having the power that such parts usually possess of branching, lengthening, and attracting nutriment from the earth. If the cuscuta seed germinates at a distance from any living branch to which it can adhere, it elevates its stem for a short time in the air and then dies. If it is so placed as to be able to come in contact only with dead branches, still it dies; and it is only when it succeedm in fixing itself upon a living branch that it emits its suckers and continues to exist. Once attached to the living stem of another plant, it takes that for its base, and turning round once or twice, then darts forth in a straight line, touches something else which it also fixes in its folds, and thus travels from plant to plant, sometimes covering a very considerable extent of bushes.
III. A better known parasitical plant is the evergreen shrub, called the misseltoc. What we have to remark in it is a singular instance of compensation. No art hath yet made these plants take root in the earth. Here, therefore, might seem to be a mortal defect in their constitution. Let us examine how this defect is made up to them. The seeds are endued with an adhesive quality so tenacious, that, if they be rubbed upon the smooth bark of almost any tree, they will stick to it. And then what follows? Roots, springing from these seeds, insinuate their fibres into the woody substance of the tree; and the event is, that a misseltoe plant is produced next winter*. Of no other plant do the roots refuse to shoot in the ground; of no other plant do the seeds possess this adhesive, generative quality, when applied to the bark of trees ${ }^{108}$.
IV. Another instance of the compensatory system is in the autumnal crocus, or meadow saffron (colchicum autumnale). I have pitied this poor plant a thousand times. Its blossom rises out of the ground in the most forlorn condition pos-

[^111][^112]sible; without a sheath, a fence, a calyx, or even a leaf to protect it: and that, not in the spring not to be visited by summer suns, but under all the disadvantages of the declining year. When

we come, however, to look more closely into the structure of this plant, we find that, instead of its being neglected, Nature has gone out of her course to provide for its security, and to make up to it for all its defects. The seed-vessel, which in other plants is situated within the cup of the flower, or just bencath it, in this plant lies buried ten or twelve inches underground within the bulbous root. The tube of the flower, which is seldom more than a few tenths of an inch long, in this plant extends down to the root. The styles in all cases reach the seed-vessel; but it is
in this by an elongation unknown to any other plant. All these singularities contribute to one end. "As this plant blossoms late in the year, and probably would not have time to ripen its seeds before the access of winter, which would destroy them, Providence has contrived its structure such, that this important office may be performed at a depth in the earth out of reach of the usual effects of frost*." That is to say, in the autumn nothing is done above ground but the business of impregnation; which is an affair between the antheræ and the stigmata, and is probably soon over. The maturation of the impregnated seed, which in other plants proceeds within a capsule, exposed together with the rest of the flower to the open air, is here carried on, and during the whole winter, within the heart, as we may say, of the earth, that is, "out of the reach of the usual effects of frost." But then a new difficulty presents itself. Seeds, though perfected, are known not to vegetate at this depth in the earth. Our seeds, therefore, though so safely lodged, would, after all, be lost to the purpose for which all seeds are intended. Lest this should be the case, " a second admirable provision is made to raise them above the sur-
fuce when they are perfected, and to now them a a proper distance:" viz., the germ grows 1 in the apring, upon a fruit-stalk, accompanied with leaves. The soeds now, in common with thowe of other plants, have the bemefit of the samser, and are sown upon the surface. The order of vegetation externally is this:-the plant produces its flowers in September; its leaves and fruits in the spring following.
V. I give the account of the dionce mancipala, an extraerdinary American plant, as some late zuthors have related it: but whether we be yet enough aequainted with the plant, to bring every part of this sccount to the test of repeated and familiar observation, I am unable to say. "Its leaves are jointed, and furnished with two rows of strong prickles; their surfaces covered with a number of minute glands, which secrete a sweet liquor that allures the approach of flies. Wheen these parts are touched by the legs of fiea, the two lobes of the leaf instantly spring upo the rows of prickles lock themselves fast together, and squeeze the unwary animal to death*." Here, under a new model, we recognise the ascient plan of nature, viz, the rejation of parts and provisions to one another, to a common office, and to the utility of the organized body - Smellie's Phit. of Nat. Eint. vol. i. p. 5.
to which they belong. The attracting syrup ${ }^{100}$, the rows of strong prickles, their position so as to interlock the joints of the leaves; and, what is more than the rest, that singular irritability of their surfaces, by which they close at a touch; all bear a contributory part in producing an effect, connected either with the defence or with the nutrition of the plant ${ }^{110}$.

[^113]

East, is another example which may be given. It grows natural pitchers or tankards, holding from a pint to a quart of pure water. Even when raised in this country under glass, they have been known to hold half-a-pint. The plate represents these, with their lids AA, which move on hinges, opening in moist weather, and shutting quite close in dry to prevent evaporation. When the pitcher becomes full, and requires additional support, the hook A behind the lid seizes on some neighbouring tendril, and holds by it. BB are young pitchers just unfolding. This water which supplies the pi'chers is secreted by the process of vegetation, and is perfectly pure, though the plant grows in a muddy and unwholesome marsh.

