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ADVE·RTISEMENT. 

N ONE but those who are just entering upon the study 
of.Mathematics need to be informed of the high charac­
ter of Euler's Algebra. It has been allowed to hold the 
very first place among elementary works upon this sub­
ject. The author was a man of genius. He did not, 
like most writers, compile &om others. He wrote from 
his own reflections. He simplified and improved what 

. was known, and added much that was new. He is par­
ticularly distinguished for the clearness and comprehen­
siveness of hiS views. He seems to have the subject of 
which he treats present to his mind in all its relations 
and bearings before he begins to wr.ite. The parts of it 
are arranged in the most admitable order. Each step is 
introduced by the preceding, and leads to that which 
follows, and the whole taken together constitutes an en­
tire and connected piece,.like a highly wrought story. 

This author is remarkable also for his illustrations. 
He teaches by instances. He presents one example after 
aaother, each evident by itself, and each throwing some 
new light upon the subject, till the reader begins to an­
ticipate fbr himself the truth to be inculcated, 

Some opinion may be formed of the· adaptation of this • 
treatise to learners, from the circumstances under which 
it was composed. It was undertaken after the author 
became blind, and" was dictated to a young man entirely 

b 
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without education, who by this means became an expert 
algebra~t, and was able to render the author important 
services as an amanuensis. It was written originally in 
German. It has since been translated into Russian, 
French, and English, with notes and additions. 

The entire work consists of two volumes octavo, and • 
-contains many things intended for the professed mathe­
matician, rather than the general student~ It was thought 
that a selection of such parts as would form an easy 
introduction to the science would be well received, and 
tend to promote a taste for analysis among students, and 
to raise the character of mathematical learning. 

Notwithstanding. the high estimation in, w.hieh this 
work has been held, it is scarcely to be met with in the· 
country, and is very little known in England. On the 
continent of Europe this author is the constant theme of 
eulogy.' His writings have. the character. of classics. 
They are regarded at the same time as the most pro­
found . and . the most perspicuous, and as affording the 
finest model$ of analysis. They fumish the germs of the· 
most approved elementary works on the different branches 
of this science. The constant reply of one of the first 
mathematicians· of France to those who consulted him 
upon . the best method of studying m~thematics WIUf, 

"~IttUig Euler." "It is needless," said he, "to accumu­
late lix>ks ; true lovers of mathematics will always read 
Euler; because in his writings every thing is clear, djs .. 
tinct, and correct ; because they swarm with excellent 
examples; and because it is always necessary to have 
recourse to the fountain head." 

The selections here offered are from the first English 
edition. A few errors have been corrected and a few 

• alterations made in the phraseology. In. the original no 
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questions were left to be performed by the learner. . A 
collection was made by the English translator, and sub­
joined at the end, with references to the sections to 
which they relate. These have been mostly retained, 
and some new ones have been added. 

•. Although this work is intended particularly for the 
algebraical student, it will be found to contain a clear 
and full explanation of the fundamental principles of 
arithmetic; vulgar fractions, the doctrine of roots and 
powers, of the different kinds of proportion and pro­
gression, are treated in a manner that can hardly fail to 
interest the learner and make him acquainted wi~h the 
reason of those rules which he has so frequent occasion 
to'apply. ' 

JOHN FARRAR, 
~ of JlatbematiCl and Natural Pbllomphf III die 

UDivenll)' at Cambrldp. 

Cambridge, February, 1818. 
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INTRODUCTION 

TO TUli 

ELEMENTS OF ALGEBRA . 
.. ' 

SECTION I. 

0' TBB mrna8l'ft' IIITHODS O. CALOULATIGK APl'LmD TO II.'''' 
Q.UANTlT11B. 

, , 

CHAPTER I. 

Of Mathematic. in general. 
" ' 

AaTICLIl 1. Whatever is capable of increase or diminution. iI 
called magnitude Ql' gumatity. . , 

,A .um of money, for instance, is a quantity, since we may in­
crease it or diminish it. The same may be said witb respect to 
any given weight, aad other thiags of this nature. ' 

i. From tbis definition it is evident, that tbere must be so many 
durerent kinds of magnitude as t[) render it di1licult even to eop­
merate them; ,and thie is the origin of the different branches of 
mathematics, each being employed on a particular kind of magni­
t~de. Mathematics, in general, is the ,cience of quantity; or the 
science which inveetigates the means of measuring quantity. 

3. Now we cannot measure 'or determine any quantity, except 
by Considering some other quantity of the $lUDe kind as known, and 
pointing out their mutual relation. If it were proposed, for example, 
to determine the quantity of a sum of money, we should take some 
known piece of money (as a dollJU', a crown, a ducat, or some other 
coin), and show how many of these pieces are contained in the 

1 

'. 
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Sect. 1. 

giVeD sum. In the same manner, if it were proposed to determine 
the quantity of a weight, we should take a certain known weight i 
for example, a pound, an ounce, &0., and then sbow how many 
times one of these weights is contairied in tbat wbich we are en­
deavoring to ascertain. If we wisbe~ to measure any length or 
utension,we should make use of lOme knoltn lengtb, u a fOot for 
example. 

4. So that the determination, or the measure of magnitude of all 
kinds, is reduced to this : fix at pleasure upon anyone known mag­
nitgde qf t1ae ea~e species with tha' .which is to be detClmUDed, and 
consider it as the.meaaure or unit; then, determine tbe proportion. 
of the pl'd'posed magnitude to this known measure. This proportion 
is always expressed by numbers; so that a number is nothing bUt 
the proportion of one mapitude to anQther arbitrarily ~e4 u 
the unit. 

o. FrOm. this it appean,~alllDtlgoitudelt may: be apressed by 
numbers; and that the foundation of all the mathematical sciences 
must be laid in a complete treatise on tbe science of num~rs ; .and 
in an accurate examination of the di1Ferent possible methods of cal-
culation. . , , , , . 

Tbis fundamental part of mathematics is called, analym, or 
algebra. . 

6. In algebra then we conside.t' only numbers which represent 
quantities, without regarding the di6rent kinds of quantity. Tbese 
are the subjects of other branches of·the mathematics, ,'.1 

.'.7., AritlHneac'tre ... of ... mberstn particular, and is.tbe Me,," of 
...... , pnjpM'ly 10 called; but this soieDce .x.teIlds ooIy to cartaitt 
methods of calculatioD, wbieh eooHI in COdllDCIII praciice: algebra; 
_ the OOIIbZy;.oomprebenda in geoeral alI'the' casea which,oan 
.. in,the tbtl'iae ,and' calculaticln of aum" 

. . 

, , 
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OJ"le'~. 

CHAPTER n. 
AplanatioJa oj flae lip + plus and - minus. 

8, WHEN .we have to add on~ given Dumber to. an~ther, this is 
indicated by the sign + which is pl~ced before the second numbe., 
and is read pl"". Thus 5 + 3 signifies that we must add 3 to the 
number 5, and every one knows that the result is 8; in the same 
manner 12 + 7 make 19 ; 25 + 16 make 41 ; the sum of 25 + 41 
is 66, &c. , I 

9. We also make use of the sllDl:e sign + or plUl, to eoonect 
several members together; for example, 7 + 5 +. 9 s,igniGes that 
to the ~umber 7 we must add 5 and also 9, whioh make 21. The. 
reader will therefore understand, what is meant by 

:S + 5 + 13 + 11 + 1 + 3 + 10 J 
N. the'lRl1D of all these numbers, lfhich is 51. 

10. All this is evident; and we bave only' to mention; thilt, in 
algebra, in order to generalize numbers, 'we represent thEim by 
1eHers, as tI, h, c, Il, &c.' Thus the expression (J + 6 signifies the 
sum of two numbers, which we express by CI and h, aud these nom­
hets may be either very great· or very- small. Is the same mao~r, 
f + .. + " +'~' signifies the sum of the numbers repreeented by 
these four letters. 

If we know, therefore, the numbers that are represented by let­
ters, we shall at all times be able to find, by arithmetic, the sum or 
moe Qf, similar espnssiODlJ. ' 

,11. When it is required, on the contrary, to subtract one given 
DUmber from another, this operation is denoted I)y the mgn -,' 
which signifies minus', and is placed befere the number to be sub­
tracted : thus 8 - 6 sipi6es that the number 5 is to be taken from 
the number 8; which being done, there remains 3. In like manner ' 
19 -7 is the same is 5; and 20 -- 14 is the Same as 6, &c. ' 

12. Sometimes also we may bavesevera1 numbers to be sub-
tnpted from a agle one ;, as for instance, . 

50 - 1 - 3 '- 5 - t - 9. 
This signi6es, first, take 1 from 50,' there remains 49; take 3 fl'QlQ 

that remainder, there will' remain 46; take away 5, 41 remains~ 
take away 7, 34remaios; lastly, from that take 9, aod there. . , . 
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remains 25 ; tbis last remainder is tbe value of the expression. Bot 
as the numbers 1,3,5,7,9, are aU to b81lubtracted, it is the same 
thing if we subtract their sum, which is 25, at once from 50, and 
the remainder will be 25 as before. , , 

13. It is also very easy to detenninE! the value of similar upres­
sions, in whicb both tbe signs + plw and - min'" are found: for 
example; . 

12 - 3 - 5 + 2 - 1 is the same as 5. 

We have only to collect separately tbe sum of tbe numbers tbat 
have t,be sign + before them, and subtract from it tbe sum ot those 
that have the sign -. Tbe sum of. 12 and 2 is 14; tbat of 3;' 5, 
and 1, is 9; DOW 9 being taken from 14, there remains 5. 

• 14. It will be perceived from tbese examples tbat the order in· 
which we write the nu .. beTl' i. qui(e indifferent and arbitrary, pro­
tJided the proPf'T ,ign qf e'ath he pre.er"ed. :We might with equal 
propriety have ananged the expression in the preceding -article 
thus i 12 + 2 - 5 - 3 - 1, or 2 - 1 - 3 - 5 + 12, or 
~ + 12 - 3 - 1 ...:. 5, or in still dift'erent orders. It must be ob. 
served, that in tbe expression proposed, the sign + is 1IUpJlClHd 
tc? be placed before tbe number 12-
. 15 .. It will oot be attended with any more difficulty, if, in Qrder 

to generaliae tbese, operations, we make use of letten instead of 
real numbers. I~ is evident, for example, that 

tJ-b~c-+d-e ' 

signifies that' we' have numbers expressed by "and d, aDd that 1iom 
these numbers, or from their sum, we must .subtract the numbers 
eS}lressed by the l~tters b, c, e, which have before them the 
sign - • 
. 16. Hen~ it is absolutely necessary to consider what sign is 

prefixed to, each numbe,,: for in algebra, .imple quantitie,. art. 
!lumber. cO'l&8idered loith regard to th~ sil(1l8 ,which precede, or 
affect them. Further, we call tbose po,itwe qUIJ7ftitiu,' befCH'e 
which tbe sign + is found; and tbose are called flflgtJta,e' gutnlti-. 
tiel, which are affected with tbe sign -. 

, 17 •. Tb~ manner in whicb we generally calculate ~ person'. 
property, is a good illustration of what bas just been said. We 
denote what a man reatly possesses by positive numbers, using, or 
uD~erstinding the sign +; w~ereu his debts are represented by 
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Chap. 'I. 6 

negative numbers, or by using the sign -. . Thus, when it is said 
of anyone tbat he has 100 crowns, but owes 50, this meanll that 
his property really amounts to 100 - 50; or, which is the same 
thing, + 100 - 50, that is to .say 50. 

18. As negative numbers may be considered as debts, beeauw 
positive numbers represent real possessions, we may say that nega-:­
tive nUD)bera are less than nothing. Thus, when a manbas notbing 
in the world, and even owes 50 crowns, it is certain tbat, he hllf 50 
crowns less than nothing; for if anyone were to make him a pres­
ent of 50 crowns to pay bis debts, he would still be only at the 
point nothing, though really richer than before. 

19. In the same manner, therefore, as positive numbers are in­
COiltestably greater than nothing, negative numbers are less than 
nothing.· Now we obtain positive numbers by adding 1 to 0, that 
is to say, to nothing; and by continuing always, to inprease thus 
from unity • • This is the origin of the series of numbers calletl 
natural number,; the following are the leading terms of this series: 

, . 
0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, 

and so on to infinity. 
But if instead of contjnuing this series by successive additions, 

we continued it in, the opposite direction, by perpetually. subtracting 
unity, we should bave the series of negative numbers: 

0, -I~ - 2, - 3, - 4, - 5,-6, -7, -8,.-9, -10, 

and so on to infinity. 

• By being leIS than nothing is lPeant simply, that they are of such 
a Dature as to canoel or destroy an equal Dumber with the sign pluJ 
before it, 80 that - 4, Qr ~ a is as really a positive thing, and is as 
euily conceived, as + 4 or + a. The quantity 4 or a maybe COD­
sidered independently of its sign .. Th~ sign + implies tbat this quan­
tity is to be added,and the sign - tbat it is to be subtracted. Tbis 
subject may be iJlustrated by the scale of a tbermometer~ After o~ 
serving, tbe mercury to stand at 500 , for instanoe, if I am told, that it 
bas changed 40 , I have a distinct idea of the portion of the seale de­
Doted by four of its divisions, without applying tbem iD any particular 
direction. But when I am further informed that this change of the 
thermometer is - or mtracti", with respect to its former state, I 
then understand that the mercury stands at 460 • wbereas it would be 
at 040 if the ebaage bad been + or additiY8. 
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~. All these numbers, whether positive or,negative, have.he 
bOWD appellation of whole numbers, or integef's, which c0nse­

quently IQ'8 either greater or leIS than nothing. We call them 
integers, to distinguish them from fractions, and from seven! other 
kinds of numbers of which we shall hereafter speak. For instance, 
50 being greater by an entire unit than 49, it is easy to comprehend 
that there may be between 49 and 50 an infinity of intermediate 
numbers, all greater than 49, and yet all less than 50. We need 
ooly i~agine two lines, one 50 feet, the ,other 49 feet long, and Jt 
is evident that there may be drawn an infinite number of lines 'aU 
IQ1lger than 49 feet, and yet shorter than 50. , 

21. It is of the utmost importance, through the whole of algebra, 
that a precise idea be formed of thos'e negative quantities about 
which we have been speaking. I shall content myself with remark-
ing here that all such expressions, as • • + 1 - 1, + 2 - 2, + 3 - 3, + 4 - 4, &c. 
are equal to 0 or nothing. And that 

+ 2 - 5 is equal to - 3. 

~or if a person has 2 crowns, and owes 5, he has not only nothing, 
but still owes 3 crowns: ~ the same manner, . ' . . 

7 - 12 is equal to -5, and 25 - 40 is equal to - 15. 

22. The same observaiions hold true, when to make the expl. 
sion more general, letters are used'instead of numbers: 0 or noth­

, ing will always be the value of + tJ - tJ. If we wish to know 
the value + tJ - h two cases are to be considered. 

'1'he 'first is when 0 is greater than h; b must then be subtracted 
from 0, and the remainder (before which is placed or understood 
to be placed 'the sign +) shows tbe value sougbt. 

The second case is thal in wbich 0 is le!,s than b ; bere 0 is to be 
subtracted from h, and the remainder being made negative, by 
placing before it the sign -, will be the' value sought. 
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Chap. 8. 01 Sinaplc Quntitiu. 'J 

CHAPTER III • 

• Of the Multiplication of Simple Quantitiu. 

~. W BEN there are two or more equal numbers to be added 
together, the expression of their sum may be abridged; for es­
ample, 

a + CI is the same with 2 X a, 
a+a+a 3Xa, 
a + a + .. + a 4 X a, and so on ; where X is the sip 

of multiplicl.tion. In this manner wg may form an idea of multi­
plication j and it is to be observed that, 

2 X a signifies 2 times, or twice CJ 

3 X CI 3 times, or thrice CI 

4 X a 4 times a, &0. 
2'. If tlen/ore a numbet- e:t:prelled by a letter it to be fl&ulft­

plied 6g a"y oticr n.er, we limply put tkat nua'6er before tAc 
Ittter; thus, 

cr maltiplied by S!O is expressed by 90 a, Ind 
b multiplied by 30 gives 80 b, ke. 

It is evident also that c taken once, or 1 c, is just c. 
25. Further it is extremely easy to multiply such products again 

by otbel' numbers; for example: 
2 times, or twice 3 a makes 6 a, 
3 times, or tbrice 4, b makes 12 b, 
5 times '7 ~ makes 35 ~, 

and tbese products may be still multiplied by other numbers at 
, pleasure. 

26. WAcn the number, by whiela we are to multiply, it allo repre­
,erated 1Jy a letter, tOe place it immediately before tlte other letter; 
tbus, in mutiplying b by a, the product is written a b ; and p q wiD 
be the product of the multiplication o( the number q by p. Ifwe 
multiply this p q again by a, we shall obtain a p q. 

!n. It may be remarked here, that the order in ""Aida tlae letter. 
are joined together it indifferent; that a bis the'same thing as 6 a ; 
f~ b multiplied by a produces as much as a multiplied by b. To 
understand this, we have only to substitute (or a and b known num­
bers, as 03 and 4; and the truih Wi1l be selkvident ; tOr 3 times " 
is the same as 4 times 3. 
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. 28. It will not be difficult to perceive, that when you have to put 
numbers in the place of letters, joined together, as we have de­
scribed, they cannot be written in the same manner by putting thell 

. one after the other. For if we were to write 34 for 3 times 4, we 
should have 34 and not 12. When, therefore, it is required to mul­
tiply common numbers, we must separate them by tbe sign X, or 
points: thus, 3 X 4, or 3 • 4, signifies 3 times 4, that is 12. So, 
1 X 2 is equal to 2; and 1 X 2 X 3 makes 6. In like man­
ner 1 X 2 X 3 X 4 X 56 makes 1344; and 1 X 2 X 2 X 4 
X 5 X 6 X 7 X 8 X 9 X 10 is equal to 362S800, &c. 