The palo de vaca, or cow-tree of South America, yields a delicious and nutritive milk on its trunk being pierced; and it grows in the most parched soil, and in a climate where rain is unknown during half the year.

The supply of fine water afforded by the tillandsia, or water-with, in Jamaica, and by the bejuco, or cissus latifolia in the East, on cutting, is a fact of the same class. The latter plant also twines round other trees, and affords, as it were, a reservoir for their use.

[^0]: 3 It is certainly a thing not easily expressed in wordsThe nave of a circular wheel moves on a single pirot; bat there are here two pivots, and grooves in the wheel to correspond with them. These two grooves crous each other, and play upon the pivots in anch a manner that the centre of motion varies, and the rim of the wheel moves in an ellipsia. It is exactly on the same principle that we draw an oval figure, by driving two nails into a board, and throwing a band round them, and then rumning the pencil round within the land. These two nails are in the points called by mathematicians the fori of the orval or ellipme; and accordingly, a fundamental property of the curve is, that the sum of any two lines whatever, drawn from the two foci to any point in the corre, is almays the same. These points are called foci, fires, because light refected from the anface of an oral mirror ist concentrated there and prodoces heat.

[^1]: - When philosophers and naturalists observe a certain succession in the phenomena of the universe, they consider the uniformity to exist through a law of nature. If they discover the order of events, or phenomena, they say they have discovered the law : for example, the law of affinities, of gravitation, \&c. It is a loose expression; for to obey a law supposes an understanding and a will to comply. The phrase also implies that we know the nature of the governing power which is in operation, and in the present case both conditions are wanting.

 The "law" is the mode in which the power acts, and the term should infer, not only an acquiescence in the existence of the power, but of Him who has bestowed the power and enforced the law.

 The term "force" is generally used instead of power, when the intensities are measurable in their mechanical results.

[^2]: ${ }^{5}$ We must leave this logical and satisfactory argument

[^3]: - The arguments adduced in this chapter being drawn from the laws aecording to which light is refracted by the humours of the eye, the reader may be inclined to perase the few observations on the elements of this part of physics in the Appendix, No. 16.

[^4]: ' The reader will find a comparison, more in detail, between the eye and optical instruments, in the Appendix, No. 17.

 In illustration of the instance adduced here, of the adaptation of the fish's eye to the medium in which it lives, we may observe that the powers in the human eye, for example, of drawing the pencil of rays to a focus, and producing an accurate image upon the expanded optic nerve (called the retina, from its net-work structure) in the bottom of the eye, depends principally upon two circumstances,--the form of the cornea and the convexity of the lens. That the cornea may produce this effect, it is not only necessary that it should be convex, (as in the left-hand figure on page 22,) but that the rays should enter it from a rarer medium. As this cannot be effected in the water, the lens or crystalline humour, which is much denser than water, is brought into operation. In the eye of an animal living in the atmosphere, the lens is removed backwards, and resembles the optician's double convex lens; but in the fish it is a sphere, and being brought in contact with the

[^5]: - This is a subject over which there is still great obscurity, and on which adverse experiments and opinions are recorded. However difficult it may be to account for the mode of adjustment, yet the property is not denied, and therefore the argument in the text remains. c 3

[^6]: ${ }^{10}$ In viewing the structure of the eye as adjusted to the condition of fishes, we may remark the peculiar thickness of the sclerotic coat in the whale. Although he breathes the atmosphere, and lies out on the surface of the water ; to escape his enemies he will plunge some hundred fathoms deep. The pressure therefore must be very great upon his surface, and on the surface of the eye. If a cork be knocked into the mouth of a bottle, so that it resists all further pressure that we can make upon it, and if this bottle be carried, by being attached to the sounding-lead, to a great depth in the sea, the pressure of the water will force in the cork, and fill the bottle; for the cork is pressed with a force equal to the weight of the column of water above it, of which it is the base. It is pressed in all directions equally, so that a commonsized cork is reduced to the size of that of a phial bottle.
 " A creature living at the depth of 100 feet would sustain a pressure, including that of the atmosphere, of about 60 pounds on the square inch; while one at 4000 feet, a depth by no means considerable, would be exposed to a pressure of about 1830 pounds upon the square inch."-De La Beche, Theor. Geol. p. 243.

 We can therefore comprehend how it shall happen, that on the foundering of a ship at sea, though its timbers part, not a spar floats to the surface; everything is swallowed up; for, if the hull has sunk to a great depth,

[^7]: * The eye of the seal or sea-calf, I understand, is an exception. Mem, Acad. Paris, 1710, p. 123.—Paley.

[^8]: any kind, carries his enemies that have fixed upon him to a depth of water, and consequently to a pressure, which subdues them, as their bodies are not constituted for such depths. It is under this instinct, that when the whale receives the harpoon, he dives to the bottom.

[^9]: * Heister, sect. 89. † Mem. R. Ac. Paris, p. 117.—Paley.

[^10]: ${ }^{11}$ We have entered into a much fuller explanation of the apparatus for the preservation of the eye, in the Appendix, there being a great deal that is curious in it hitherto unnoticed. It will be there found that, although the eye of the fish has no eyelid, yet it has the rapid motion of the eye-ball, which, under water, must serve to free it from any impurity. Some curious instances are, at the same time, afforded, of a still more artificial mode, in the lobster and crab, of removing whatever obstructs the sight.