29. In tbe same manner, f,Ve may discover the value of an ex­
pression of. tbis form, 5 • 7 • 8 a h cd. It shows that 5 must be mul­
tiplied by 7, and that this product is to be again, multiplied by 8; 
tbat we are tben to multiply this product of the three numbers by a, 

o next by b, and tben .by c, and lastiy by d. It may be observed 
also, that instead of 5 X 7 X 8 we may .write its value, 280 ; for 
we obtain this Dumber when we multiply the product of 5 by 7, or 
35, by 8. . 

30. The results which arise from the multiplication of two or 
more numbers are called product.; and the numbers, or in!iividual 
letters, are called factor.. . 

31. Hitherto we have considered only positive numbers, and 
there can be no doubt, but that the products which we have seea 
arise are positive also: ."iz. + a by + b must necessarily give 
+ a b. But we must separately examine what the multiplication . 
of + a by - b, and of - a by - b,.will produce. 
. 32. Lei us begin by multiplying - a by 3 or + 3; now since 
- a may be considered as a debt, it is evident tbat if we take that 
debt three times, it must thus become tliree times greater, and COD. 

sequently tbe required product is - 3 a. So if we multiply - a 
by + b, we shall obtain - b a, or which is the sanae thing,....- a b. 
Hence we conclude, that if a positive quantity be multiplied by a 
negative quantity, the product will be negative; and lay it down as 
a rule, that + by + makes +, or plw, and that 00 the contrary 
+ by -, or - by + gives -, or mi"tU. 

33. It remll:ins to resolve the case in which - is multiplied by 
-; or, for examp'le, - a by - b. It is evident, at first sight, 
with reg!lrd to the letters, tbat the product will be a.b; 'bur it is 
doubtful whether the sign +, or the sign -, is to be placed before 
the product; aU we know is, that it must be one or the other of 

. I 
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tItese signs. liow I say, that it cnilot be the sign -: for - (I by 
+ b gives - Q 6, and - a by - 6 cannot produce the same ~ 
suit, as - .. by + 6; but must produce a contrary. result, that is to 
say, +.Q 11 ; consequently we have tbe following rule: - multipli­
ed by- produces +, in the same manner as + multi.,lied by + .• 

~ It is a subject of peat embarrassment and perplexity 10 learners 
to conceive how the product of two, nogau.e quantities .bould be 
positive. This arises from the idea they receive of the nature of mul­
tiplication as explained IJ.nd applied is arithmetie, where positive 
ttuantities only a~ ·employed. The term is used in a more enlarged 
sense when nbgative quantities are concerned, as may be s~own with­
out milking use of letters. If I wished to multiply. for instance, 
9 ...... 6 (or 9 diminished by 5) by a, I should first find the product of 
9 by 3, or 27. But this is evidently taking the multiplicand too gre.at 
by 5, and of course ihe product too great by 3 times 5; I accordingl, 
write for ~e product 27 - 15, equivalent to 12, which is the product 
that would arise from first performing the subtraction indicated by the 
sign -, and using the result as the multiplicaud. Thus, 
. . Multiplicand 9 - 5 which is equal to 4 

Multiplier 3 . 3 

Product 27..... 16' wlrieh is equal to 12 
Let us now take for tbe multiplier the quantity '7 - 4, which i. 

tqoiva1ent to 3. We multiply, in the first place by 7, in the manner 
that we bue jIlst done by 3, and the result is 63 - 35. But as tbe 
muJt,iplier is 7 dimiaished bf 4, multiplying by 7 must· give '4 times 

• ~ much. Accordingly we take 4 times the multiplicand, at 88"- 20 
and subtract this from 63 - 35, Or 7 times the multiplicand. Now 
in making this silbtnction ·it is to be ob~rvtid that the subtrahend 
36 - 20 is 36 diminished by 20, and if we subtract 36 we take away 
too much by 20, and must therefore add this latter quantity. Conse­
quently the true produet will be 63 ~ 35 - 36 + 20, equivalent to 
'Ii, as before. Thu8 this mode of proeeedjng gives the same result as 
that obtliaed by first performing the subtractions indicated in the' 
latter tenD 'of the multiplicand and multiplier. The several .tepa in 
eub CQe are as foUo •• : 

Bul.lJ.lg. 

Multiplicand 9 -" which i. equal to " 
Xultiplie~ 7 - " which is equal' tQ 3 

63 - 35 . Product 12 
-36+20 

Product 63 ...:. 85 - 36 + ~ or 83 - 71, that is, 11. 
i 
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34. The mles which we have explained are expn.ed more 
brie8y as fOllows : 

Like Iigru multiplied togetln-, give + ; tmlike or contrtwy Iignt 
giee -. Thus, when it is required to multiply the fOllowing DUm-

Thus we see that 7 or + 7 by - 6 gives - 36, and - 4 by + 9 
gi'es - 36, and - 4 by - 6 gives + 20. The same general rea­
sooing will apply when letters are used instead of numbers. 

Multiplicand a - 6 
Multiplier e - d 

Product a c - 6 c - a d + 6, d. 
We say in this ease, that when we muitiply a by c we take the multi­
plicand too great by 6, and must therefore diminish the result a c by 
the product of b by c or b c. So also in multiplying the two terms of 
the multipJicand by c, we have taken the multiplier too great by d, 
and must therefore diminish the result a c - b c by tbe prOduel of 
a - 6 by d, or a d- b d. But if we subtract the whole or' a d, we 
subtract too much by 6 dl 6 d must accordingly be added. 

The rule for negative quantities here illustrated is not nee8Slll'Y 
where mere numbers are employed, beeauee the subtraction indicated 
may always be performed. But this cannot be done with respect to 
letters which stand for no particular nilleS, but are intended as gen­
eral expteuiooa of quantities. 

The truth of the rule may be shown also when applied toquantitiea 
taken sin,ly. We say that multiplying one quantity by another ill 
taking one as many times as there are UDita in the other, anti tbe 
result is the same, whichever of the quantities be taken for the multi­
plicand. Thus multiplying 9 by 3 is taking 9 three times, or which 
is the same thing, taking 3 nine times (Arith. 27). But ·in arithme­
tic, quantities are always taken affirmatively, that is additively. 
When, therefore, we take 9 or + 9 three times additively, 01' + a 
nine times additively, the result will evidently be additive or + 27. 
When, on the contrary, one of the factors is negative, as for indUce, 
in mUltiplying - 6 by + 3; in this cue, - 6 is to be taken three 
times additively, and - 5 added to - 5 added to - 6 is clearly 

. - 15. So also if we consider + 3 as the multiplicand, then + 3 is 
to be taken five times subtractively j now 3 taken subtracti,ely once 
(or which is the same thinK, 3 X-I) is equivalent to - 3, taken 
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Mrs; + .s - h, - c, + d ; we have first +/J multiplied by - h, 
whicb makes - a h; this by - c, gives + CI he; aod this by + d, 
pves + a h c d. 

35. The difficulties with respect to the signs being removed, we 
have only toshow how to multiply numbers that are themselves pro­
ducts. If we were, for iostance, to multiply the number a h by the 
number c d, the 'product would be /J bcd, and it is ob~ined by mul­
tiplying first /J b by c, and then the result of that multiplication by d. 
Or, if we had to multiply 36 by 12; since 12 is equal to 3 times4, 
we should only multiply 36 first by 3, and theo the product 108 by 
4, in order to have the whole product of the multiplication of 12 by 
36, wbich is consequently 4.32. 

36. But if we wished to multiply 5 a b by 3 c d, we might write 
3 c d X 5" b; however, as in the present instance the order of the 
numbers to be multiplied is indifferent, it will be better, as is also 
the custom, to place the common numbers before the letters, and to 
express tbe product thus,: 5 X 3 /J bcd, or 15 "b cd; since 5 
times 3 is 15. 

So if we had to multiply 12 p q r by 7 t/] 1/, we should obtain 
12 X '7 P q r ::e 1/, or 84 p q r ::e 1/. 

CHAPTER IV. 

Of the Nature 'of WAole Number. or Integer., toith rupect to 
their FactoTl . 

.37. W Il have observed tbat a product is generated by the multi­
plication of two or more numbers together, and that tbese numbers 
are called factor.. Thus the numbers ", h, c, d, are the factors of 
tbe product " bed. ' 

8ubtraetively twice is - 6, three times is - 9, Dve times is - 15. 
Bot, when the multiplicana and multiplier are both negative, as in the 
case of multiplying - 6 by - 4 : here a subtractive quantity is to be 
taken subtractively, that is, we are to take away successively a dimio­
ilbing or lessening quantity, which is certainly equivalent to adding 
an inereuiag quantity. ThUll, if we take away - 5 once, We aug­
ment the 'Bum with which it is to be connected by + 6; if we take 
away - 6 twice, we make the augmentation + 10; if four tim.., 
+ 20; that is, - 6 X - 4 is equivalent to + 20. 
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38. If, tberefore, we cum •• M aU whole-numhers as pIOductl 01 
two or more numbers multiplied .togetber, we sban soon find that· 
.ome cannot result from sucb a multiplication, and consequently 
have Dot any factors; wbile otbers may be the products of two or 
more multiplied togetber, and may consequently bave two or more 
factors. Thus," is produced hy 2 X 2; 6 by 2 X 3; 8 by 
2 X 2 X 2; or 21 by 3 X 3 X 3; and 10 by 2 X 5, &c. 

39. But, on theotber hand, tbe numbers, 2,3,5,7, 11,13,17, 
atc., cannot be represented in the same manner by factors, unless 
for tbat purpose we make use of unity, and represent 2, for instance, 
by 1 X 2. Now the numbers whicb are multiplied by 1, remain­
ing the same, it is not proper to reckon unity as a factor. 

All numbers, therefore, such as 2, 3, 5, 7, 1], 13, 17, &c. which 
cannot be represented by factors, are called simple, or prime num­
ber.; whereas others, as 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, &c. 
which may be represented by factors, are called compound numbe,.,. 

40. Simple or prime number. deserve therefore particular atten­
tioD~ since they do not result from the multiplication of two or more 
numbers. It is particularly wortby of observation that if we write 
these. numbers in succession as they follow each other, thus; 

2,3, 5, 7, 11, 13, 17, 19,23,29,31,37,41,43, 47, &c. 
we can trace no regular order; their increments are sometimes 
greater, sometimes less; and hitherto no one has been able to dis­
cover whether they follow any certain law or not. 

41. All compowatl"u".ber., tDAich may be repruented by factor., 
re.ult from tAe prime number. ahotJe mentiomd; that iI to .ay, all 
tlaeir faCto" are prime "umber.. F:or, if we find a factor wbicb is 
not a prime number, it may always be decomposed and represented 
by two or more prime numbers. When we have represented, for 
instance, tbe number 30 by 5 X 6, it is evident that 6 not being a 
prime number, but being produced by 2 X 3, we migbt have repre­
sented 30 by 5 X 2 X 3, or by 2 X 3 X 5; tbat is to say, by 
factors, wbich are all prime numbers. 

42. If we now consider tbose compound numbers wbich may be 
resolved into prime numbers, we shan observe a great ddFerenCit 
among them; we shall find tbat some have only two factors, tbat 
others have three, Ind others a still greater Dumber. We bUI 
already seen, for example, tlw 
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" it the,seme as 2 X 2, 6 is the same u 2 X S, 
8 2 X 2 X 2, 9 3 X 3, 

10 2 X 5, 12 2 X 3 X 2, 
14 2 X 7, 15 3 X 5, 
16 2 X 2 X 2 X 2, and so on. 

4.'1. Hence it'is easy to find a method for analysiniany number, 
or resolving it into its simple factors. Let there be proposed, for 
instance the number 360; we shall represent it first by 2 X 180. 
Now 180 is equal to 2 >< 90, and' 

45 is the same as 3 X 15, and lastly 9O~, ~ 2 X 45, 

15 3 X ~ 

So'that the number 360 may be represented by these simple factors, 
2 X 2 X 9 X 3 X 3 X 5; since all tbese numbers multiplied to­
getber produce 360. 

44. This shows, that the prime numbers cannot be divided by 
other numbers, aod on the 9ther hand, that the limple factor. of 
compound number. sreffJ'N1ld, most coftveniently, and witl the 8'"eat­
e,t certainty, by ieeking tae limple, or ~rime number., iy tl1/&ic1& 
tAo.e compound number. are divisible. But for this, divilion is ne­
cessary; we shall therefore explain the rules of, that operatioa in 
the following chapter. 

CHAPTER V. 

Of the Divilion of Simple Qtumtitiel. 

45. W BIlN a number is to be separated into two, three, or more 
,equal parts, it is done by means of division, which enables us to de­
termine the magnitude of one of those parts. When we wish, for 
ullDlple, to separate the number 12 into three equal p8rts, we God 
by division that each of those parts is equal to 4. 

The following tenns are made use of in this operation. The. 
number, which is to be decompouoded or divided, is ealled the diG .. 
lend; the number of equal parts sought is calJed the di.isof'; the 
magnitude of one of those parts, determined by to divisioa, is called 
the quotient; thus, in the above example; 

12 is the dividend, 
3 is tJu, divisor, and 
4 is the quotient. 
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46. It foUowi &om this, that if we diYide a number by 2, or into two 
equal parts, one of those parts, or the quotient, taken twice, makes 
exactly the number proposed; and, in the same manner, if we have 
a number to be divided by 3, the quotient taken thrice mu~t give 
the same number again. In general, the multiplication of the 
quotient by the di"isor mwt altoay, reproduce the di"ident!. 

47. It is {or this reason that division is called a rule, which 
teaches us to find a number or quotient, which, being multipJied by 
the divisor, will exactly produce the dividend. For example, if 35 
is to be divided by 5, we seek a number which, multiplied by 5, will 
produce 35. Now this number is 7, since 5 times 7 is 35. The 
mode of expression, employed in t~ reasoning, is; 5 in 35, 7' 
times; and 5 times 7 makes 35. 

48. The dividend, therefore, may be considered as a product, of 
which one of the' {actors is the divisor, and tbe other the quotient. 
Thus, supposing we have 63 to divide by 7, we endeavor to find 
sucb a product, tbat taking 7 for one of its factors, the otber {ac.tor 
multiplied by this may exactly give 63. Now 7 X 9 is such"a pro­
duct, and consequently 9 is the quotient obtained when we divide 
63 by 7. 

49. In general, if we have to divide anumber ab by a, it is evi­
dent tbat tbe quotient will be b; for a multipJied by b gives the 
dividend a b. It is clear also, that if we had to divide a b by b, tbe 
quotient would be a. And in all examples of division that can be 
proposed, if we divide tbe dividend by the quotient, we shall again 
obtain the divisor; for as 24 divided by 4 gives 6, so 24 divided 
~6wil1gire~ \ 

50. As the 'tohole operation conn.t, in repruenting the dividend 
by ttoO factor" of tohicla one ,hall be equal to the di"i,or, the other 
to the quotient; the following examples will be easily understood. 
I say first, that the dividend abc, divided by a, gives b c; for a, 
multiplied by b c, produces abc: in .the same manner a 6 c being 
divided by b, we shall have a c; and ab c, divided by a c, gives b. 
I say also, tbat 12 m n, divided by 3 m, gives 4 n ; for 3 m, multi­
plied by 4 n makes 12 men. But i{this same number 12 m n had 
been divided by 12, we sbould have obtained the quotient m 71. 

51. Since every number a may be expressed by 1 a or one a, it 
is evident that if we had to divide a or 1 a by 1, the quotient would 
be the same number a. But, on the contrary, if the same number 
4, or 1 a, is to be divided by II, the quotient will be 1. 
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·52. It often happens that we canDot repJeSeDt the dividend ps the 
product of two factors, of which one is equal to the divisor; aod 
then the division cannot be performed in the manner we have de­
sCribed. 

When we have, for example, 24 to be divided by 7, it is at first 
sight obvious, that the number 7 is not a factor of 24; for the pro­
duct of7 X 3 is only 21, and consequently too small, and 7 X 4 
makes 28, which is greater thao 24. We discover, however, from 
this, that the quotient must be .. greater than 3, and less thao 4. In 
oreier, therefore, to determine it exactly, we employ aootherspecies 
of ~umbers, which are called /ractiOfU, aod which we shall con­
sider in one of the following chapters •. 

53. Until the use of fractions is conside~ed, it is usual to rest sat­
isfied with the whole number which approaches nearest to the true 
quotient, but at the same time paying attention to the remtJinder 
which is left; thus we say, 7 in 24, 3 times, and the remainder is 
3, because 3 times 7 produces only 21, which is 3 less thaD 24. 
We may consider the following examples in the same JDanner : 

6)34(5, that is to say, the divisor is 6, the dividend 34, 
30 the quotient 5, and the remainder 4. 

4 
9)41(4 here the divisor is 9, the dividend 41, the quotieot 

364, aod the remainder 5. 

5 
The following rule is to be observed in exampl~ where there is 

a remainder. 
54. If IDe multiply the divisor by the quotient, and to the produet 

add the remainder, IDe must obtain the dividend ; this is the method 
of proving division, and of discovering whether the calculation is 
right or not. Thus, in the former of the two last examples, ifwe mul­
tiply 6 by 5, and to the product 30 add the remainder 4, we obtain 
34, or the dividend. And in the last example, if we multiply the 
divisor 9 by the quotient 4, and to the product 36 add the remainder 
5, we obtain the dividend41. 