[^11]: * Phil. Trans. 1796.
 \dagger Memoirs for a Natural History of Animals, by the Royal Academy of Sciences at Paris, done into English by order of the Royal Society, 1701, p. 249.-Paley

[^12]: ${ }^{18}$ There is one effect, however, of this apparatus, which our author has omitted to notice-that is, the rapidity of motion in the membrana nictitans, produced

[^13]: ${ }^{m}$ This subject is touched upon in the introductory observations to the Appendix.

[^14]: ${ }^{15}$ It will be shown in the Appendix, that the fine apparatus consisting of these bones, with their four minute muscles attached to them, is not necessary to the sensation coming through the bones of the head, as here described by our author: it is provided for the more delicate vibrations of the elastic atmosphere, and is not found except in animals that breathe the air. It will be also found, that whilst these bones move with the slightest impulse of sound, they regulate the impression, and protect the nerve.

[^15]: 17 Undoubtedly the exposure of the blood to the atmosphere, in thecirculation through the lungs, and the throwing off of carbon, are essential to life. But the pain and

[^16]: ${ }^{18}$ In the higher animals there is a great complication of organs. Yet, in the lower animals, the functions of

[^17]: ${ }^{29}$ There is great inaccuracy, and indeed a very unphilosophical and superficial view of the subject in these observations upon "chance." Chance is merely an abridged form of expressing our ignorance of the cause or preceding event to which any given eveut may be traced ; and nothing can be more inaccurate, or indeed more productive of serious errors in this very branch of science, than to speak of chance as a substantive thing or power. To take the most obvious instance : we say, in common parlance, that the dice being shaken together, it is a

[^18]: pimple, is, in part at least, the result of the provision made for restoring the interrupted continuity of the skin, by a slight suppuration from which the granulation, or production of new animal fibre, takes place. The like remark applies to the cases of a cled, pebble, or liquid drop, also put in this passage. We have already adverted to the two first in a former note; the formation of a drop is in truth one of the phenomena of gravitation, and a very remarkable one.

[^19]: ${ }^{20}$ No doubt men in different ages have asserted the possibility of all we see being made by chance; but we are not uncharitable when we say that no man ever believed it. It is easily shown, that, of all the varieties of fabulous animals which have been bred in the fertile imagination of the poet, not one could have lived. They want that relation aud balance of the different organs, that provision running through the whole texture of the frame of the animal, which we see in the natural productions. The sphinx has wings, but no coustitution of body to give these strength. The grifin, with its hooked bill, has no feathers to prin, and no substitute for teeth. The centaur has the body of the horse, but no mouth to gather appropriate food.

 We may conclude, then, that these products of the imagination are altogether abortive, and only tend to prove how exact the relation must be of all the parts, and especially of the vital organs of an animal, in order that it may live.

 As to the second position, that the animals which exist are the happy results of chance when thousands have perished by imperfection, the supposition is contradicted by the perfect and harmonious chain of beings forming the animal kingdom, in which there is no link interrupted, no interval implying the loss of any species,

[^20]: ${ }^{21}$ We deceive ourselves in this matter : the dexterity which use gives, makes us apt to believe that the faculty is gained through the accidental possession of the instrument. But the difficulty is remored, if we make due comparison between man and other animals. In the former, it is intended that the faculty should be gradually developed; and the slowness with which perfection is attained leaves us in some doubt of the relation between the effort and the instrument used. But in the latter, all obscurity is removed : their propensities and instincts, and the use of their instruments are so perfect from the beginning, as to admit of no improvement. The flycatcher requires no experience to adjust his eye, no second effort of his bill to correct the first. Whether it be the horn, or the tooth, or the sting, the disposition is given with it, and the mode of its action is prescribed. The spider weaves his web without improvement, or room for improvement. This subject is treated at some length in the "Bridgewater Treatise on the Hand," where the question is discussed, whether or not the possession of the hand is the source of man's superiority.

[^21]: ${ }^{11}$ Again we have reference to the structure of the eye; which shows the necessity of throwing our observations on this organ into the Appendix.

[^22]: * The observation here is most sensible. When we speak of an organ as peculiarly suited to exhibit design, we mean merely that we comprehend something of the object of the particular structure. But there is no part of an animal, if we fully comprehended what was necessary to the performance of its functions, that would not raise

[^23]: permits circulation and muscular action, and all the various movements of the body, we should have in that one cell as much reason for wonder at the perfection of the contrivance, as in any joint of the limb.

[^24]: ${ }^{*}$ The meaning of our author is obvious here; but the tenon and mortise are terms used for the firm joining of beams, as in the carpentry of a roof; not for rotatory motion.

[^25]: ${ }^{26}$ There is a notion entertained by the ingenious and somewhat fanciful physiologists of France, that the extremities of the body, the parts furthest removed from the centre, are most subject to change in their conforma-

[^26]: * Der. Phys. Theol p. 396.