55. Lastly, it is necessary to remark here, with regard to the 
signs + plw and - minw, that if we divide + a b by + a, the 
quotient will be + b, which is evident. But if we divide + a " 
by -:- a the quOJient will be - b ; because - II X - b gives + II b· 
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Ii tilt diYidend is - ,. h, Ind is to be divided by the diYiaGr + II, 
&he quotient will be - h; beCause it is - h, which, multiplied by 
+ II, makes - II b. Lastly, if we have to diYide the cliYideod 
- 6 h by the divisor - 6, the quotient will be + b; for the clivi­
dead -,. h is tbe product of -II by + 6~ 

56. With regard, therefore, to the rigtu + and -, ditiliM& 1Itl­
.. it. the ,ame rule. that IDe hafle ,un applied in .ultiplietJtion, viz. 

+ by + requires +; + by - requires - ; 
- by + requires -; - bJ' - requires + ; 

or in a few words, 1,7ce lip gifle plw, tmlike Iign. gifle mimu. 
57. Thus, wben we divide 18 p q by - 3 p, the quotient is 

.,,- 6 q. Further; 

- 30 re '!I, divided by + 6 '!I, gives - 5 re, and 
- 54 abc, divided by - 9 h, gives + 6 II C; 

Cor in this last example,- 9 b, multiplied by + 6 II c, makes - 6 X 
9 II b c, or - 54 II b c. But we have said enough on the division or 
8imple quantities; we shaD therefore hasten to the explanation of 
fractions, after having added some farther remarks on the nature of 
numbers, with respect to their divisors. 

CHAPTER VI. 

Of the Properlie. of Integer. with rupect to their Diflilor •• 

58. As we have seen that some numbers are divisible by certain 
divisors, while others are not; in order that we may obtain a more 
particular knowledge of numbers, this difference must be carefully 
observed, both by distinguishing the numbers that are divisible by 
divisors from those which are not, and by considering the remainder 
that is left in the division of the latter. For this purpose let us ex­
amine the divisors ; 

2,3, 4, 5,6,7,8,9,10, &c. 
59. F"lfSt, let the divisor be 2; the numbers divisible by it are 2, 

4,6, 8, 10, 12, 14, 16, 18,20, &c. wtich, it appears, increase 
always by two. These numbers, as far as they can be continued, 

• are called eflen numberll. But there are other numbers, namely, 
1,3,5,7,9, 11, 13, 15, 17, 19, &c., 
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which are uniformly less or greater than tbe former by unity, aud 
which cannot be divided by 2, without tbe remainder 1 ; tbelle _ -
eaJled odd RUlJlber,. . . 

The even numbers are alJ comprehended in the geoera~ es.,..... 
sion 2 a; for ·they are all obtained by successively substituting for a 
the integers, 1,2, I, 4, 5, 6, 7, &c., add hence it'follows that the 
odd numbers are all comprehended in the expression 2 a + 1, be­
cause 2 a + 1 is. greater by unity thall the even number 2 s. 

60. In the second place, let the number 3 be the divisor, ~ 
Dumbers divisible by it are, 

3,6, 9, 12, 15,18,21,24, 27, 30, and so on. 

and these numbers may be represented by the expression 3 tJ; for 
a a divided by 3 gives the quotient a without a remainder. All 
other numbers, which we would divide by 3, will give 1 or 2 for a 
remainder, and are consequently of two kinds. Those which, aftar 
the'division leave the remainder 1, are i 

1,4,7, 10, 13, 16, 19, &e., 

and are contained in the expression 3 a + 1 ; but the other kind, 
where the numbers give tbe remainder 2, are ; 

2,5,8,11,14,11,20, &c., 

• aiJd they may be generaUy expressed by 3 a + 2 j 80 that all Dum­
bers may be expressed either by 3 a, or by 3 a + 1, or by 3 tJ + 2. 

61. Let us now suppose that 4 is the divisor under considera­
tioD i' the numbers which it divides are i . 

4, B, 12, 16,20, 24, &c., 

which increase uniformly by 4, and are comprehended in the ex­
pression 4 a. All otber num~rs, that is, those which are not di­
visible by 4, may leave the remainder 1, or be greater than the 
former by 1; as 

1,5,9, 13, 17,21, 25, &c., 

and consequently may be comprehended in the expression 4 tJ + 1 : 
or they may give the remainder 2; as 

2,6, 10, 14, 18,22, 26, &c., 

and be expressed by 4 tJ +2 i or, lastly, they may give the re­
mainder 3; as' ' 

EMl.~lg. 3 
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3,7,11, 15, 19,23,·27, &e., 

- ad mar be repreeeated by the ·expression 4 a + 3. 
All possible integral numbers are therefore contained in one or 

other of these four expressions; 
4 a, 4 a + 1, 4 tJ + 2, 4 a + 3. 

62. It is nearly the same when the divisor is 5; for all numbers 
which can be divided by it are comprehended in the expression 5 a, 
and tbose wbich cannot be divided by 5, are reducible to on,e of 
the following expressions: 

5 a + 1, 5 a + 2, 5 a + 3, 5 a + 4; 
and we may go on in the same manner, ~nd consider the greatest 
divisors. 

63. It is proper to recollect here what has been already said OD 

the resolution of numbers into their simple factors j for every num .. 
Nr among tbe factors of which is found, 

. 2, or 3, or 4, or 5,' or 7, "-
or any other number, will be divisible by those numbers. For ex­
ample; 60 being equal to 2 X 2 X 3 X 5, it is evident that 60 
is divisible by 2, and by 3, and by 5. 

M. Further, as the general expression abe d is not only divisi-
ble by a, and b, and c, and d, bot also by' 

a b, a c, ad, b c, b d, c d, and by 
abc, dd, acd, bcd, and lastly by 
abed, that is to say, its own value; 

it follows that 60, or 2 X 2 X 3 X 5, maybe divided not only'by 
these simple numbers, but also by those which are composed of two 
of them; that is to say, by 4, 6, 10, 15; and also by those which 
are composed of three of the simple factors, that is to say, by 12, 
20, 30, and lastly by 60 itself. 

65. Men, therefore, we ha"e repreBente~ any number, alltlfMtl 
at pUQlUre, by it, aimple factora, it will be "ery ea,y to ,how all 
the _ben by which it is divisible. For we have only, firat, to 
taTee "he aimple factorl one by one, and then to multiply them to­
gether two by two, three by three, four by lour, ~c. till we arrifJe 
at the number propoaed. 

66. It must here be particularly observe~,j that every number ill 
divisible by 1; and also that every number is divisible by itself; so 
that every Dumber has at least two factors, or divisors, the Dumber 

• Digitized by Google 

l 

\ 

• 



Cltap.7. Ol Simple Qtumtitiu. 19 

itself and unity; but every number, which has no otber divisor than 
1hese two, belongs to the class of numbers, which we have befOre 
G1Iled ,imple, or prime nu",ber,. 

All numbers, except these, have, beside unity and themseIY~s, 
ether divisors, as may be seeD from the following table, in which 
are placed under each RUlDber all its divisors. 

TABLE. 

1 2 3 4 5 6 7 8 9 10 11 1211314 15 16 17 18 19 120 - 1- r-
1 ] ] 1 1 1 1 1 1 1 1 111 I 1 1 It 1 1 

2 3 2 5 2 7 2 3 2 11 2,13 2 3 2 17 2 19 2 
4 8 4 9 5 3 7 5 4 : 4 

6 8 10 4 14 1.5 8 5 
6 16 g 10 

I 12 18 120 
- - - --' - I-1 - - I-I-- I-I-- 1-- I-' r- -. 1 2 2 3 2 4 4 a 4 2 6 2 4 " 5 2 6 2 6 
- - - - - - - - - - - -.-I-: - :--
P. P.P. P. P. P. P. P. f· 

67. Lastly., it ought to be observed, that 0, .or !I&Othing,.may be 
• considered as a number which has the property of being divisible by 

all possible numbers; because by whatever number a we divide 0, 
the quotient is always 0; for it .must be .remarked that the multi.. 
plication of any number by Bothing produces nothing, and therefore 
'0 times 4, or 0 4, is '0. . 

CHAPTER VII. 

Of Fractirms in general. . 

-68. W BEN a number, as7 for instance, is said not to be di"isible 
'by another number, let us suppose by 3, this only meaDS, shat tbe 
quotient oannot.be expressed by an integral number; and it mOlt 

DO& be thought bi any means that it is impossible to fOrm an idea of 
Ibat quotieot. Only imagine a line of 7 feet in length, DO ODe caa 
doubt the poIBibility ~f dividing this line into 3 equal puts, ad 0( 
~.a .oatiOD of lb. leDgtb -of 0D8 of thole putt. . 
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69. Sipce ~erefore we may form a p~ ide" of the quotient 
obtailled in similar case3, thQugh that quotient is not aD integral Dum­
ber ~ this leads us to consider a particular species of numbers, called 
frMttio'lll or broken number,. The instance adduced· fumishes an 
illustration. If we have to divide 7 by 3, we easily conceive the 
quotient which should result; and express it by 1; placing the ~ 
80f under the dividend, and separating the two numbers by a stroke 
or line. 

70. So, in general, wlaen tlae number a iI to be di1lided by the 

nUlllber b, we repruent tlae quot~ent 6y ~ and call thit form of expru­

lion a fraction. We cannot, therefore, give a better idea of a fiac,. 
a 

.bon h' than by saying that we thus express the quotient resulting 

&om the division of the upper number by the lower. We must re­
member also, that in all fractions the lower number is cal1edthe 
de"omiMtor, and that above the line the numerator. 

71. In. the above fraction, 1, which we read 1611eR tlirdl, '1 is the 
. numerator, and 3 the denominator. We must also read i, two 
thirds; I, three fourths; i, three eighths; io\, twelve hundredths; 
and i, one half. 

72. 'In order to obtaio a more perfect knowledge of the nature of 
iactions, we shall begin by considering the case in which the nume-

'mtor is equal to the denomioator,asin~. Now, aiacethis ex~ . 
a . . 

the quotient obtained by dividing a by a, it is evident ~hat this q\l()o-

tieat is exactly uoity, and that consequently this fraction ~ is equal to 
a 

1, or ODe integer ~ for the same reason, all the following fractioos, 
i, i, t. t. t. f. I. &0 .• 

are equal to one anoth8l', .each being equal to 1, or ODe integer. 
13. We have seen that a fraction, whose numerator is equal to 

tbe denominator, is equal to unity. All fractions therem, whole 
..meratora· are less than the denommators, have a value less thaD 
...ny. For, if I have a number to·be divided by aaother lYbieia ill 
greater, tbe resuk must necessarily be less than 1 ; if we cut. u-, 
.. eumple, two feet Ioog, info three parts, one of tbose parfB .. 
IIDquestionably be sbortet: than a foot; it is evident then, that * is 
Jess than 1, for the lime reason, that the DUIIleator fit ia 1_ du 
the deoonUoator 3. 
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74. It the numerator, on tbe contrary, be greater-than dunle­
nominator, the -value of tbe fraction is greater than unity. Thus f 
is· greater than 1, for f is equal to i together witb i. Now I is ex,: 
actly 1, consequently f is equalto 1 + i, toot is, to an integer and 
• half. In the same manner t is equal to Ii, i to Ii, and t to 2f. 
And in general, it is sufficient in such cases to divide the upper num­
ber by the lower, and to add to the quotient a fraotion having the 
.remainder for the numerator, and the divisor for tbe denominator. 
If the given fraction were, for example, H, we should have fortha 
quotient 3, and 7 for the remainder; wnence we conclude that if 
is the same as 3n' 

75.Thus we see how fractions, whose numerators are greater 
than the denominators, are resolved into t'Yo parts; one of which is 
an integer, and the other a fractional number, ha ving the numerator 
less than the denominator. Such fractions as contain one or more 
integers, &recalled improper jractiom, to distinguish them.from frac­
tions properly so called, which, having the numerator less t~ the 
denominator, are less than unity, or than an integer. 

76. The nature of fractions is .frequently considered in another . 
way, which may throw additional light on the subject. If we con­
sider, for example, the fraction i, it is evident tbat it is three tilDes 
greater than t. Now this fraction ;1- {neans, that if we divide 1. into 
4. eCf.18l parts, this will be the v:alue of one of those parts; it is ob­
vious then, that by taking 3 of those parts, we shall have the value 
of the fraction 1. ' . 
. In U1e same manner we may consider every other fraction; for 
eXJllDple, n; if we divide unity into 12 equal parts, 7 of those 
parts will be equal to this fraction. 

77. From thiS manner of considering fractions, the expressions 
...".ator and dmomiaator are derived. For, as inthe,precedjug 
fraction -h, the number under the line shows, that 12 is the numbe~ 
of parts into which unity is to be divided; and as it may be said to 
deno&e, or name the parts, it has not improperly been C8lled th, 
~. 

Further, as the upper nUmber, namely 7, shows that, in ordertQ 
blye the value of the fraction, we must take, or collect 7 of thole 
pans, and therefore may be said to reckon, or number them, it has 
been thought proper to call the number above the line dle,..",ator. 

78. As it is easy to understand what t is, when we know the Big­
UiauMm of i, we may consider the fractiou, whole DUID8Iator is 
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"'1. 
unity, as the foundaiioo of all others. Such me the lnctions, 

i. t. t. t. t. t. t. t. n. n. n. &0 .• 
and it is observable that these fractions go on continually' diminish­
ing; for the more you divide an integer, or the greater the number 
of parts into which you distribute it, the less does each of those 
parts become. Thus Un- is less than rlr; mlr is less than Th ; 
and ~ is less than m-o-. 

79. As we have seen, that the more we increase the denominator 
of such fractions, the less their values become; it may be asked, 
whether it is not possible to make the denominator so great, that the 
fraction shall be reduced to nothing? I answer, no; for into what­
ever number of parts unity (the length of a foot for instance) is 
divided; let those parts be ever so small, they will still preserve a 
certain magnitude, and therefore can never be absolutely reduced 
to nothing. 

80. It is true, if we divide the length of a foot into 1000 parts; 
those parts will not easily faU under the cognizance of our senses; 
but view them through a good microscope, and each of them will 
appear large enough to be subdivided into 100 parts and more. 

At present, however, we have nothing to do with what depends 
on ourselves, or with what we are capable of performing, and what 
our eyes can perceive; the question is rather, what is possible in 
itsel£ And, in this sense of the word, it is certain, that however 
great we suppose the deBominator, the &action will never entirely 
vanish, or become equal to O. 
, 81. We never therefore arrive completely at nothing, however 

great the denominator may be ; and these fractions always preserv­
ing a certain value, we may continue the series of fractions in the 
78th article without interruption. This circumstance has introduced 
the expression, that the denominator must be infinite, or infinitely . 
great, in onler that the fraction may be reduced to 0, or to nothing; 
and the word infinite in reality signifies here, that we should never 
arrive at the end of the series of the above mentioned fractioru. 

82. To express this idea, which is extremely well founded, we 
make use of'the sign 00, which consequently indicates a number 
infinitely great; and we may therefore say that this fraction f; is 
really nothing, for the very reason that a mction cannot be reduced 
to nothing, until the denommator has been increased to infinity. 
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83. It is the more necessary to pay attention to this idea ef 
infinity, as it is derived from the first foundations of our knowledge, 
and as it will be of the greatest importance in the folloWlDg part of 
this treatise. . 

We may here deduce from it a few consequences, that are ex­
tremely curious and worthy of attention. The fraction ~ represents 
the quotient resulting from the division of the dividend 1 by the 
diYisor 00. Now we know that if we divide the dividend 1 by the 
quotient ~, which is equal to 0, we obtain again the divisor IJ) ; 

hence we acquire a new idea of infinity; we learn that it arises 
from the division of 1 by 0; and we are therefore entitled to say, 
that 1 divided by 0 expresses a number infinitely great, or 00 • 

84. It may be necessary also in this place to correct the mistake 
of those who assert, that a number infinitely great is not susceptible 
of increase. This opinion is inconsistent with the just principles 
which we have laid down; for ! signifying a number infinitely 
great, and i being incontestably the double of -A-, it is eyideat that 
a number, though infinitely great, may still become two or more 
times greater. 

CHAPTER VIII. 

Of the Propertie, of Fraction,. 

85. WE have already seen, that each of the fractions, 

i, i, t, i, t, 1, I, &e. 

makes an integer, and that consequently they are all equal to one 
an~her. The same equality exis~ in tbe following fractions, 

of, t, I, I, Y, \1, &e" 

each of them makiIig two integers; for the numerator of each, 
divided by itS denominator, gives 2. So all the fractions 

-i, I, I, lI, tt, 1/, &e" 

are equal to one another, since 3 is their common value. 
86. We may likewise represent the value of any fraction, in aa 

infinite variety of ways. For if we multiply both the numerator anll 
1M denomiRator of a fraction by tAe lame "umber, which fIItly 6t 
..".,d at plea.ure, t./&u fraction tDill.tiU pr,flen. the '''' IIalue •. 
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For this NIlSOII all the actions 
f, " t, t, -/ri, ,\, -h, /r., n, if, &0., 

are equal, the nIue of each being j.. Also 

i, I, f, *, -h, -h, if, /., h, H, &0., 
are equal fractions, the vaiue of each of which is i. The fractions, . . . 

I, t /S, H, fi, it. ft, &0., 
have likewise all the same value; and lastly, we may conclude in 

. . . a . 
general, that the fraction b may be represented by the following 

expressions, each of which is equal to i; namely, 

a 2a 3a 4a 5a 6a 7a 
'ii' 21136' 4h' 5V 66' 7 h' &c. 