[^27]: ${ }^{27}$ In the dissertation in the Appendix on the Thorax, it will be observed that we have additional proofs of the accommodation of the bones of the trunk, as well as of the bones of the extremities, to the varying habits and condition of the animal.

[^28]: * The shoulder-blade undergoes many changen, as we view it in comparative anatomy. That bone which we feel running across the upper part of the chest and

[^29]: * Ches. Anat. ed. 7th, P. 45.

[^30]: ${ }^{30}$ It is surprising, that among so many instances our author should omit to notice the perfection in the anklejoint. When we stand resting upon the foot, the joint is firm, and yields neither to the inside nor the outside; but when we move the foot forward and point the toe in making the step, such is the happy form of the bones that the foot is in this position thrown quite loose. The object here certainly is, that in walking on the irregular ground, we may have a freedom in directing the foot so as to plant it securely. But before the weight of the body is brought perpendicularly over the foot, there is no danger to the joint, because there is no strain upon it. Just in proportion as the advancing body begins to bear upon it do the bones take that position, in which they are as firm as in the knee-joint itself, admitting only the motion of a hinge.

[^31]: * Ches. Anut. p. 255, ed. 7.

[^32]: ${ }^{91}$ As the Archdeacon had been a pupil of Dr.William Hunter's, which we gather from the tenor of many of his observations, it is surprising that he has not spoken with more decision upon this point. The cartilage, which is the substitute for the bone in infancy, is very different from that which tips the ends of the articulating extremities of the bones. In a valuable paper of Dr. Hunter's, it is shown that this articulating cartilage consists of fibres, placed together like the hairs of a brush, but more compactly, and perpendicularly to the ends of the bones; and that on this arrangement chiefly depends the elasticity of the material. Its use is best proved ${ }^{2}$ by what takes place when it is deficient: for then the articulation creaks like an old hinge, and the patient suffers aches.

[^33]: * Ches. Anat. p. 13, ed. 7.

[^34]: ${ }^{38}$ This is not explained with our author's usual clearness. The lower head of the thigh-bone, which rests upon the shin-bone or tibia, is not the segment of a regular circle. When we stand with the knees straight, the thigh-bone rests with a broad surface, and the convexity is principally on the back part. Such an irregularity would make a very imperfect and jarring hinge-joint on any configuration that could be given to the corresponding surface of the tibia. Therefore these cartilages intervene; and, being possessed of considerable elasticity, and so connected with the bone as to shift their place a little, they accommodate themselves, whether the flatter end or the more convex part of the articulating surface

[^35]: of the bone be presented to them; and there is this advantage, that, in standing, when the weight on the joint is greatest, the thigh-bone has a more extensive, and consequently a more secure basis, at the same time that the motion of the joint as a hinge is perfect.

[^36]: ${ }^{s 3}$ This subject is touched upon in the Appendix, in treating of the spine. We may here take a practical illustration. We have said that exercise is necessary to the perfection of a joint. Suppose the knee-joint to be inflamed : it is of course kept in perfect rest, because motion produces pain. This absolute rest, joined with inflammation, alters all the textures; the bone becomes light and spongy; the cartilage is absorbed; the liga-

[^37]: ${ }^{24}$ Excellently well as this is put, there is something more admirable still in the condition of the muscular system. With respect to the support of the head, as mentioned in the preceding page, and the instance embraces, of course, the crect position of the body as well as the equable poising of the head, the most extraordinary part of the phenomenon is this, that we are sensible of the slightest inclination of the body or of any member, although it would be difficult to say to what order of acknowledged sensations this belongs. Not only do we feel every degree of inclination from the perpendicular in the poising of the body, but we act upon it with the most minute correspondence of the muscles. The muscles are antagonists certainly, but there is a fine combination and adjustment in their action, which is not illustrated by the two sawyers dividing a \log of wood. The muscle having finished what we call its action or contraction, is not in the condition of a loose rope, but on the contrary there is always a perfect balance of action preserved between the extent of relaxation of the one class of muscles, and the contraction of the other; and there is a tone in both by which the limb may be sustained in any posture that is willed. This subject is treated in the Philosophical Traneactions, and also in the Treatise on the Hand, under the head of the "Muscular Sense."

[^38]: * Keill's Auatomy, p. 295, ed. 3.

[^39]: ${ }^{25}$ In the figure of a muscle, given in page 100, it may be observed that the tendons are on different sides of the muscle.

 If we were to plan their arrangement it would be thus: \mathbf{A} is the tendinous origin, and \mathbf{B} the tendinous insertion; and the muscular fibres run obliquely between them. This obliquity of the fibres is almost universal in the muscles of the limb, and the effect is very important. It needs no reference to mechanics to under-

[^40]: * Preliminary Treatise on the Objects, Advantages, and Pleasures of Science. (Library of Useful Knowledge.)