87. To be convinced of this we have only to write for the value 

of the hction ~ a certain letter e representing by this letter c 1M 

quotient of the division of a by b ; and to recollect that the multipli­
cation of the quotient c by the divisor b must give the dividend. 
For since c multiplied by b. gives a, it is evident that c multi p1ied by 
2 b will give 2 a, that c multiplied by 3 b will give 3 a, and that in. 
general c multiplied by m b must give m n. Now changingtbis into 
an example of division; and dividing the product m a, by m bone 
of the factors, the quotient must be equal to the other factor c; but 

m a divided by mb,gi\'"es also the fraction ::,which iscoo88quently 

equal to c; and this is what was to"be proved: for c having been 

. .assumed as the value of the fraction i, it is evident that this fraCtion 
. . . 

is equal to the fraction : :' whatever be the value of m. 

88. We have seen that every fraction may be represented in an 
infinite number of forms, each of which contains the same valu~; 
.and it is evident that of all these forms, that, which shall be com­
,posed of the least numbers, will be most easily understood. For 
example, we might substitute instead of i the foUowiag fiattioDl, . 

t, I, -At, H,· ti, &0. ; 
bIlt of all these expressions I is that of which it is easiest to fonn ali 
. idea. Bere, therefOre, a problem ariIes~ hGw a' hclion," • 
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-h, wbicb is Dot expressed by the least possible numbers, may be 
reduced to its simplest form, or to iu ktld term" tbat is to .1, in 
our present eumple, to f. 

89. It will be easy to resolve this problem, if we coosider that a 
fiaction still preserves its value, when we multiply: both its terms, or 
its numerator and denominator, by the same number. For from this 
it follows also, that if toe divide tke numerator and denominator oj a 
fraction by tke .ame number, tke fraction diU pre.e",u tke ,a_ 
"Glue. This is'made more evident by means of the general expres-

sion ~; for if we divide both the numerator fA a and the denomi-

nator fA 11 by the number fII, we obtain the fraction i, which, u wu 

before proved, is equal to : ;. 

90. In order, therefore, to reduce a given fraction to its least 
terms, it is required to fin~ a number by which both the numerator 
and denominator may be divided. Such a Dumber is called a co.­
.,. ditJilor, and so long as we can find a common divisor to the 
numerator and the denominator, it Is certain that the fraction may 
be reduced to a lower form; but, on the CODtrary, when we see 
that except unity no other common divisor can be found, this shows 
that the fraction is already in the simplest form thai it admits of. 

91. To make this more clear, let us consider the fraction Na. 
We see immediately that both the terms are divisible by 2, and that 
there results the fraction U. Then that it may again be divided by 
2, and reduced to if; and this also, having 2 for a common divisor, 
it is evident, may be reduced to -h. But now we easily perceive, 
that the numerator and denominator are s,till divisible by 3; per­
forming this division, therefore, we obtain the fraction I, which if 
equal to the fraction proposed, and gives the simplest express~OD lo 
which it can be reduced j for 2 and 5 have no common divisor but 
1, which cannot diminish these numbers any further. 

92. This property o( fractions preserving an invariable value, 
whether we divide or multiply the numerator and denominator by 
the same number,is ofthe greatest importance, and is the principal 
'foundation of the doctrine of fractions. For example, we can 
scarcely add together two fractions, or subtract them from each 
,other, before we have, by means of this property, reduced them to 

Bul. .8.1&. ' 4 
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,~~"" that is to say, to expressions whose _<DiDa.ton ue 
itfll'8l. Of this we shall treat in tbe following chapter. ' ' 

93. We 'conclude the present by remarkiog, that all intege'" may 
• be Jepreseated by fractions; For example, 6 is the same u I, 
,beoapse 6 divided by 1 makf,s 6; and we may, in the same man­
.aer, expftlSS the number 6 by the fractions y, Y. Y. y, and an 
iza6Dite Dumber of others, which have the same value. 

CHAPTER IX. 

Of the .Addition and Subtraction of Fractio1l,. 

94. W BEN f1'actions have equal denominators, there is no diffi.­
'colt yin adding and subtracting them; for f + f is equal to t, and 
'. - f is equal to f. In this case, either for addition or subtrac­
tion, we alter only the numerators, and pJace the common denom­
inator under the line ; thus, 

Th- + T!a - Mr - =Mrs + Drs is equal to T!cr; f! - irs -
tt + U is equal to H, or it; :H -I-a - # + * is equal to 
a. or t; also .. + t is equal to i, or 1, that'is to say, an integer; _ 
and t - f + t is equal to t;that is to say, nothing, o~ O. 
, 95. But when fractiO'll.8 hafJe f!.Ot eqtUJl de'l&ominator" we c .. 
alway, ihange them into other fraction, that hafJe the 'ame defllJmi­
Mtor. For exampJe, when it is proposed to add together the fra,c­
'tions i and i, we must consider that i is the same as ., and that l­
is equitralent' to i; we have therefo~e, i~teadof the two fractions 
proposed, these i + i, the sum of which is t. If the two fractions 

.were united by the sign minw, as j - -a, we should have i - .. 
:ori· 

, Another example: let the fractions proposed be f + t; since f 
is the same as I, this value may be substituted for it, and. we may 
ay' + 'makes V, or Ii. . 

Suppose further, that the sum of * and t were required. I say 
that it is t-r; for * makes -h, and l makes "fi. 

00. We may AafJe a greater number of fraction, to be reduced to 
a common denomiflatof'; for example, i. i. I. t ... ; in thi. cale 
lAc .,~le depexdl OR finding G number whic1& may be, ditJiri6le by 
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• 
all the tlenotflihOtM'I of tlet. jratJtUml. In thjj ioldaDde 60 ie the 
DUmber which has that property, and which eonsequ~tly beClOmee 
the common denominator. We shall therefore have H instead of 
.. j t& insteatl of f j tf instead of, i j H instead of ... ; and "' in- ' 
stead of t. If flOW it be required to add together aU tl,eu ftiltsfifmi 
ii. t&. U. tI, and U. we ho",e only to add all the numerator", ... 
IItIder the,.". place tAe common denominator 60 ; that is tb say, 'we, 
shall bave W, or three integers, and H, or 3H. 

97. The whole of this operation consists, as we before stated~ ill 
changing two fractions, whose de~minatorS are unequal, into two 
ethers, whose denominators are equal. In order therein to per- , 

fonn it, generally, let i and ~ be the fractions proposed. F!rst, mul­

tiply the twO ttrms of the first &action by d, \Ve shall have the fiiac.,. 

tion : ~ equ~ to i ;' Dext multipiy the two termS' of the second trac­

tion by 11, aad ". shall have aD equivalent value of i, expteaed. \lJI 
be ' 
lul; thus the two denominators become e~a1. Now it the su~ o~ 

the two proposed fractious be required, we lDIly immediately aD8W81' 

that it is ad ~ be; and 'il their dift"erence be asked, we sa~ that it is " 

ad-be' • ' 
b d • If the fractions t and i, .cor· example, were proposed, 

we should obtain in their stead * and n; of which the sum is 
\\1, and the difference H. 

98. To this part of the subject belongs also the question, of two 
proposed fractions, which is the greater or the less; for, to resolve 
,this, we ,have ooIy to reduce the two &actions to the same denomi­
nator. ,Let WI take, for example, the two &actions t and f: ,wben 
reduced'to the same de~ominator, the first becomes H, and the 
Second if, and it is evident ihat the second, or f, is the greater, aD'l 
exceeds the fonner by -ft. I 

Again, let t8e two fractions f and tbe proposed. We shall have 
to substitute for them ft aDd it; wheDce we may capclude that t 
eiceeds i, but only hf n. 

99. When it iI reg.'nd to 8'tJhtract (I frllctio!& fronl GtI itueger, it 
is sufficient to change one of the unit, of that integer into (I fraction 
Aa'Uing the lame denominator a8 the frGdioo to be Bubtr4cte4; in 
the rMt 01 the operation there is no difficulty.' Ilit he'requirSd, 
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"nmample, to Subtract I fi'om 1; we write il insteadofl, and sr:y, 
that f taken .&om i leaves the remainder t. . So "* subtracted &em 
I, leaves n. 

If it were required to subtract f from 2, we should write 1 and t 
iostead of 2, and we should immediately see that after the subtrac­
tion there must remain Ii. 

100. It happens also sometimes, that having added two or niore 
&actions together, we obtain more than an integer; that is to say, . 
a numerator greater than the denominator: thiS is a cue which has 
already occurred, and deserves a~ention. 

W 8 found, for examplo, article 96, that the sum of the five-fiac.. 
lions i. t. t. t, and ~, was W, and we remarked that the value of 
this sum was 3 integers and N, or H. Likewise f + i; or..,. + -&. 
makes H, or 11\. We have only to perform the actual dirision of~. 
numerator hy the denominator, to see how many integers there are for 
the quotient, and to set down the remainder. Nearly the same must 
be cloDe to add together numbers compounded of integers and frac- . 
tions; we first add the &actions, and if their sum produces one or 
more integers, these are added to the other integers. Let it be pJO­
posed, for example, to add 3i and 2f; we first take the sumoC i­
udt, or of i and t. It is i or 1*; thea the sum total is 6i. 

CHAPTER X. 

Of tAt Multiplication aM IMifttm 01 FrGttioru. 

101. THI: nile lor the fltultiplication 01 afraction 6y an Vat"er, 
(It" ",hole number, ~ to multiply tlae numerator only 6y tJ&. -Bi'''' 
~, and not to change the denominator: thus, 

2 times, or twice i makes i, or 1 integer; 
2 times, or twice j makes f ; 
3 times, or thrice * makes i, or i; and 
4 times' 1\ makes U or lx\, or If. 

But, in"nead 01t4;" rule, ",e may we tkat of difJiding tk tUnorm­
tI4Hor 6y the gi," int~ef' ~. au tAil iI prelerable, ",Iaeta it .. b. 
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wed, 6ectJW4 it t1aorteu tlaB operation. Let it be required, tor ex­
ample, to multiply f by 3; if we multiply the numerator by the 
given integer we obtain s/, which product we must reduce to I. 
But if we do not change the numerator, and divide the denominator 
by the integer, we find immediately I, or 21 for the given product. 
Likewise if multiplied by 6 gives 1f, or 3t. 

102. In general, therefore, the product of the multiplication o( a 

&action ~ by cis a; ; and it may be remarked, tD1aan tlaB integer u 
UGCtly epal to tie lenomifUltor, that tlae product ",wt be egval to 
.tIN maerator. 

~ i taken twice gives 1 ; 
So that i taken thrice gives 2; 

. f taken 4 times gives 3 • 

.t\ndin general, if we multiply the fraction~bythenumberh,~e 
. 'II 

.product must be a, as we have already shown; (or siocebex-

presses the quotient resulting from the division o( the dividend a by 
. the divisor h, and since it has been demonstrated that the quoti8Dt 
multiplied by the divisor will give the dividend, it is evident that 

1 maltip1ied by 6 must produce a. 

, 103. We have shown how a &action is to be multiplied by an in 
-.ger j let us DOW consider also MtD G/ro.ctitm u to be ditNletl by .... 
w'ger; this inquiry is necessary before we proceed to the multipli­
cation of &actions by fractions. It is evident, if I have to divide the 
.&action i by 2, that the result must be i; and that the quotieat o( 
f divided by 3 is f. The rule therefOre is, to tlmtle t1ae ftllflW'qtor . 
1Jy t1ae integer tDitAout c"-gittg t1ae tleftomifUltor. Thus, 

if divided by 2 gives Ir; 
if divided by a gives -h.; and 
.if divided by 4 gives '* j &0. 

104. ThiS rule may be easily practised, provided the numerator 
be diVisible by the number proposed; but very often it is Dot: it 
must therefore be observeil that a fraction may be transforlned into 
u:infioite Duoiber o( other expressions, and in that numbertbere 
must be some hi which the numerator might be divided by the 
ai ... integer. ' If it were requiied,fOrexample,·to divide f by 2, 

: . 
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- we should change tbe fraction into i, and then dividing the numera­
tor by 2, we should immediately have i for the quotient sougbt. 

In general, if it be proposed to divide tbe fraction iby c, we cbange 

o 0 a e d b dO °do th boa fc h It IOto y-, an t en IVl 109 e numerator a eye, WrIte b- or t e 
uC , C 

quotient sought. 

105. W1am therefore tJ fraction ~ u to be dit1i~e'd by an integer 0, 

til. Aaee only to multiply the denominator by thot number, .nd'lellt1e 
the numerator tu it U. Thus i divided by 3 gives -h, and,. divid­
ed by 5 gives /ri. 

ThiS operation becomes easier when the numerator itself is divisi­
ble by the integer, as we have,supposed in article 103. Forexam­
pIe, fi divided by 3 would give, according to our last rule, Iw; but 
bytbe first rule, which is applicable here, we obtain -h, an expres­
sion equivalent to '4\' but more simple. 

, a 
.. 106. We shall now be able to understand how one hetion, 

may be multiplied by Mother friction ~. We have only to', con;.. 

C 
sider that d means that c is divided by d; and on this principle, we 

, , 

shall firsl multiply the &ac~on i by c, which produces the res~t ,BbC i 

.rter which we s~all divide by d, which gives ~. 
Hence tlt follotlJing nde for multiplying /ractionl; multipiy 

~ately tAe numerator. a"d the denominator'. . 
Thils i by • gives the product " or i ; 

f by" makes h; 
I- by Irr prodocel' it, or -A ;. &C. 

107. It remains to show AotII one frtJetion Ny be ditJidttl by 
GUtAM-_ We remark first, that if tlaa ttllO fractionl.1Uw. t/&, .ame 
.. or fot' a ~'or~ tAe divino" tlike. pldce MIly vitA r~ 
~ to' tAe ~ator.; lor it is evident, that * is coo&aiaed u 
aaD)' times in /r Blf 3 in 9, that is to say J thrice; Ind in the ~ 
~r, in order to divide /r by -Its, we have QDIy, to divide 8 by 
~, which gives t. We shall also have I. ia j!, 3 tjmes: '-d., ja 
/Irt, '7 Woes; n in Ir;, t; &co 
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108. But when tM /rtJClions hatle not equal denominator" we 
must have recourse to tire method already mentioneG for reducing 
them to a common denominator. Let there be, for example, the 

• 
fraction ito be divided by the ~tiona; we first reduce them to 

the same denoPlinator; we have then :~ to be divided by : ~; it is 
DOW evident tbat the quotient must be represented simply by the 

division of a d by b C; which gives ~ d. 
. uC 

,Henee the fOllowiog lUle: Multiply the Rumezator of tM ditJitl~d 
by the tlenotr&inatQf' of t.h. tlitJuor, and tke denominator of tke ~ 
tknd by, 1M numerator ·of tke diNar; tke fir.t product tDill be tb, 
nUler6tor' 0/ the ,quotient, mt.d tke uClHld 'Will be, it, denominator. 

109. Applying this rule. to the division.of • by i, we shall have 
the quotient tt; the division of t by l will give t or i or 1 and l ; 
and H by t will give ill, or •• 

110. This rule for division is often represented in a manner more 
easily remembered, as follows: Invert the fraction which is the di,i­
,or, '0 that the denominator m.ay be in .the place of the numerator, 
and the la~ter be written under the line; then multiply the fraction, 
which' is the dividend by thiB infJerted fraction, and 'he prodttCt will 
be the quotient ,ought. Thus i'divided by t is the same as t mul-· 
tiplied by -i, which makes f,or It. Also t divided by i is the 
same as .. multiplied by i, which is H; or it divided by t gives 
the same as H multiplied by I, the product of which is U!, or t. 

We see then, in general, that to ditlide by the fractiori!, iI the 
,ame a, to multiply by -i, or 2; that difJision by ! amount,' to mul­
tiplication by i, or by 3, ~c. . 
. 111. The number 100 divided by t will give 200; and 1000 
divided by ! will give 3000. Further, if it were required to divide-
1 by dmr., the quotient would be 1000; and dividing 1 by ~, 
the quotient is 100000. This enables us to conceive that, when 
any number is divided by 0, the result must be a number infinitely 
great; for even the division of 1 by the small fraction 10000100000 

gives for the quotient the very great number 1000000000. 
112. Every number when divided by itself producing unity, it is 

evident that a fraction divided by itself must give 1 for the quo­
tient. The same follows from our rule: for, in order to divide­
{by I, we mait multiply f by t, and we. obtain ii, or 1; and if it 

Digitized by Google 



.Algebra. Sect. I .. 

be . d d"d ab a . I' I ab b h rod require to IVI eb' y b' we mu tip ~b Ya; now t e p uct 

ab. al 
ab IS equ to 1. 

113. We have still to explain an expression which is frequently 
used. It may be asked, for example, what is the half of f; this 
means that we must multiply t by t: . So likewise, if the value of 
t of i were required, we should multiply i by i, which produce~ 
it; and i of -& is the same as I ... multiplied by -I, which produces 
~i· . 
. 114. Lastly, we must here obse"e the same rules \Vith respect 

to the signs + and -, that we before laid down for integers. 
Thus + t multiplied by - t makes - t ; and - t multiplied by 
- t gives + /s. Farther, - i divided by + t makes - H ; 
and - f divided by - f makes + H or + 1. 

CHAPTER XI. 

Of Square Number •• 
\ 

.115. THE product of a number, tohen multiplied by itulf, ia 
caUetl a .quare; and for thia remon, the number, comidered in 
relation to lUck a product, u called a '9u(Jf'e root. 

For example, when we multiply 12 by 12, the product 144 is a 
square, of which the root is 12. 

This term is derived from geometry, which teaches us that the 
contents of a .square are found by multiplying its side by itself. 