[^41]: ${ }^{86}$ When our author describes the variety of functions performed by the mouth and tongue, he is in admiration at the simplicity of the instrument. But this is only an apparent simplicity : the complexity of structure is concealed. Indeed, it has been this very consideration which led to the new investigations into the nervous system. Without entering far into this subject, we take the tongue in illustration. It is a fine organ of touch : it is the seat of the sense of taste : it is necessary to deglutition : its modulations are infinite in speech; but the reason of a body so simple in its outward form being. capable of performing offices apparently so discordant, is visible only to the anatomist, who traces the nerves into this organ. Then he discovers, besides the nerve proceeding from the papillæ of the tongue to the sensorium, that there are nerves of volition governing the muscles of the tongue. In addition to these, there is a nerve which regalates the action of swallowing, and

[^42]: which combines the motions of the gullet with those of the tongue; and in the same manner añother nerve, tending to the organ of voice in the larynx, branches off to the tongue, and associates it with the organ of the voice, so as to produce articulate language : these nervous cords are the true organization by which one member, simple in its exterior form, has a complexity in its internal relations. And thus it is, that in many instances organs which are apparently simple, and through which we perform many offices so easily that we think not at all of what is necessary to their execution, have yet internally, and to the eye of the anatomist, a thousand minute circumstances or relations on which the perfection of their action depends.

[^43]: * Phil. Trans. part i. 1800, p. 8.

[^44]: * Ches. Anat. p. 119.

[^45]: * Steno, in Blas. Anat. Animal. p. 2, c. 4.

[^46]: ${ }^{87}$ We must refer our reader to the dissertation in the Appendix, on the circulation of the blood and its uses.

[^47]: * Dr. Hunter's Account of the Dissection of a Whale.-(Phil. Trans.)

[^48]: ${ }^{30}$ The most simple view, and the best supported, is this-that the dark venous blood which is returning from the circulation through the body is loaded with carbon. When it is carried to the right side of the heart, and from that into the lungs, the branches of the pulmonary artery are distributed in great minuteness on cells infinite in number. These cells communicate with the extreme branches of the windpipe ; and as the atmosphere is received into these cells, the circulating blood comes to be exposed to its influence; for neither

[^49]: - Keili’a Anatomy, p. 121.

[^50]: © We cannot resist following up these observations with some minute notices of the appropriate structure.

[^51]: ${ }^{41}$ One of the many modes by which seeds are carried to a distance, and Sir Joseph Banks gave us reason to believe that it served as a preparation for nowing, as seeds so carried germinated sooner.

[^52]: * Phil. Trans. vol. lxii. p. $447 . \quad \dagger$ Keill's Anat. p. 64.
 \ddagger Anat. p. 164.

[^53]: * Keill (from Malpighius), p. 63.

[^54]: * Keill's Amat. p. 62.
 \dagger Ches. Anat. p. 260.

[^55]: 4. The subject admits of a much more extensive application of physical science; and one division of it will be found treated in the Appendix.
[^56]: * Keill's Auat. p. 107, ed. 3. . † Ib. p. 119, ed. 3.

[^57]: * Ches. Anat. p. 162. † Keills Anat. p. 57.

[^58]: * Chess. Anat. p. 167.
 \dagger Ibid.

[^59]: * Keill's Anat. p. 45.

[^60]: ${ }^{16}$ All this is admirably well put by our author. Yet when he says "the gift consists in the faculty of perpetually shifting the centre of gravity, by a set of obscure, indeed, but of quick balancing actions," he states a fact, but omits the most surprising circumstance of all. No doubt such efforts are made; but what directs them? If a man should balance a staff, resting it on the point of the finger, he shifts the finger continually, in doing which he is directed by the eye-he sees the staff inclining. How does a man judge of the inclination of his body in the very first degree of deviation from the perpendicular? He does not see himself, nor is he directed by the objects around him, since a blind man will stand as securely as one who sees. The fact is, that he has a knowledge of muscular action-a sensibility to the finest adjustment of the muscles, by which he directs their efforts. This sense is of all the most marvellous: a sensibility to an internal motion, more minute and curious than are the sensibilities to external impression; and which, as may be easily proved, ministers to a variety of properties in the living body, and especially to the organs of sense themselves.

[^61]: ${ }^{47}$ See the dissertation on the teeth, in the Appendix.

[^62]: ${ }^{48}$ The human nail is calculated to support the cushion of the extremity of the finger, and is important to us in grasping or holding any thing; but more so still in sustaining that cushion as the chief organ of touch. There are other parts of the body which have exquisite sensi-

[^63]: bility, yet they are not provided so as to give us that information of the condition of matter which we have through the finger, and in a lesser degree through the whole iuner surface of the hand. We easily feel, for example, the pulsation of the artery at the wrist, through the combination of the sensibility of the nerve of touch with the elastic cushion of the finger. The best proof of the use of the elastic cushion is this:-Although the tip of the tongue feels so exquisitely that the presence of a hair of wool troubles us, yet if we apply it to the pulse we shall not be sensille of the beat.

 * There is a note upon the form of the skull in the Appendix, which may interest the reader.

[^64]: * The quill part of a feather is composed of circular and longitudinal fibres. In making a pen, you must scrape off the coat of circular fibres, or the quill will split in a ragged, jagged manner, making what boys call cat's teeth.

[^65]: - The above account is taken from Memoirs for a Natural History of Animals, by the Royal Academy of Paris, published in 1701, p. 219.