116. Square numbers are found therefore\ly multiplication; that 
is 10 say, by multiplying the root by itself. Thus.l is the square of 
1, since 1 multiplied by 1 makes 1 ; likewise, 4 is the square of 2 j 
and 9 the square of 3 ; 2 also is the root of 4, and 3 is tbe root of9. 

We shaH begin by considering the squares of natural numbers, 
and shall first give the following small table, on the first line of 
which several numbers, or roots are placed, and on the second their 
squares. 

Numbers 1~4 5 6 '~ 9 
10 11 12 13 

-
Squares 1 4 916 258649 81 100 121 144 169 
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11'7. h will be readily perceive~, that the series of square Dom· 

bers tbuS arranged bas a singular property; namely; that if eaeb o( 
diem he subtracted from that which immediately follows, the re-
mainders always increase by 2, and fonn this series : ' 

3, 5, '1,9, 11, 13, 15, 1'1, 19,21, &c. ' 
118. The 'qtu1re, of fractioni ore found in tlae ,ame mtmner, 

by multiplying any give'll fraction by it,elf. For example, the, 
squ~ of .. is i, ' 

Tb, .... of 5!~ ilJ 5~; " 
~ f) ~ 19~.&c. 

We Daft only, therefore, to divide the square of the numerator' 
Itt the square of the deftominator, and the fraction, wbich npresses 
that'division must be the square oftbe given fraction. Thus, 'it­
the square of .. ; aDd reciprocally, .. is the root of ft. 

I 19~ When the square .of a (nixed number, or a' Dumber com­
posed 0( an integer aDd a bctioD, is required, we have only to 
rmllCe, it to a single fftlCtion, md then to ttlke the squllre of that 
~tion. Let it be required, for example, to find the square of"2j-; , 
we 6.rst express tbis number by'I, and taking tbe square ot that 
fraction, we bave !If, or 6f, for the value of the square of2j.. So' 
to obtain the square of 31, we say at is equal to 'l ; therefore its 
square is equal to W, or to 10 and!,-. The squares of the Dum­
bers between a and 4, supposing them to increase by on8 fourth, 
are as follows: 

Numbers 3 31 _~ 3t \4_ 

Squares 9 iOA12ij~j16 
From tbissmall table we may infer, that if a root contain a frac­

tion, its square also contains one. Let the root, (or example, ,be 
1'1\; its square is ill, or 2rh; that is to say, a little greater tban 
the integer 2. . ' 

120. Let us proceed to geQeral expressions. ,When the root it 
fI, 111, square must be a II; if the root be 2 a, the square is .. a G; 
whicb shows that by doubling the root, the square becomes ~ times 
greater. So if the root be 3 a,. the square ~ 9 G~; and ifth~ root 

Eul. Alg. 5' . 
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be 4 fI, the square is 16 .. 6. But if the root be a 6; the square is 
.. a b b; and if the root be abc, the square is fI a b h c o. 

121. Thus. fDh. the TOol is COJItfIoud of '",0 or IIOr, Jqf:Mr" 
tile multiply tAeir'lJuaret togelAer ; and ruiprOMl/y, if (.I 'fU" 6e 
eompo,ed of two or raore facIo", of tDklel each .. a 'quare, tile A~ 
only to multiply together tAe root, of tho,e 'quare" to obtai. Me 
complete root of tAe 'quare propo,ed. Thus, as 2:J04 is equal to 

4 X 16 X 36, tbe square root of it is 2 X 4 X 6, or 48; and 48 
is found to be the true square root of~, because 48 X 48 gives 
2304. 

122. Let us n,,?wconsider what rule is to'beobser9',ed witbregard 
to the signs + and -. First, it is evident that if the 1'OOt has the 
sign +, that is to say, is a positive number,ituquaremustnecesaa­
rily be a positive number also, because + by + makes +: die 
square of + a will be + a a. But if the root be a·Mgative num­
ber, as - a, the square is still positive, for it is + a a; we mar 
therefore conclude, tbat + 6 tJ .. tlte ,qutW. bttl .f + a, tmtl of 
- a, and that co1&leque.,ly euery ~re la, two TOfIItI, 0JIe pe .... 
#.Jut/. tAe ot~er neglltu,e. The square root of 25, for example, is 
both + 5 and - 6, because -, 6 multiplied by - 5 gives is, II 
weUas+5by+5. 

CHAPTER. XU. 

Of &juare Bool., and of lrratio,.;,z Number' relUlting .frora t!&etA. 

124. WSATwe have said in the preceding chapter is chiefly this: 
that tbe square root of a given number is nothing but a DUmMr 
whose square is equal to the given number; and that we may put 
before these roots' either tbe positive or: the negative sign. 

124: So that when a square numbel' is' given, provided we retain 
in our memory a sufficient number of square numbers, it is easy to 
find its root. If 196, for example" be the given number, we law" 
that its square root is 14. ' 

Fractions likewise are easily managed j it is evident, for example, 
that'" is the squue root or H., To be convinced of. thiJ we ~ve 
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• 
CIIIIy to • the IfIWlie root of the m&aerator, aad &bit fJl the de­
ftOminl1lDr •. 

If tbe DUmber proposed be a mixed number, as lit,' we reduce 
~ to a ..... 18 &action, which .here is V; ad, we. immedi.ly per­
ceil'e that i, or 3t, must be the .square root of. 121 • 

. lim. But when the given number is not ,& square, as 12, for 
.ftample, it is not possible to extract its square root; or to find a 
_rober, which, maJtipliect by itself, will give the product 12. We 
know, however, that the square lOOt of 12 must be greater thaD a. 
INicause 8 X 3 produces only ~: and less than 4, because 4 X .. 
produces 16, which is more than 12. We know also, that tbisroot 
is less than at ; for we have seen trn:t the square of 3l, or ~ is 121. 
laItI,., '!8 may approach stUl nearer to this root, by comparing it 
with 3n-; for the square of 3/r;, or of M i1J VN, or 12,! 5, so 
that this fraction is still greater than the root required; but very 
fittfe greater, as the di1FerenceOf the two squares is only ~~ 
. 126. We' may suppOse that as 3;l and aiT; are numbers greater 
than the root 'of 12, it might be possible to add to 3 a traction a 
little less than In and precisely such that the square of the sum 
would'be equal to 12. 

Let us therefore try with 3f, since-t is a little less than n. Now 
31- is equal to \4, the square of which is W, and con'sequently less 
by it than 12, which may be expressed by W. It is therefore 
proved that 3f is less, and that 3n is greater than the root required. 
Let us then try a number a little greater than ~, but yet less than 
.fJyt,;, for example, 31r. . This number, which is equal to H, has 
(or its square Wr4 • . Now, by reducing 12 to this denominator, we 
obtain ~; which shows that Sir is stiIlless than the root of 1~, 
.,iz. by -rho Lfh us therefore substitute for !r the fraction h. 
which is a little greater, and see what will be the result of the com­
parison of the square of 3A with the propoSed number 12. The 
.~uar~ of 3b ~ 1m; now 12 r<lduced to the same denominator 
is 1m; so that ~T\ is still too' small, though only bYl'h, w~ 
an has been found too great. 
. H17. It is evident, therefore, that whatever fraciion he i>~ed to 
3, ilie square of that sum must always contain a fra(ltion, and can 
never. be exactly equal to the integer 12. Thus, although we know 
that the square root of 12 is greater than 3T:r and less than an, 
yet we are unable to assign an intermediate fraction between these 
two, which, at the same time, if added to 8, would express exactly 
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• 
die llqUate root of 19. N.witMaaDfiiag tWI, we are _ .., __ 
that the square root of 12 is absolutely and in itself indeteranioafe; 
it O8ly follows from wbat bas been said, that tm. roo&, thQugb it 
D8C8SI8I:ily, bu a detmllinate magnitude, eanaot be, npreuecl bJ' 
fractions. 

128. There u, tAerefore, tJ .ort of ".e,. w.\icTa •• 7&0# 6t .. 
ligned by fracoon., tJnd wAicA Me net1ertAcl8l. d"~RtJtB f*I8'" 
Ue.; the squart root of 1~ furnishes, an example. W. eall tbiI 
Dew species of numbers, irrlJlioul alC1!tber,; tlley occur ",belle" 
we endeavor to find the square root of a QUlDber which is Dot • 

~re. Tbus, 2 DOt being a 'perfect square, the square root of ~ 
or the number which, mullipfted by itself, would, pIOduoe 2, is ... 
jrratiooal quantity. These numbers are also called.,.,j t',..-a ... 
or incommef&lUrable.. • 

129. These irrational quantities, though they caDOOt be expreaed 
by fractions, are nevertheless magailudes, of which we may form m 
accurate idea. For however concealed the square root of 12, for 
example, may appear, we are DOt ignorant, that it must be a DUDlber 

which, wheQ ~ultiplied by itself, wouldeDctly produce 12; and 
this property is sufficient to give us an idea of \he number, siQce it 
is in our power to approximate its value cQlltinually. 

130 • .As we are' therefore sufficiently acquainted with the nature 
of the irrational numbers, under our present consideration, a particu­
lar sign has beeD agreed on, to express ~be square roots of all num­
bers that are not perfect squares. This sign is written thus ~, and 
is read .qUllre root. Tbus, Ji2 represents the square root of 12, 
or tbe number wbicb, multiplied by itself, produces 12. So,..Ii 
represents tbe square root of 2; ..13 tbat of 3; ..Ii that of J, and 
in general, ..1& repr8lent, the .quare root of the ,.umber a. Wbell­
ever, therefore, we would express the square root of a number 
whicb is not a square, we need only make use of .the mark V by 
placing it before the number. 

131. The explanation which we have given of irrational numbers 
win readily enable us to apply to tbem the known methods of calcu­
lation. For knowing tbat the square root of 2,'multiplied by itself, 
must preduce 2; we know also, that the multiplication ..Ii by ..Ii 
must necessarily produce 2; tbat, in the same manner, tbe multipli­
cation of ..I'd by ...t3 must give 3; that..l5 by ..15 makes 5; that 
.,Ii bY..lf makes t; and, in general, thatJ'i mtdtipliul' by J'i 
produce. a. ' 
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182. But wlun it iI required to multiply •• ji by Jb t1ae product . 
wiU be found to be ..In b; because' we have shown before, that if a 
square bas two or more factors, its root must be composed of tbe 
roots of those faetors. Wberefore wet find the square root of the 
product G b, wbich is ..lib, by multiplying tbe square root of a or 
..la, by the square root of b or.fl. It is evident from this, that if 
" were equal to a, we should have..lliG for the product of ..Ia by 
• .Iii. Now..lUG is evidently G, since a a is the square of a. '. 

133. In division, if it were required to divide ..la, for example, 

by ..Ib, we ob~in J~; and in tbismatance the irrationality may VIn­

isb in the quotient. ThIl'S, baving to ai vide ..liS by ~, the quotient 
is •• rl, wbich is reduced to ..It, and consequently to I, because f 
is the square of i 

134. When the number, before which we have placed the radical 
sign V, is itself a square, its root is expressed in the usual way. 
Thus ..Ii is tbe same as 2; j9 the same as 3 ~ .,/36 the same as 6 ; 
and ..Ii2! the same as i, or 3j-. In these instances' the irratiolt­
ality is only apparent, and vanishes of course. 

135. It is easy also to multiply irrational numbers by ordinary 
numbers. For example, 2 multiplied by ..15 maku 2..15, and 3 
times .j2 make 3 ~. In the second example, however, as 3 is 
equal to j9, we may also express 3 times ~ by ~ times~, or 
by ..liS. So 2 ..Ia. is tbe same as ..14 II, and 3..1a the same as J9 /I. 
And, in general, b./a ha, the ,ame "alta "' the IljuGre root of b b a, 
or ..IUb; whence we 'infer reciprocally, that when the number 
which is preceded by the radical sign contains a square, we may 
take the root of that square and put it before the sign, as we should 
do in writing b ./a instead of ..III" b. After tbis, the following re­
duCtions will be easily understood: 

ad 80 on. 

..18, or .,/2.4 • 

..Ii2, or ..13.4 

..118, or ~ is equal to 
J24, or ..16.4 
Jiit or ..12.16 
..175' or ..13.25 

. 136. Division is founded on the same principles. ..Ie. dieitkd 6r 
Jb, gitJ" ~~ ,'or Ji. In the same manner, ' " 
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Further 

..,t8 

.vi 

.vIS 

.vi is equ~ to 

. .v12 

~ 
2 

.fi 
3 .va is equal to 

12 

.v6 
or .v6.4, or lastly 2 .v6• 

137. There is nothing in p8l1icuIar to be ol¥;erved with JeSpect 
to the additioo I!JKi subtraction of such quantities, because we oBly 
CODDect t~m by the sigo$ + and -. For e:J[ample,.j2 addul 
~o .va. i,t written ~ + .va; and.va ,.,.btraeted from . .vS is writ­
ten .v5 - .va. 

138. We may observe lastly, that'm order to distinpish ina­
tiOJ;lal numbers, we call all other numbers, both h1tegral and fra~ 
.al, rationsl ",_erl. '. 
. So tbat, wbenevel' we speak of ratioDal Bumbers, we UDdersWl~ 

mteieJS or fractioBS. ' . 

CHAPTER XlII. 

Of Impo"ible or Imaginary Quantitlu, tII!ic! "",tJ/r- ·1Ae8al 
,ouree.' 

139, WE bave already SeeD that the squares of numbers, negative 
as well as positive, are always positive, or a1fected with the sign + ; 
having shown tbat - II multiplied by - a gives + a II, the same 
as the product of + a by + a. Wherefore, in the preceding chap­
tei', we supposed that all the numbers, of which !t was required JO 
extract the square roots, were' positive. 

140. When it is required, therefore, to extract the root of a Daga­
live Dumber, a very great ctifticulty arises ; .. thef$ is DO alSip 
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Cbap.18. 01 Sim.Ple Quantitiu. • 
"bJe ,number, ~he square of which wotlld be a negative quantity_ 
Suppose, for example, that we wished to extract the root of - 4; 
we require St,Ich a number, as when multiplied by itself, would pr0-

duce ,- 4; now tbi$ number is neither + 2 nor - 2, because the 
aqaare, both of + 2 and of .:.... 2, is + 4, and not - 4. 

,141. We must therefore .conclude, t~at tke 'tp.Ulre root of amp 
tiN ,..,.ber cannilt be either a positifle _mber, or a negatwe nu",," 
bu, since the squares of .negative numbers also take tIle sip pl •• 
C4>DS8quently the root in question must belong to.n entirely cU­
tinct species of numbers; since it'cannot be ran~ed either among 
~ive or among negative Dumbers. . 
o 142. Now, we before remarked, tba~ positive numbers are aD 

, p.ter than oot.hing, or 0, and tbat negative numbe,. are all Jess 
, tban notbing., or 0; so that whatever exceeds 0, is ex.pr~d by 
positive numbers, and wbatlWer is less tban.o,.is~ressed by nega-
tive numbers. T~e square roots of negative Dumbers., therefore, are 
neither greater norless than nothing. We cannot say, however., 
that tbey are 0; for 0 multiplied by 0 prQduces 0,. and COD8&­

flUently does not give a negative number. 
143. Now, since all n';Jmbers, which it is possible to conceive, 

are· either greater or less than 0, or are 0 itself, it is evideat tbat we 
cannot rank the square root ofanegative Dumber amongst possible 
numbers, and we must therefore say that it is 'an impoesible quantity • 
. In this UlIlDIler we are led to the idea of numbers, whicb fioom :tbeir 
nature are impossible. Thue number, tire mum'y called imtJginmy 
~, 'hcause they exist merely in the imagina~OD. 
, 144. All such expressions, as../ 1, ../-2, ./-3,../ 4, &c •• 

arecoaseqaeady impossible, or imaginary numbers, since they re­
present rool$ of neptivequantities; and of such Dumbers we IDIJ 
&luIy ustlrt, that they axe DeithQr aothing, Dar greater than noahiPL 
DOr less than nothing; which necessarily eonstitutes thelD imagiDMy, 
QI' impossible. 

145. But lIotwitbstandiog all this, these numbers present litem­
selves to tbe mind; tbey exist ia our imagination, and we stiJUaave 
a sufficient idea of tbem; since we know that by . ../_ 4 iameu' a 
I\Uraber, which multiplied by itself, produces - 4. For. this rea­
son alsQ, nothing prnerus us from 'mUing use of these ~ 
numbers, and employiDg them in ca~ulation. 

146. T .. 6m .. tDuOCCUIBOSl &be ,..sHjectil,tbaltiae 
....... ~ ../-a, ... -pl., •. the product· of "' ..... 3 ,by ~, 

Digitized by Google 



• 
Seat. 1. 

must be - 3; tbat the prodUct of ./-1 by,., . 1 is -- 1 ; aad, 
in general; that by multiplying ./_ (J by ../_ (J, or by taking the 
square of ./-a, we obtain - a. 

147. Now, 'as - a is equal to + a multiplied by - 1, and as 
the square 'root of a product is found by multiplying together the 
roots of its factCIrs, it follows that therool of a multiplied by - 1, 
or./ a, is equal to ./a, multiplied by ./-1. Now ./G is a possi­
ble or real number, consequently the whole i"'PollibUsty of an i"'"K­
mary quantity may be alway, redtIMd to./ 1. For this reaso~; 
./ .. is equal to./4 multiplied by ,.,-1, and equal to 2 .• /1, 
on account of ./4 being equal to 2. For the same reason, ./9 isre­
duced to.j9 X ..1=1, or 3 ./-1 ; and,., 16 is equal to 4./-1 •. 