[^66]: so When we attempt to apply the lights of experimental philosophy to this subject, the inquiry is not a little embarrassing. A loose woolly texture, or down, as it implies the presence of air in its interstices, air being a bad conductor of heat, is therefore a warm covering: it prevents the expenditure of animal heat. When we consider the colour of the coverings of birds, we must take new elements into our process of rea-soning-we must reflect on the effects of the conduction and radiation of heat. The conduction is the conveyance of heat; and the radiation is the parting with it into the atmosphere or into space. We have already explained why the interior covering of the arctic bird should be loose : as to the colour, its effect must result from radiation. It appears (to use the rulgar language) that the influence of cold both on quadrupeds and birds is to increase their woolly or downy covering, and, in many instances, to change the exterior colour to white : in other and more correct words, a provision is made for changing their clothing so as to suit their altered circumstances. This change of colour corre-

[^67]: ${ }^{51}$ With the instrument, as we have before hinted, we should expect a particular instinctive action, and a corresponding muscular power. As an animal with horns has a powerful neck, so has the neck of the heron, which is introduced here, an extraordinary muscular power, without which, indeed, the long and sharp bill would be of little use. When the dog approaches the wounded

[^68]: ${ }^{3}$ These are branches of the fifth nerve of the head, which alone, of all the nine nerves of the brain, bestows sensibility on the organ of touch.

[^69]: * Mem. Acad. Paris, 1701, p. 170.

[^70]: *We have thrown some observations upon this subject into the Appendix, under the title of "The Relation of the Bodies of Birds to the Atmosphere."

[^71]: ${ }^{3}$ It has been elsewhere observed, that when predatory birds gorge themselves, they are sometimes unable to rise on the wing-a sufficient demonstration that the burden of an offspring would have unsuited then for flight.

[^72]: ${ }^{50}$ This subject in necessarily treated at length in the Bridgewater Treatise of the Hand. We have had occasion to atate, that in the higher division of animated nature, the vertebrata, one plan or system of bones can be traced through every variety from man to fishes; and this is more especially shown by the comparison of the arm with the anterior extremity of quadrupeds and the wing of birds, and even with the pectoral fin of the fish. The number of the bones, and the form and the application of the muscles to them vary, bat yet they are accommodated in a manner so perfect, that, on examining any individual among the varieties of the species, we should say that nothing could be better saited to its purpose.

[^73]: * Guldsmith, Hist. of An, Nat, vol. vi. p. 154.

[^74]: calculus, and have termed "the solid of least resistance," because it is the conformation which is less than any other affected by the resistance of any medium, resembles a fish in its form.

[^75]: ${ }^{67}$ The author is not quite correct here, inasmuch as elastic ligaments are liberally supplied in the human

[^76]: ${ }^{*}$ The sea varies in temperature and pressure at different depths, and no doubt the texture of the fish, and especially of its integument, must conform to this variety. The swimming-bladder is the means of adjustment by which the fish lives at its native depths without waste of animal exertion : such is the power of expansion of the air-bladder when relieved from the pressure, that, when a fish is brought up from the greatest depth, it inverts and thrusts out the viscera from the mouth. We do not see, however, that naturalists have adverted to the place of this swimming-bladder. It lies close to the spine, and appears to counterbalance, in some measure at least, the air in the intestines by being thus placed above them. In the cetacea, as the whale, their buoyancy proceeds from the quantity of oil under the skin,

[^77]: * Gokdenith, Nat. Hist. vol. iv. p. 244.

[^78]: *What could have tempted Buffion to express his pity for this bird as abject und degraded, it is not easy to conceive : nor why it should be deacribed am leadiag an insipid life, because continually employed in boring and hammering the old stump of a tree. A late naturalist describes the woodpecker as enjoying the sweet hours of the morning, on the highest branch of the tallest tree, fluttering and playing with his mate and companions. No doubt his diligence, perseverance, and energy in plying his beak is very extraordinary. But, besides the wedge-like strength of the beak, and the power of the neck to strike with it, there is something remarkable in its sensibility. That nerve, the fifth pair, on which we have shown that all the sensibility of the head depends,

[^79]: © See the note upon the teeth in the Appendix. The subject in full of interest.

[^80]: ${ }^{\text {cs }}$ The second or permanent set of teeth does not push out the deciduous or milk teeth. The process is not mechanical. Whilst yet a tender membrane is around the second tooth, those of the first set are suffering absorption at their fangs. Another circumstance, which shows the provision not to be mechanical, is the wasting of the old alveolar process, and the growth of the new: the new alveolar process or socket of the permanent tooth is forming at the time that the portion of the jaw which held the first tooth firm is yielding by absorption.

[^81]: ${ }^{\prime}=$ The only parallel to this is the care with which

[^82]: a Does not the whole condition of the embryon go to this argument? At first there is a mere jelly, or what

[^83]: * Disc. i. sec. liv.

[^84]: * Whilst we have before us the daily proof of the capacities of animals for domestication, in considering their structure fand their instincts, we must look back into that long period before man's creation, when they had not his protection and care. A thousand concurring testimonies prove that there were periods when the earth's surface was more suitable for brutes than it was for the abode of man; and when they were grouped together, each species with its enemy, and each with a power of preservation, at once to prevent too great an increase and total extermination. The young horse, which in his paddock has neither known bad treatment nor an enemy, will yet shiver and start away from a brindled swine, or any animal that is bristled or rough.