148. Moreover, as ./G multiplied by ./6 makes ./iib, we shall 
bave ./6 for the value of ./-:l muJtipJied by,., 3; and ./i, or 2, 
fOr tbe value of the product of ./=-I by ;.t=4. We see, there­
he, tbat two imapary number" multiplied together, produce a 
real, or pOAwle ODe. 

But, on the contrary, II pOBlible fHUnber, multiplittl by 1m 1m­
pombie number, gitle, alway, lin imaginary produet: thus,./ 3 
"1./+5 gites ./=15. 

149. It is the same with regard to division; for./G divided by 

.,/6 making~i, it is evident that./ 4 divided bY,./-1 will make 

./+4, or 2; tbat ..t + a divided by ./-3 will give ,., 1; and that 

r divided ~-1 gives' ~ ±{, or./ 1 ; 'beeause 1 . is equal to 

./+1.· . 
150. We have befOre observed, that the squue root ofaDY num­

ber has always two values, one positive and the other negatiVe ; that 
../i, for example, is both, + 2 and - 2, and that in general, we 
DltISt take -./G as well as + ./G for tbe .square root of 4. This 
remark applies also to imaginary numbers; the '9uare root of - a 
.. W + ,./a aod -,., a j 6ut we mud not torifourul the.Hgm 
+ tlftd -, whieh ar. 6tfore tke radical 6ip 1Ir/, tDit1& tAe lip 
__ eoIIU 8fur it. " i 

161'. It remaios " us to remove 80y doubt wbich may be enter­
tained ocmceming the utility of the numbers of which we have beeD 
speaking ; for those DUmbers being impOMihle, it would not be sur­
priaiag' if Illy GD8 should tbiDk them en~y useless, and the lItl'bject _y of idle tpeculatiollo. Thil, howe .. , is DOt the eue. The'cal-·. 
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culation of imaginary quantities is of the greatest importance: 
questions frequently arise, of which we cannot immediately say, 
whether they include any thing ,real and possible, or not. Now, 
when the solution of such a question leads to imaginary numbers, 
we are certain that what is required is impossible.· 

CHAPTER XIV. 

Of Dubic NumlJer,. 

152. WHEN (I number hos been multiplied twice by it,elf, or, 
which u the ,ame thing, when the 'quare of (I number hos been 
multiplied once more by that number, toe obtain a product which iI 
called a cube, or (I cubic number. Thus, the cube of a is (I a (I, 
since it is the' product obtained by multiplying (I by itself, or by a, 
and that square (I (I again by a. , 

The cubes of the natural numbers therefore succeed each other 
in the following order. 

Numbers 

-ts 
3 4 5 6~8 9 ,10 

~ubes . 1 8 2764 125 21634351~ 729 1000 

153. If we consider the di1Ferences of these cubes, as we did 
those of the squares, by subtracting each cube from that which 
comes after it, we shall obtain the following series of numbers: 

7, 19, 37, 61, 91, 127, 169, 217, 271. 
At first we do not observe any regularity in them '; but if we take • 
the respective di1FerenceB of these numbers, we find the following 
series: 

• This is followed in the original by an example intended to illus­
trate what is here said. It is omitted by the editor. as it implies a 
degree of acquaintance with the subject which the learner cannot be 
suppoaed to possess at this stage of his progress • 

• , • .8.lg. 6 
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12, 18, 24, 30, 36, 42, 48, 54, 60; 

in which the terms, it is evident, increase always by 6. 
154. After tbe definition we have gi'ven of a cube, it will not be 

diffi~ult to find the cube of fractional numbers; t is the cube of ! ; 
i7 is tbe cube of t; and /., is the cube of i. In the same man­
Der, we have only to take the cube of tbe numerator, and that of 
tbe denominalorseparately, and we shall have as tbe cube of i, for 
ins'ance, U. 

155. If it be required to find the C'II.be of a mixed number, we 
must first reduce it to a lingle fraction, and then proceed in the 
manner that hal been described. To find, for example, the cube 
of li, we must take tbat of i, which is \7, or 3 and i. So the 
cube of It, or of the single fraction i, is W, or lit j and the 
cube of 3t, or of If is JU7 , or 34H. 

'156. Since a a a is the cube of a, tbat of ab will be a;Ja b b b; 
whence we see, that if a number has two or more factors, we may 
find its cube by multiplying together the cubes of those factors. For 
example, as 12 is equal to 3 X 4, we multiply tbe cube of 3, whicb 
is Z'I, by the cube of 4, which is 64, an'd we obtain 1728,'for the 
cube of 12. Further, the cube of 2 6 is 8 a 6 a, and consequently 
8 times greater than 'the cube of a: and likewise, the cube of 3 a 
is Z'I a a a, that is to say, Z'I times greater than the cube of a. 

157. Let us attend here 6Uo to the Iigm + and -. It is evi­
dent that the cube of a positive number + a must also be positive, 
that is + II a a. But if it be required to cube a negative number 
- a, it is found by first taking the square, which is + a a, and 
then multiplying, according to the rule, this square by - a, which 
gives for the cube required - a a a. In this respect, therefore, 
it is not the same with cubic numbers ar with squares, since the lat­
terare always poritive: whereal'the cube of - 1 is -1, that of 
- 2i1- 8, that of ~ 3 is- Z'I, and 80 on. 
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CHAPTER XV. 

OJ Dube Boot., and oJ motional Number. resulting from them. 

158. As we can, in the manner already explained, find the cube 
of a given number, so, when a number is proposed, we may also 
reciprocally find a number, which, multiplied twice by itself, will 
produce that number. The number bere sought is called, with re­
llrtion to the other, the cube root.· & that the cube root of a gi1ml 
"umber i. the number who.e cube is equal to that given "umber.' 

159. It is easy therefore to determine the cube root, when the 
number proposed is a real cube, such as tbe examples in the last 
chapter. For we easily perceive that the cube root of 1 is 1; tbat 
of 8 is '2; that of 27 is 3 ; that of 64 is 4, and so on. And in tbe 
same manner, tbe cube root of ....., 27 is - 3; and that of - 125 
is- 5. 
. Further, if the proposed number be a fraction, as j." the cube 
root of it must be i; aDJl that of -Ntr is t-. Lastly, the cube root 
of a mixed number 2H- must be !, or I!: because 2H- is equal 
to~ . 

160. But if the proposed numbe~ be not a cube, its cube root 
cannot be expressed either in integers or in fractional numbers~ 
For example, 43 is not a cubic number; I say therefore, that it is 
impossible to assign any number, either integer or fractional, whose 
cube shall be exactly 43. We may however affirm, that the cube 
root of that number is greater than 3, since the cube of3 is only 27 . . , 
and less than 4, because .the cube of 4 IS 64. We know, therefore, 
that the cube root required is necessarily contained between the 
numbers 3 and 4. 

161. Since the cube root of 43 is greater tban 3, if we add a 
fraction to 3, it is certain that we may approximate still nearer and 
nearer to the true value of this root; but we can never assign the 
number which expresses that value exactly; because the cube of a 
mixed number can never be perfectly equal to an integer, such as 
43. If we were to suppose, for example,3* or I to be tbe cube 
root required, the error would be t; for the cube of I is only Ilta, 
or 42 •• 

162. This therefore shows, that the cube root of 43 cannot be 
expres.ed in any way, either by integer. or by /ractiom. However, 
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we have a distinct idea of the ~a~itude of this root ; which induces 
, , . 

us to use, in order to represent it, the sign V, which we place be­
fore the proposed number, and which iI read cube root, to disti~ 
guisA it from the fquare root, wAich is often called simply the root 

a • 
Thus V43 means the cube root of 43, that is to say, the number 
whose cube is 43, or which, multiplied t~ by itself, produces 43· 

163. It is eviden~ also, that such expressions cannot belong to 
rational quantities, and that they rather form a particular species of 
irrational quantities. They have nothing in common with square 
roots, and it is not possible to express such a cube root by a square 
root; as, for example, by .v12; for the square of .v12 being 12, 
its cube will be 12 .v~, consequently still irrational, and such can­
Dot be equal to 43. 

164. If the proposed Dumber be a real cube, our expressions be-
a a· a 

come rational; .vI is equal to 1: .v8 is equal to 2; .v27 is equal 
a • l . 

to 3; and, generally, .vm u equa to a. 

165. If it were propo,ed, to multiply one &abe root ~a bg anotAer, 
S • 8 . 

.vb, tAe product mud be .v a b j for we know that the cube root of a 
product a b is found by multiplying together the cube roots of the 

a 8 
{acton (156). Hence, also, if we ditlide .va bg .vb, tAe quotient 

8 

willbeJ~. ' 

\ 166. We further perceive that 2 ~a is equal to ~8 a, because 2 
8 8 8 a 

is equivalent to .v8 ; that 3 .va is equal to V 2fij, and b .va is equal 
• .vGrn. So? reciprocally, if the number under the radicalsign has a 
factor which is a cube, we may make it disappear by placing its cube 

. a 
root before the sign. For example, instead of .v6iii we ~ay wRte 

4 Ja.; and 5 Ja. instead of .J 125 G. Hence Jiii is equal to 2.Ji 
because 16 is equal to 8 X 2. . . . ' 

un. When a number proposed is negative, its cube root is not 
subject 'to the same difficulties that occurred in treating of square 
roots. For, since the cubes of negative numbers are negative, it 
follows that the cube roots of negative numbers are only negative • 

. a a . 
Thus .v =s is equal to - 2, and .v - 27 to - 3. It follows allo, 



Chap. 16. 01 Simpl. Qum&titiu. 
a a, a 

tbat v=12 is the same as - V 12, and that V =a may be ex-
8 

pressed by - .vii. Whence we see tbat the sign -, when it is 
found after tht' sign of the cube root, might also have been placed 
before it. We are not, therefore, here led to impossible,orimagin­
ary numbers, as we were in considering the square roots of nega­
tive numbers • .. 

CHAPTER XVI. 

01 Power" in general. 

168. THE product which we obta.in bg multiplying II number .e,,­
eral time. bg it.elf, ia called a power. Thus, a square which arises 
from the multiplication of a number by itself, and a cube which we 

, obtain by multiplying a number twice by itself, are powers. We 
'ay auo in the former cale, that tke number ia raiaed to the .ecorul 
degree, or to the ,econd power; and in the latter, that 'he "umber 
is raiaed to the third degree, or to the third power. 

169. We distinguish these powers from one another by the num­
ber of times that the given number bas been used as a factor. For 
example, a square is called tbe second power, because a certain 
given number has been used twice as a factor; and if a number has 
been used thrice as a factor, we call tbe product the third power, 
which therefore means the same as the cube. Multiply a number 
by itself till you have used it four times as a factor, and you win 
have its fourth power, or what is 'corpmonly called the hi-quadrate. 
From what has been said it will be easy to understand what is meant 
lly the fifth, sixth, seventh, &c. power of a number. I only add, 
that the names of these powers, after the fourth' degree, cease to 
have any other but these numeral distinctions. 

170. To illustrate this still further, we may observe, in the first 
place, that ,the power. of1 remain alway. the .ame; because what­
ever number of times we multiply 1 by itself, the product is found 
to be always 1. 'We shall, therefore, begin by representing the 
powen of 2 and of 3. They succeed in the following,order: , 
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Powell. Of the Dumber 2. Of the Dumber 3. 
A , ~ ~ 

1. 2 3 
II. 4 9 

III. 8 fn 
IV. 16 81 
V. 32 243 

VI. 64 729 
VII. 128 2187" 

VIII. 256 6561 
IX. 512 19683 
X. 1024 59049' 

XI. 2048 177147 
XII. ~096 531441 

XIII. 8192 1594323 
XIV. 16384 4782969 
XV. 32768 14348907 

XVI. 65536 43046721 
XVII. 131072 129J40163 

XVUI. 262144 387420489 

But the powers of the number 10 are the most remarkable; for 
on' these powers the system of our arithmetic is founded. A few 
of them arranged in order, and beginning with the first power, are 
u follows: 

. I. II. III. IV. V. VI. 
10, 100, 1000, 10000, 100000, 1000000, &c. 

.171. In o~er to illustrate this subject, and to consider it in a 
more general manner, .we may observe, that the powers of any 
number, a, succeed each other in the following order. 

I. II. III. IV. V.' VI. 
a, aa, aa·a, aaaa, aaaaa, aaaaaa, &C. 

But we soon feel the inconvenience attending this maimer of 
writing powers, which consists in the necessity of repeating the 
same letter very often, to express high powers; and the reader also 
would have no less tro)lble, if he were oblig~d to count all the let­
ters to know what power is intended to be represented. The hun­
dredth power, for example, could not be conveniendy written in 
this manner; and it would be still more difficult to read it. 

172. To avoid this' inconvenience, a much more commodious 
method of expressing such powers has been devised, whicb from its 
extensive use deserves to be carefully explained; tliz. To express, 
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for example, the ,hundredth power, we simply write the nUID:ber 100 
above the number whose hundredth power we would express, and a 
little towards the right hand; thus a1 0 0 means a raised to 100, and 
repre,ent, the hundredth power of a. It.must be observed, that 
the name exponeltt U give~ to the number written above that who,e 
power or degree it repre,ents, and which in tAe pre,ent i7l8tance iB 
100. . 

173. In'the same manner, a' signifies a raised to 2, or the sec­
ond power of a, which we represent ,sometimes also by a a, because 
both these expressions are written and understood with equal fa... 
ciUty. But to express the cube, or the third power a a a, we wr¢e 
a3 according to the rule, that we may occupy less room. So a' 
signifies the fourth, a6 the fifth, and a8 the sixth power of a. ' 

174. In a word, all the powers of a will be represented by a, ai, 
as, a', a6, if, a7 ,. a8 , a', alO , &c. Whence we see that in this 
manner we might very properly have written a1 instead of a for the 
first term, to show the order of the series more clearly. In fact a1 

iB no more than a, a, thi, unit ,how, that the letter a i, to be written 
only once. Such a series of ·powers is called also a geometrical pro­
gression, because each term is greater by one than the preceding. 

175. As in this series of powers .each term is found by multiply­
ing the preceding term by a, which increases the exponent by 1 ; SO 

when any1erm is given, we may also find the. preceding one, if we 
divide by a, because this diminishes the exponent by 1. This shows 
that the term which precedes the first term 0.1 must necessarily be 

;i, or 1; now, if we proceed according to the exponents, we imme­

diately conclude, that the term which precedes the first must be a' • 
H~nce we deduee this remarkable property; that 0.0 iB con,tafttly 
equal to 1, however great or .mall the value rif the ·number a may 
be, and even when a is nothing; that' is ,to say, 0.0 is equal to 1. 

176. We may continue our series of powers in a retrograde 
order, and that in two different ways; first, by dividing always by a, 
and secoodly by diminishing the exponent by unity. And it is evi­
dent, that whether we follow the one or the other, the terms are 
still perfectly equal. This decreasing series is represented, in both 
forms, in ~e fullowing table, which must be read backwards, or 
fiom right to left. 
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) 1 1 1 1 1 1 -------- ------- a 
'taaaao aaaaa aaaa aaD aa a 

I-- -
1 

1 1 1 1 1 1 
7 a- iT (,I a' a l 

- - I--
a'-' r r r rr tr' aO a l 

1'7'7. We are thus brought to understand the nature of powers, 
whose exponents are negative, and are enabled to assign the precise 
value of these powers. From what has heen said, it appears that, 

aO 1; then 

r 1 
jj; 

rr 1 1 
-=-:l or -' 

is equal to elll ." 
rr ] 

jji; 

r 1 &c • 
iii' . 

1'78. It will he easy, from the foregoing Dotation, to find tAe pow­
er, 01 a product ~ a b. ney mult evidentl!! be a b, or al b' , a' b'; 
al b' , a' h', al hi, ~c. .lJ.nd tAe power, 01 fractionl will be 10tfIil 

in tAe ,ame maMer; lor e:J:ample, tAo,e 01 ~ are, 

a1 a' .1 a' al a' a' 
i)i' bit hi' hi' iii' hit h" &c. 

179. Lastly, we have to consider the.powers of negative num­
bers. Suppose the given number to be - a; its powers will form 
the iOllowing series: 

- a, + a a, - ai, + a', - ai, + a', &c. 

We may obse"e tbat those powers only become negative, wboae 
exponents are odd numbers, and that, on the eontrary, all the pow­
ers, wbich bave an even number for the exponent, are positive. So 
that, the third, fifth, seventh, ninth, &c. powers have each the 
sign ...... ; and tbe second, fourth, sixtb, eighth, &0. powers are af­
fected with the sign +. 
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CHAPTER XVII. I ' 

0/',," Calcttlation of POfI1er1. J 

180. WE have nothing in particular to observe with regard to the 
addition and' ~ubtraciion of powers; for we only represent these 
operations by means of the signs '+ and -; when the powers are 
different. For example, al + 'a' iI tAe stim of the second and 
third powers of a jand • - a' is wAat ren,ai7ll wlaen we subtract 
tlie fourtla power of a from tlae fiftA j and neither of these ~e~lt8 
can be abridged. When we have powers of the same 'kind, or 
degree, it is evidently unnecessary to connfCt them by signs; #I 
+ a' makes 2 ai, &c. . 

181. But in the multiplication of powers, several things require 
attention. ' 

First, ~hen it is required' to multiply any power of a by a, we 
obtain, the succeeding power, that is to say, the'power whose expo­
n:em is greater by one unit. Thus. If, multiplied by 41, produces a' ; 
and at multiplied by a, produces a'. And, in the same manner, 
when it is required to multiply by a ~e powers cif that number 

, which have negative exponents, we must add Ito tbe exponent. 
Thus, a-I multiplied bg a produces a' or 1; which is made' more 

eyideDt by CODSideriog that a-I is equal to !, ud tbat the procIu'ct 
41 

of ~ by" bein, ;, ~t is consequently equ} to 1. . Ukewise a~ 

multiplied by a produces a-I, or ~; and triO, multiplied by a, givea 
. a 

r, and soon. . 
189. Next, if it be required to multiply a power of a by a 0, or . 

th~ secoDll power, I Say that the exponent becomes greater by 2. 
Thus, the product of d' by a' is a'; tbat .of a' by a' is (JI; that 
of .. bya' is a' j and, more generally, aa multiplied by a' makes 
aa+.. Wi,l regard 10 negative exponfl&ts, we sAalllaave It, or a, 

. lor tlae produa of a-I by ,'; for;'1 being ~ to !,itia the same . a 
as if we bad divided a a by ti j consequently the product required 

aa .,' ., ". . . , 
iso.OJ' a. So a-l, fAu[Iipliea·iJy a·'.F0tl~,a.° or. ; and a-l, 

_tiplNd by a', producu ,-1. '. , 
lfMl. AW. 7 
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183. It is DO less evidmu that to multiply any power of,. by ai, 
we must increase its exponent by three units; and tbat consequently 
the product of aA by a' is d'+I. And wAdnll'it i, required to 
multiply togetAer two power, 01 a, the product toiU be oUo a po~er 
of a, and a power wAo,e exponent will 6e tAe. I'Um of the e:t:pOftent. 
of the ttOO given power,. For example, a', multiplied by a', .wilt 
make a', and all, multiplied by (l, wi11 produce' a", &c. 

184. From these consideratioDs we may easily determine the 
highest powers. To find, for instance, the twenty-fodrth power of 
2, I multiply the twt:lfth power by thtl twelftb power, because 2" is 
equal to 211 X 211. Now we have already seen that 211 is 4096'; 
I say, therefore, that the number 16777216, or the product of 
4~ by 4096, expresses the power required, 2". 

185. Let us proceed to division. We shaH remarlG in the fi~t 
place, that to di!)ide a power oj a by a we m~1t 1Ub1ract 1 fro", tAe 
exponent, or diminuA it by unity. Thus tf, divided by (I, gives fI' ; 

aO, or 1, divided by a, is equal to r or ! j a-l, divided by~, giTes 
a 

fI .... 

186. I( we have tp divide a given power'of. a by fI, we must 
diminish t.he exponent by 2; and if hy (II J we must subtract thre.e 
units from the exponent of the power proposed. So, in general, 
wAat8M' power of. it u required to tlifttle by onotler pDtUer of I, 

tAe rule i, alway' to IUiJtract the e.2ponent of t/&e "cond from tAe 
e.xponetlt of tAe fir.t tftA6Ie·powe,.,. Thus aU, diVided by at, 
will give a', a', divided by a', will give ,,1; and (J ..... , divided by 
a', will give Ir'.· 

181. From what has been said above, it is easy to under$tand 
.lhe method of inding the pow~rs of powers, this beiDg done by mul­
tiplication. When we seek, for example, thl) lKJuare, or the second 
power of a', we find (J'; B:Dd in the same maDner we find a1 • for 
the third power of the cube of a'. To obtain tAt 'f"ar. lJ/ II . 

jlDwer, tI1. hmIe only to dotihlc ill e:t:pomnt; for it" ~. iN ... 
triple the eaponent; and '0 on. The square of II' is ~ ;dle 
cube of tl'is ala; the seventh power of tI' is .'., &c. 

188. The squ~e of at, or the square of ~he square of II, \)eiD, 
fI', we see wby the fourth power is called tbe bi'"f"Gdrat.. The 
square of fI is cf; the sixth power has therefore received the 
aame of &h. '9"Me-cubetl. 

', ... 
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Lastly, tbe cube of a' being a- we call the ninth power th.e 

cubo-cube. No other denominations of this' kind have been intro­
duced for powers, and indeed the two last are very little used. 

CHAPTER XVIII. 

Of Boot, toith relation to PPWf" in gtfllf'al. 

189. SINCE the square root of a given number is a number, 
whose square is equal to that given Dumber; and since tbe cube 
root of a gi ven number is a number whose cube is equal to that 
given number; it follows that any number whatever being given, we 
ma.y. always indiea&e 8I.Ich roots of it, that their fourth, or their fifth, 
or any other power, ~y be equal to the given number. To distin­
guisli these dUferent kinds of roots better, we shall call the square root 
the ,eCOftd root; .and the cube root the third root; because, accord. 
ill« .. dais deaomin-uon, we may call tbe fourtA root, that whose 
lIiquadrate is equal to a given number; and. the fifth root, that 
whose fifth power is equal to Ii &ivan Dumber, kc. 

190. As the square, or se~d root, is marked by the sip';, and 
3 

the·cubic or third IOOt·by.tbe.sip';, 10 ·tbe iOurth rool is re .... 
'." 6 sented by the sign .;; tbe filth root by the sign ~; and so on ;-it 
is evident that ilccordiOg to tbis made of expression, the sign of the 

• . _ 2 

square root; ought to be ~. But as of all roots this oeeurs most 
frequently, it has been agreed, for the sake of brevity, to omit the 
number 2 in ,the sign of this root. So that wben a radical sign has 
no number prefixed, this always sbows that the square root is to be 
1.lnderstood. 

19i. To explain this matter stUl further, we shall here ex~ibit 
ake di6erent roots of tbe number a, 'With' their respecdve nlues: 
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, .va 
8 . , .va' 
6 

.va is the 
Ii 

.vii 
8 

.vii 
So that conversely; 

The2d 

2d tI, 

3d tI, 

4th, root of tI, 

5th a, 

6th a,anci so on. 

.vii a, 
8 

.va' a, 
6 

Tbe3d 

The 4th. 

The 5th 

The 6th 

power. of .vii UJ equal to a, 
• 

I Va tI, 
8 

Va a, and so on. 

192. Whether the number a therefbre ~ great or lRiaU, ... e 
know what, value to .six to all tbese roots of diiFerent degrees. . 

It must be remarked' also, that if we substitute unity for CI, aU 
those roots remain constantly 1 ; because all the powet8,of I ilia". 
unity for their value. If the Dumber _ be great« 'tban 1, aU its 
roots 10111 also exceed unity. Lastll, if that nutnbet' be 1_ .. 
1, all its roots win also be less tban unity. ' 

193. When the nomber'" is positive, we know from what 1VU 

1MOOre said of tb" sqala _d ,. roots, that all ... other ,l'08III 
~1 also ~ determiJaed, and will be .... and possible DUlJlbers. 

But if tbe ftUlJlber CI is negative, its ~nd, fourth, ~b, and aU 
the even .roots, btecome . impossible,,9l' imaghlary DQ~ ; because 
till the ewen power" whet4er of positive 'or of Mg"ti1Je number., are 
lfffected with the .ign +. WlaeretJI the lAird, filth, .e1J~ftth, tmcl 
all odd. root., become 1,&8g(l'\"e, but rational j' because tbe odd pow:, 
ers of negative numbers" are also negative. . 

194. We have b~ also an ine~"ustible 8Ou~ of ne. kinds ot 
surd, or irrati.~nal quan~ti~; for whenever tbe number,J is not aC?­
tually such a power, as some one of the foregoing indices represents, 
or seems to require, it is impossible to express that root either in 
whole numbers or in iactions; and couequently i& must be clused 
tUDODg the D~mben which are called irraUoaal. 
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CHAPTER XIX. 

Of t1u Me~~ W repre.enting IrrGtioruil Numbt~, by FrGCtilmal 
~. 

196. WE have shown in the preeeding chapter, that 'the sq..­
ohny power is found by doubling the expooeot of tbat power, end . 
tbat in ge"eral the square, or tbe second power of a", is,Qla, Tbe 
converse follows, Dalnely, tbat tlae 'quare root of the power a'· is 
d", and tbat it u found, by taking half the ertponent oj that power, 
or difiding it by 2. 

196. Thus tbe square root of a',is a'; that of ~4.is a'; that of 
a- is al ; and so on. And as tbis is general, the square root of a l 

must necessarily be GI , and that of 01, at. COl)S8quendy\fe .hall 

MV, in the _e maone~" for the square root of ~'; wheDce we 

see that a* u equal ;0 va; and this Dew method of reproeatiDg 
the square root demands Particular attention. 

197. We have also ShOWD that toOOd the cubeofa power as a-, 
we must multiply its exponent by 3, and that consequently the cube 
is 0'-. ' 
. So come-" wben it is required to fiod tbe third or cube root 

or the power Ga _, we bave only to divide the expoDttDt by 3, and 
may witb certainty coDclude, that the root required is G-. Conse­
quently ai, or a, is tbe cube root of al ; al is that of as; al is that 
of d'; and so on. . 

198. There is nOlbing to prevent U8 froru applying tbe IlIlID8 rea .. 
soning to t~ oases' in w~ich the exponlnt is Dot di,visible by 3, 

aod ~lu~;ng that the cube root of II' is (Jt, and that the cube 

root of ~ is at, or all. Consequently tbe third,' or cube ~t or a 

also, oral, must bea-l Whence it appears that i ,,'equal IQ .:ra. 
199. It is the same with roots of a higher degree. Tbe fourth 
'. ." 

reot 'oCa will be' i, whicb expression bas the same' value as .\Iii. 
~e ~ lOOt of ,. will be '!t~, w~ it COWM'~-J.. ~QUi.~t ~ 
vi; lIld·the same observation may be exteDCted to aU roots 01 a 
biaber~ ... ,~',. ,', 

Digitized by Google 



N. .&g.6r ••. 

200. We might, tberefore, entirely reject the radical signs at pre­
sent made use of, and employ in their stead the fractional exponents 
wbich we have explained; however, as w:e have been long accus­
tomed to those signs, and meet with tbem in all books of algebra, it 
would be wrong to banisb them entirely ~ But tbere is sufficient rea­
lOll also to employ, as is DOW frequeatly done, the, othet method of 
notation, because it manifestly corresponds with wb~ is to be .-ep. 
sented. 10 fact, we 'see immediately that i is tbe square root of 

a, because we know tbat the square of i, that is to say, a* mul­

tiplied by i, is equal to a1 or a. 
201. What has now been said is su1ficieDt to show ho\v we are 

to understand all otber fractional exponents that may oceur. If we 

have, for example, a., this means that we must first take the fourtb 
, 4 

pbwer or a, aDd tben extract itseube or third l'O«rt; so tbat all' U tAc 

,mne a, tlae common t3JjWulion, ~ iii. To find the value of ai, we 
must first take the cube, or tbe tbird power of a, which is tJ') and 

tben extract the fourtb root of that power; so that at is th~ same u 
• :I .. .v8!. Also a is equalto .v a f , &c. 
, ~. When tbe fraction which represent!! tbe exponent exceeds 

unity, we may e%press the value of. the given quantity in anotber 

way. 'Suppose it to be at; this quantity is equivalent to 02;, 

which is the produ~t of a' by i. Now i beingeq~ to~4~ it is 

,evideot that at is equal to 0' vii. So .. Ij, or 03i, is eqaal to 
a V 3f • a' .vii; and a , tbat is a , expressestf .v(}. These examples 

, "re sufficient to illustrate the great utility of fractional eJepoDeDt • ., 
~. Their use extends also to fractional numbers: let there be 

. 1 k h his .. ...... 1 1 ' h ' 
"ven • ./ii we now t at t qua~t1ty IS e'i"'- to ,J ; now w.e ave 

. l' , ' 
seen already that a 1iacti~ of the form .. may be expressed by 

rj 10 iaItead of ~ we may use the expression ri. In the 
. . , ,'; '" , 

samelDlDD8r,.f- .. equal to a-l. Again, let die quaDtity '4o.If' be 
, .vii, vii 
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proposed; let it ~ ~fonned into this, ~, which is the product of 
. a 

II' by trt; now this product is equivalent toa*, or to ali, or lastly .. 
to a .va. Practice will render similar reductions easy. ' 

204. We shall observe, in tbe last place, tbat eacb IIOOt may be 

represented in a variety of ways. For.va being tbe same as i, 
and * being transformable.into all these fractions, f. i. i, -Irs. h, 

.. 6 • 
Itc., it is evident tbat .vi i, equal to .viii aDd to .v(} and to .vGi, 
and so OD. In the same manner .va, which is equal to af , will be 

• 8 12 • 
equal to It/ ".2, and to .viii, and to .vat. And we see also, that the 
number a, or al , might be represented by the following radical ex­
pressions: 

I 8 .. I'> 

.viii, ~ aa, .viii, Vii', ~c. 
205. This property is of great use in multiplication and division: 

. I ' 8' .•. 
Cor if we have, for example, to multiply .va by .va, we write .vt} 

a 6 3 
for .va and It/(ji instead of It/a; in this manner we obtain the same 
radical sign for both, and the multiplication being DOW perfonned, 

gives the product ~ aa. The same result is deduced from oj + i, 
the product of iz multiplied by at; for. I + * ~ i, and con18-
. II 6 
quently the product required is tzV , or 1t/4J. 

If it were required to divide JR' or ai, by Va or ai, we ,hotdd 

ha11e for tlu quotient al - i, or af - i, that i, to ,ay, at, or ':"ii. 

CHAPTER XX. 

Of the different Method. of Calculation, and of th~ir fIIutuai 
CQnnea:ion. 

~. Hitherto we have only explained the di.fferel\t methodl 
of _ulaaicm: addition, 'Q~OD, mukipjiQlltiOD, _. diviaioa; 
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the involution of poweri, and the extraction of roots. It will not 
be 'improper; therefore, in this place, to trace back 'the origin 61 
these different methods, and to explain the connexion which sub­
sists amoQg them ;' in order that we may satisfy ourselves' whether 
it be possible or not for other operations of tbe tame kind to,exist. 
Tobis inqoiry will throw new ligbt o'n the subjects' \\Ihjch we have 
considered. 

In prosecuting 'this design, we shall make use of a new charac­
ter, which may be employed instead of the expression' that has 
been 90 of\en repeated, is epal to; this sign is =, and is read it 
e,qual to. Thus, when I write II = b, this means that II is equal 
to b; so, for example 3 + 5 = 15. 

26'7. The first mode of calculation, which presents itself to the 
mind; is undoubtedly addition, by which we add two numbers'tQo: ' 
gether and find their sum. Let II and b then be the two given 
numbers, and let their sum be expressed by the letter c, we shall 
have II + b '= c. So that when 'we know the two numbers II and 
iJ, addition teaches us to find the number c. ' 
• 208. Preserving this comparison G + b = c, let us reverse tbe 
qut:s1ion by asking, how 'we are to find the number b, when we 
know the numbe~ II and c. 

1t is required therefore to know what number must be added to 
,tJ, in order that the sum may be the number c. Suppose, for ex-
1lIllple, II = 3 and c = 8; so that we must have 3 + b = 8; b 
wlll evidently be found by subtracting 3 from 8. So, in general, 
10 find b, ~e inust, subtraot G from c~ whence arises b == c - G ; 

for by adding II to both sides again, we h~ve b + a = c - II + 0, 
1ba1 is to say = c, as we supposed. 
, Such then is tbe origin of subtraction. 

209. Subtraetion th,erefore takes place, when we invert the 
question which gives rise to addition~ Now the number which it 
is required to subtract may happen to be greater than that from 
which it is to be subtracted; as, for example, if it were required 
to subtract 9 from 5: thil instame theJefore furnishes us with the 
idea of a new kind of numbers, which we call negative numberS, 
~ecauae 5-9=-4. 
, 210. When several numbers are to be added together which are 
all equal, their,sum is found by multiplication, and'is called a pro­
duct: Thus II b means the product arising fram the multiplication 
oC'G by 6, orfiom the addition of a aumbeJ< G to itself 6 .fialber of 
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time& If we represent this product by the letter e, we shU ~ft 
• b = c; aDd multiplicatioD teaches us how to determin,e the nUlJ)o 
ben:, when the Bumbers a and.b are known. 

211. Let us now propose the following question: the numbers .• 
aDd c being known, to find the number b. Suppose, for eumple. 
(I = 3 and e = 15, 10 that 3 b = 15, we ask by what DUmber 3 
must be multiplied, in order that the product may be 15: br the 
question proposed is reduced 1~ this. Now this is division: the' 
"umber required is fonnd by dividing 15 by 3; and therefore, iii 
general, the Dumber b is found by dividing c by (J; iom which reo-

. c 
suIts the equation b = -. 

. " 
, 212. Now, as it frequently h'ppens tbat the number c cannot be 
reaDy tlivided by the· nombH a, while the leiter b must howeVt1f 
!lave a, OeternDDate value, another new kind of numbers presents 
itself; 'tbese are fractiOlIS. For example, supposing (J = 4., c = 3, 
so that 4 h·= 3, it is evident that h cannot be IlD integer, but a 
fraction; and that we shall have b = f. 