 Geological researches, so happily combined with comparative anatomy, give us no room to conjecture that there has been anything like a progressive improvement in the species of animals. They have been created with all the characters in which they are now propagated; and had it been otherwise, the species would have become extinct, or they would have lost their place in that balance of offence and defence by which it has pleased the Creator to provide for their continuance.

[^85]: ${ }^{\text {as }}$ There are few things better suited to remove the disgust into which young people are betrayed on the view of some natural objects, than this of the spider. They will find that the most despised creature may become a subject of admiration, and be selected by the naturalist to exhibit the marvellous works of the creation. The terms given to these insects lead us to expect interesting particulars concerning them, since they have been divided into vagrants, hunters, swimmers, and water-spiders, sedentary, and mason-spiders; thus evincing a variety in their condition, activity, and mode of life; and we cannot be surprised to find them varying in the performance of their vital functions (as, for example, in their mode of breathing), as well as in their extremities and instruments. Of these instruments the most striking is the apparatus for spinning and weaving, by which they not only fabricate webs to entangle their prey, but form cells for their residence and concoalment; sometimes living in the ground, sometimes under water, yet breatling the atmosphere. Corresponding with their very singular organization are their instincts. We are familiar with the watchfulness and voracity of some spiders, when their prey is indicated by the vibration of the cords of their net-work. Others have the eye and disposition of the lynx or tiger, and after 42

[^86]: * See Appendix.

[^87]: 7 See the account of the teeth, in the Appendix.

[^88]: ${ }^{* 8}$ Wherever a seed can lodge we find vegetables growing; and wherever we find digestible matter there

 * Spall. Dis. iii. sect, cxl.

[^89]: valvular obstruction greater. This has been observed by $\operatorname{Sir} \mathrm{E}$. Home, in comparing the cabsowary of Java with the cassowary of New South Wales, and the American ostrich with the same bird inhabiting the deserts of Africa. The same comparison has been made between the Leicestershire sheep and the mountain sheep of Scotland.

[^90]: 70 Not unconnected with the subject of the last note is the progression of animals: and we have none better suited for the object of this volume than the consideration of the infinite variety of the instruments of motion, from the blubber that floats like froth upon the water, to the eagle or the antelope. The genus medusa of Linnæus embraces those animals like jelly which float in the sea. Some of these, when taken out of the water, will weigh fifty ounces, and, on being dried, not more than five or six grains. From this it would appear that they must be of the specific gravity of water, and hence their peculiar organization and mode of existence; especially it accounts for their mode of progression, if it can be called so: since they are in a great measure passive, and float and are carried by the wind. For this purpose there is a vesicle or bladder filled with air, which in some rises above the water, and the animal is dragged as we might imagine a balloon would be after lighting on the water. The walls of this sac are muscular, and the animal, by retaining or foreing out the air, can either take advantage of the wind, and is sometimes moved with great velocity, or sink under

[^91]: ${ }^{71}$ See the Appendix, on the bones of huge animals.

[^92]: ${ }^{74}$ The manner in which the chicken breaks the egg is one of the most wonderful operations of instinct, and is a process marked by the uniformity of instincte. For as all bees build alike with respect to the size of the cell and the angles at which its planes are inclined, so M. Reaumur found that all chickens chip the shell in the same direction, from left to right; and that the circle in which they chip invariably cuts the egg at right angles to its transverse axis, and not obliquely. The instrument which

[^93]: 'is In the natural and instinctive feelings of man, as contradistinguished from those which have been modifed by reason, something of the same kind may be observed. The mutual relation of protection aud dependence, pro-

[^94]: *Whether we regard the argument of existence, or

[^95]: π The most scientific entomologists consider the antennæ of insects to be organs of hearing; this is the opinion of those who have minutely examined their structure; whereas very many entomologists contend that the antennæ are organs of feeling, observing that many insects are constantly touching surrounding objects with them, such as the bee tribe, ichneumonidæ, \&c. The argument used against the latter opinion is, that although many insects do undoubtedly touch surrounding objects with their antenne, yet many scrupulously avoid so doing, such as the butterfly und moth tribe, the Lamellicorn beetles, \&c. When, however, we are asked the question, what is hearing as distinguished from feeling, we find it difficult to draw any line. Are they not mere modifications of the same thing? and as the antennæ of insects are so exceedingly variable in form, may they not be used as organs of touch in some, and of hearing in others?

[^96]: ${ }^{81}$ A tribe of beetles, coming under the generic name of Hister, forms a good illustration of this mode of existence : in these insects the elytra are remarkably hard.

 The specien of the genus Hister possess remarkable analogical resemblances to tortoises, which have somewhat similar habits: like them, they are exceedingly hard, of an oval shape, and have the power of retracting the head beneath a horny covering; they are slothful,

[^97]: There is not any accredited instance of any insects perforating so hard a substance as stone, with the 'awl or borer' fixed at the tail. This instrument, technically called ovipositor, is excessively variable in its structure, being scarcely alike in any two species: the description given will answer for that of the saw-fly (Tenthredo).
 . Whimble, or ovipositor.

[^98]: 8* The stings of insects are also used as ovipositors.

[^99]: © See Note 86. It might be more correct to say lick up, for there is no tube.
 ${ }^{00}$ Bees are essential to the fructification of many sorts of plants, for it is by them that the farina is carried from the male to the female flowers; and as some flowers yield a much greater quantity of honey than others, it might perhaps be imagined that those yielding little, and yet depending upon the bees for their fructification, might often be barren. No such defects, however, are to be found: the structure of the proboscis varies considerably in different species of bees, so that all bees cannot collect indiscriminately from any houeyyielding plant. One great tribe of bees (the apida) collect their honey for the most part from bell-shaped flowers, such as the blind-nettle, \&c.; their long proboscis enabling them to reach the bottom of the bells. Another tribe, having the proboscis short, are obliged to collect from flowers of a different shape. There is yet another circumstance which leads the different sorts of bees to visit a variety of flowers: viz., that they do not feed their larva on the same substance. If we examine the cells of some (the andrcenidac), we find that the food stored up for the young consists of a ball of farina, which has scarcely any admixture of honey: these bees would naturally seek those flowers which

[^100]: * The opinion of Huber, Hunter, and others, is, that wax is not made out of pollen, but from honey. Huber kept some bees confined, and fed them with honey only, and wax was secreted ae usual. It is most likely that kees never eat farina, and that it is collected from the larve only. See article Bee, 'Penny Cyclopredia.'

[^101]: * It has often been remarked, that Dr. Paley does not either in this chapter, or in that on instinct, state the most remarkable of all instincts, and of all the labours of insects, the formation of the cells by the bee, according to the strictest geometrical rules, The history of this discovery made (through Reaumur's suggestion) by Kconig's application of the fluxional calculus, and by its result being found to tally with Maraldi's measurement, will be given in the Appendix. Maclaurin solved the same problem afterwards by the help of plane goometry, with a truly felicitous skill. The angles actually made differ by about two minutes from those given by the calculus; but no one can doubt that subsequent discovery will explain this.
 * In the genus Trichius (a tribe of beetles clomely.

[^102]: * The female glow-worm undergoes the same transformations as all other insects, and its perfect state differs considerably from its larva or caterpillar state, though in both stages it emits the phosphoric light. Besides the ordinary sexual distinctions, the female glow-worm differs from the male only in being apterous;

[^103]: 100 It was at oue time supposed that the spider could project its thread through the air at will in any direction, and thus attaching it to different bodies, move fromone to the other. The observations more accurately made of late years, show that this power is not possessed by the animal, bat that it requires the aid of a a. current of air to direct the thread. This correction, however, of the former opinion, in no way weakens the: force of the argument in the text.

[^104]: ${ }^{102}$ There are collections of insects in this country which, in all probability, contain forty thousand species. The number of species in existence may fairly be reckoned at sisty or eighty thousand. Mr. Stephens, in his catalogue of British insects, enumerates ten thou-

[^105]: * Vol. i. p. 3.
 \dagger Wied. of God, p. 28.

[^106]: ${ }^{200}$ Very many insects subsist entirely upon carrion, both in the larva and imago state, and in hot weather must be highly serviceable in removing such noxious substances. In this point of view the maggots of flies are exceedingly useful; a carcase becoming speedily threaded in every direction by them, is soon either dcvoured or wasted.
 ${ }^{106}$ The most remarkable circumstance relative to inatinct, as well as to the habits of insects, the architecture of the bee, has been observed upon in a former note. The manufacture of the wasp perhaps comes next, and is to the chemistry what the former is to the mathematics of instinct. It furnishes, too, one of the

[^107]: * Philon. Transact. part ii. 1796, p. 502.

[^108]: * From the conformation of fruits alone, one might be led, even without experience, to suppose, that part of this provision was destined for the utilities of animals. As limited to the plant, the provision itself seems to go beyond its object. The flesh of an apple, the pulp of an orange, the meat of a plum, the fatness of the olive, a appear to be more than sufficient for the nourishing of the seed or kernel. The event shows that this redundancy, if it be one, ministers to the support and gratification of animal natures; and when we observe a provision to be more than suff. cient for one purpose, yet wanted for another purpose, it is not unfair to conclude that both purposes were contemplated together. It favours this view of the subject to remark, that fruits are not

[^109]: * Darwin's Phytologia, p. 144.

[^110]: * Fithering, Bot. Arr. vol. i. p. 28, ed. 2nd.

[^111]: ${ }^{108}$ These statements are true, not only of the misseltoe or viscum actum, but of the whole natural order Loranthace, with one exception.

[^112]: * Withering, Bot. Arr. vol. i. p. 293, ed. 2nd.

[^113]: ${ }^{109}$ From this account must be omitted what is said of the syrup that allures the approach of flies. There is no such attraction upon the leaves of the dionœea.
 ${ }^{n 0}$ The pitcher-plant, nepenthes distillatoria, of the