213. We have seen that multiplication arises fJOm addition, that 
is to say, from the addition of several equal quantities. If we now. 
proceed further, we shall perceive that from the multiplication of 
several equal quantities together powers are derived. Those powers 
are represented in a general manner by the expression (I', which 

.. signifies that the number (J must be multiplied as many times by 
itself, as is denoted by the number b. And we know from what bas 
been already said, that in the present instance (J is called the roott 

b the exponent, and (I'the power. 
214. Further, if we represent this power also by the letter c, we 

bave (I' = C, an equation in which three letters, (J, b, c, are found. 
Now we have shown in treating of powers, how'to find the power 
itself, that is, the letter c, when a root (J and . its exponent bare 
given. Suppose, for example, (J = 5, and' b = 3, so that c = 0' ; 
it is evident that we must take the third power of 5, which is 125, 
and that thus c = 125 • 

. 215. We have seen bow to determi!le the power c, by means of 
the root (J a.nd the exponent b; but if we wish to reverse the ques­
tion, we shall find that this may be done in two ways, and that there 
are two di1ferent cases to be considered: for if two of these tbree 
numbers a, b, C, were given, and it were required to find the third, 
we should immediately perceive that this question admits of three 
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differen' suppositions, and consequent1y three solutions. We have 
considered 'the case in which a and b were the numbers given, we 
may therefore suppose 1hrther that c and -0, or c and h are known, 
and that it is required to determine the third letter. Let us point 
out, therefore, before we proceed any further, a very essential dis­
tinction between involution and the two operations which lead toit. 
When in addition we reversed the question, it could be doneonly 
in one way; it was a matter of indifference whether we took c and 
a, or c and b for the given numbers, because we might indifferently 
write a + h, or b + a. It was the same with nwltiplication; we 
could at pleasure take the I~tters a and b for each other;, the equa­
tion a b = c .being exactly the same as b a = c. 

In the calculation of powers,.on the contrary, the same thing· 
does not take place, and we can by; no means write bA instead of fl. 
A single e:x.ample will be sufficient to illustrate this: let a = 5, 
and b = 3; we have Ii = 53 = 125. But b- = 36 = 243: 
two very different results. 
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SECTION II. 

OF THB DIFFERENT MBTHonS OF CALCt1LA'nON APPLIED TO' 

COMPOUND QUANTITIES • 

• 

CHAPTER I. 

01 tAe Addition 01 Compound Qua'l&titiu. 

ARTICLE 216. When two or more expressions, consistingofsev­
~ral terms, are to be added ·together, the operation is frequently 
represented merely by signs, placing each expression between two 
parentheses, and connecting it with the rest by means or the sign +. 
If it be required, for example, to add the expressions a + b + c . 
and £1 + e + J, we represent the sum thus: 

(a + b + c) + (£1 + a +1). 
217. It is evident tha~ this is not to perform addition, but only to 

1'epresent it. We see at the same time, however, that in order to 

perform it actually, we have only to leave alit the parentheses; for 
as the number £1 + e + 1 is to be added to the otber, we know 
that this is done by joining to it first + d, then + a, and then 
+ f; which therefore gives the sum . 

a+b+c+d+e+f. 
The.same method is to be observed, if any of the terms are 

affected with ,the sign -; they must be joined in the same way, 
by means of their proper sign. 

218. To make this more,evident, we shall consider an example 
in pure n~mbers. It is proposed to add the exression 15 - 6 to 
12 - 8. If we begin by adding 15, we shall liave 12 -8 + 15; 
now this was adding·too much, since we had only to add 15 - 6, 
and it is evident that fj is the number which we have added too 
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much. Let us, therefore, take this 6 away by writing it with the 
oegative sign, and we shall have the true sum, 

12- 8 + 16 -6,. 

which shows that the 'W1I8 are jfJund by writing aU tke terms, each 
tDith it, proper ngn. 

219. If it were required therefore to add the expression d - e - f 
to a ~ b + c, we should express the SUID thus: 

a- b+c+d--. e.-I, 
remarking, however, that it is of no consequence in what order we 
write these terms. Their place may be changed at pleptire, pro­
vided their signs be preserved. This sum might, for example, be 
written thus: 

c - e + a - f + d - b. 

220. It frequently happens that the sums repres'3nted in this man­
ner may be considerably abridged, as when two or more terms de­
stroy each other; for exaDlple, if we find in the same sum the terms 
+ a - 41, or 3 a - 4 a + a: or when two or more tel'JllS ma1 
be reduced to one. Examples of tbis second reduction : 

3 tI + 2 a == ,5 ai 7 b - 3 b =:!I: + 4 b; , 
- 6 c + 10 c = + 4 c; 

,5 a - 8 a = - 3 n; -7 b + b = - 6 6; 
-3c-4c=-7c; 

~ a - 5 a + a = - 2 a; - 3 b - 5 b + 2 b = - 6 b. 
Whene"er two or more term" therefore, are entire'y tke lame witA 
regard to le!teTl, tbeir sum may be abridged; but those cases must 
l10t becoofounded with such as these, 2 a a + 3 a,or 2/} ~ be, 
which admit of no abridgment. 

221. Let us consider some more examples of reduction; the fol­
towing will lead us immediately to an impol'taDt truth. SUpJlOSf' it 
were required to add together the expressions a + h and a - h; 
our rule gives a + b + a- b; now a + a = 2a and h-b=O; 
the som thE'D is 2 ~: consequently if we add together the sum df 
two Bumbers (a + b) and their ditference (a- h,) we obtain the 
dO,able of the greater of those two numbers. 

Further examples: 
3a-2b-c a'-2aab+2a6b 
5.b - 6c + a -aab + 2 a6b-b' 

4 a + 3 6-7 c aa - 3 a d 1+ 4 a b 6 - 61• 
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CHAPTER II. 

01 the Su1JtrtJdiOfJ 01 Compound Qu.antitier. 

222. IF we wisn merely to representsubtractiQn, we inclose each 
expression within two parentheses, connecting, by the sign -, the 
expression to be subtracted with that from which it is to be taken. 

When we .SIlbtract, for example, the expression d - e + 1 from 
the expression (I - b + c, we write the remainder thus : ' 

(a-b+c) - (d-e+f); 

and this method of representing it sufficiently shows, which of tbe 
two expressions is to be subtracted from the other. . 

223. But if we wish to perform the subtraction, we must observe, 
first, that when' we subtract a positive quantity + 11 from another 
quantity ii, we obtain a - b; and secondly, when we subtract a 

" negative quantity - b from a, we obtain a + b; because to free a 
person from a ,debt is the same as to give him something. 

224. Suppose, now, it were required to subtract the expression 
b - d from the expression a - c, we first take away b; which 
gives (I - C -,. b. Now this is taking too mueb away by the quan­
tity d, since we had to subtract only b - d; we must therefore 
restore iQe value of d, and we shall tben have 

a-c-b+d; 

wlience it is evident, tbat the ienm of the ea.preuUm to be aub­
tracted mwt have their rip cha"ged, and be joined, fllit" the 
contrnry rigns, to the tenm of Me other ezpre"iOfJ. 

225. It is easy, therefore, by means of this rule, to perfonnsub­
traction, since we b~ve only to write the expression frorq whicb we 
are to subtract, such as it is, and join the other to it without any 
change beside that of the signs. 'I'hus, in the first example, where 
it was required to suMraet the expression d - e + 1 from a - b 
+ c, we obtain a - b + c - d + e - f. 

·An example in numbers will render this still more olear. Ifw. 
subtract' 6 - fa + "from 9 - 3 + 2, we evidently obtain 

9-3 + 2-6 +2-4; 

for 9 - a +'9 -=:8.; also, 6 ~ 2 + 4 = 8; DOW 8- 8 ==0. 
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226. Subtraction being therefore subject to no difficulty, we have 
only to remark~ ,that, if tlulre are found in the remainder two or 
more terms which are entirely similar with regard to the letters, 
that rem'ainder may be reduced to nn abridged form, by the same 
rules which we have given in addition. 

227. Suppose we have to subtract from a + b, or from the sum 
of two quantities, their difference a - b, we shall then have 

a + b-a + b.; 

DOW a - a = 0, and b + b = 2 b; the remainder sought is 
therefore 2 b, that is to say, the double of the less of the two • 
quantities. 

228. The following examples will supply the place Qf further 
illustrations. 

aa + ab + blJ3a-4b.+ 5c a8 + 3aab + 3abb + b8'~ii + 2Vb 
M + ab - au 2b + 4c-6a as - 3aab + 3aM - b3 Vii -: 3V;; 

2aa. 9a-66 + c. 

/ 

CHAPTER Ill. 

Of the Multiplication of Compound Quantitiel. 

229. WHEN it is onl y required to rp.present multiplication, we put 
each of the expressiona, ,that are to be multiplied together, within 
two parentheses, and join them to each other, sometimes without any 
sign, and sometimes placing the sign X between them. For exam­
ple, to represent the product of the two expressions a - b + c 
~nd d - e + f, when multiplied togetl~er, we write 

(a-b+c) X (d,-e+f.) 

This, method of expressing products is much used, beca~e it 
immediately shows the factors of which they are composed. 

230. But to show how multiplication is to be actually performed, 
we may remark, in the first place, that in order to multiply, for ex~ 
ample, a quantity such as a - b + c,' by 2, each term of it is sep· 
arately multiplied by that number; so that the product is 

2a-~b + 2c. 
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Now the same thing takes place with regard to all other numbers. 
If d were the number, by which it is required to multiply the same 
expression, we should obtain 

ad - b d + cd. 

231. We supposed d to be a positive number; but if the factor 
were a negative number, as - e, the rule heretofore given must be 
applied ; namely, that two contrary sig ns, multiplied togtther,pro­
duce ~, and that two like signs give +. 

We shall accordingly have 

. . -ae + be - ce . 

232. To show how a quantity, A, is to be multiplied by a com­
pound quantity, d - e; let us consider an example in common 
numbers, supposing that A is to be multiplied by 7 - 3. Now it 
is evident, that we are here required to take the quadruple of A; 
for if we first take A seven times, it will then be necessary to sub­
tract 3 A from that product. 

In general, therefore, if it be required to multiply by d - e, we 
multiply the quantity A first by d and then bye, and subtract this 
last product from the first; whence results d A - e A. 

Suppose now A = a - b, and that this is the quantity to be 
multiplied by d ---. e; we shall have 

dA=ad-bd 
eA=a e-be 

whence the product required = a d - b d - a e + b e. 
233. Since we know therefore the product ( a - b) X (d - e), 

and cannot doubt of its accuracy, we shall exhibit the same exam­
ple of multi plication under the following form: 

a-b 
d-e . ) 

ad-bd-ae+be 

This shows, that we must multiply each term of the upper ex­
pression by each term of the lower, and that, with regard to the signs, 
we must strictly observe the rule before given; a rule which this . 
would cOlI1pletely confirm, jf it admitted of the least doubt. 

234. It will be easy, according to this rule, to perform the fol­
• lowing example, which is, to multiply a + b by a - b; 

Digitized by Goog] e 



\ . 

GG +all 
-a b- bb. 

Product a er - b b. 

235. Now we may substitute, for a and b, any determinate n~ 
bers; so that the above example will furnish the following thaa,.m; 
viz. TIle prod'"ct of tke IUm 0/ two number., multiplied by their 
difference, iI equal to tke differen.ce of tke .quare. of tho.e num­
ber,. This tbeorem may be expressed thus: 

(a + b) X' (a - h) = a a - b II. 

And from this another theorem may be derived; Damely, Th. 
difference 0/ two 'quare numll.n iI alway. a prodtICt, and dit:uible 
both by thuw&fJ'IId by the differenceo/th, FootlO/tho,. ttDUpllllU. 

226. Let us DOW perform some olb.r examples: 

I.) ~ a- 3 
. a + 2 

~ era - 3 a 
+4a-6 

2 aa.+ a-6. 

II.) 4 a a - 6 a + 9 
2a+ 3 

e a' .....: 12 a a +.18 a 

+ 12 a a - 18 a + 27 

8 a' + 27 

Ill.) 3'a a - 2 a II - b II 
2a-4b 

6a8 - 4asb-2abb 
-'12 a a b + 8 a II " + 4 ", 

( , 
6 a' ~ 16 a a II + 6 /I "b + 4 ", 

• 
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IV.) aa + 2 ah +2 b3 
aa-2ab+2bb 

". + 2 at 6 + '2 a a b b 
-2 at 6 - 4 a Q b 6 - 4 a' b* 

+ 2 a a 6b + 4 a b' + 4 b· 

~ + 4 b·. 

v.) 2 a a - 3 a b -,4 b b 
3aa-4C16+bb 

6 ~ - 9 alb - 12 a a b 6 ' 
- 4 al 6 + 6 a CI 6 6 + 8 a61 

+2aabb-3ab' -4,bt ' 

6 a· - 13 a~ b -4 a a b b + 5 a b' - 4 b· 

VI.) a a + b b + c c - a h - a c - b c 
a+ 6 +c 

4 8 +abb +acc- a a b- aa c-:- a 6 c 
CI a b + 6' + b c c - q. 6 b- abc - b ~ c 

aac + b 6c+c8 -abc-acc-6cc 

a' -3abc+bl +cI 
237. When we have more than two quantitie, ' to multiply to-

• gelher, it will eMily be underltood that after h."iJig multiplied 
two of them together, we must then multipl!l that product by one 
of those which remain, and so on. It is indifferent what order i8 
ob"rved in these multiplicatiom. , ' 

Let it be proposed, for example, to find the value, or product, 
of the four following factors, "iz~ 

I. II. III. IV. 
(a+6) (aa+ab+bb) (a-b) (a4-a6+ bit). 

We will first multiply the factors I. and II. 
II. a4+ab+bb 
I. IJ + b 

, al + a a b + a' b 
+aa6+abb+b' 

. , , 
I. II. = at + 21J IJ b + 21J II b + 6' • 
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• 
Next let us multiply the factors Ill. aod IV. 

IV. a a - a b + b 6 
III. a - b 

a l ..... a.a b + a b b 
:.....:. a.a b + a b b - ~' 

. . 

Ill. IV. = ~ - 2 tJ a b + 2 a b h - 1,a. 
It remains now to multiply the first product I. II. by this second 

product III. IV. : . 

ca3 +2aab+2ab6+b3 LII. 
al - 2 a a b + 2 a 11 6 - bl III. IV. 

a'+9.t1 b +2~'.bh+ (rb3 

- 2. 4 6 6 - 4 a' b h - 4 a' hi - 2 a (J b' 
2 41"~ II + 4 ,,3 h3 + 4 a" b' + ~ a b6 

al 61 - 2 a a 6' -:- 2 a 11 - b' 

a' - b'· 

And this is the product required. 
238. Let us resume the same example, but change the order of 

~t~ ~rS.i multiplying the factors I. and Ill. and then II. and IV. to­
gether. 

La+b 
Ill. a ....... b 

aa + ab 
-ab-bb 

.1. m:. = a a - b b .. 

". II. aa+ah+bb 
.IV •. iNJ --oil b + b b-

.1' 
a'+~b+tJtJb~ 

-alb_aa bb-ab1 

(Ja'bb+~bl+b' 

II.IV. =a' +a4bb+b 1 • 

Tbe.o multiplying the·two prodad8 i. HI. -and II. IV., . . . 
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n. IV. = a4
' + a a b b + b4 

I. III. = a a - b b 

a6 + a4 b b + a a b4 

- a4 b - a a b4 
_ b8 

we have a6 _ b6, 

which is the product required. 

67 

.1 

239. We shall perform this calculation in a still different manner, 
first multiplying the I". factor by the Iy'h. and next the lid. bY' 
the IW. 

• I 

IV. a a - a b + b b 
I. a + b 

a3 
- aa b + a b b 

a b b - a b b + ba 

I. IV. = a3 + b8
• 

II. a a + a b + b b 
III. a - b 

a3 + a a b + a b b 
- a a b - a b b - b3 

II. III. = a3 
_ b3 • 

-' , 

'It 

) 
.~ 

t t, 

It remains to multiply the product I. IV. and II. Ill. 
I. IV. = a3 

_ 63 

II. Ill. = a3 _ b3 

and we still obtain a8 
_ b6

, as before. 

240. It will be proper to illustrate this exaPlple by a numerical 
application. Let us make a = 3 and b = 2, we shall have 

• a + b = 5 and a - b = 1 ; further, a a = 9, a b = 6, b b = 4. 
Therefore a a + a b + b b = 19, and a a - a b + b b = 7. So 
that the product required is that of 5 X 19 X 1 X 7, which is 665. 

Now as = 729, and b8 = 64, consequently the product re­
quired is as - b6 = 665, as we have already seen. 
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CHAPTER IV. 

OJ tM DitJuion oj Compound Quantitiu. 
. . 

241, WHEN we wish simply to represent division, we make use 
bf the usual mark of fractions, which is, to write the ·denominator 
under the numerat~r, separating them by a line; or toinclo8e each 
quantity between parentheses, placing two points between the divi­
sor and dividend. If it were required, for example, to divide a + 6 

by c + d, we should represent the quotient thus a + b, according 
. c+d 

to tbe former method; and tbus, (a + b) : (c + d) according to 
the latter. Each expression is read a + b divided by c + d. 

242. WAen it i, requ.ired to ditJide a compound qtUJ1ltitll ~11 a 
nmpk one, we ditJide each term ,eparately. For example: 

6 a - 8 6 + 4 c, divided by 2, gives 3 a - 4 II + 2 e ; 
. and (aa-2ab): (a) = a-26. 

In the same manner 

(a' -2aa b +3 all b): (a) = a a-2ab + 3ab; 
(4aab-6 aae + 8a6c): (2 a) =2ab-3 ac +4b.c; 

(9aClllc-12a bbe+ 15abce): {3abc)=3a-4b+ 5c,&p. 
243. If it should happen that a term of the dividend is not divisi­

ble by tbedivisor, the quotient is represented by a fraction .. as in 

the division of a + b by a, whi~h gives 1 +~. Likewise, 
. ' a 

. b bb 
(aa-a6 + bb): (a a) = 1--+-, . . a aa 

For the same reason, if we divide 2 a + b by 2, we obtain 
b • + 2; and here it may be remarked, that we may write i b, in-

b .• b 
stead of i' ~ause i times b ]s equal to 2' In the same manner 

i . 2b 
i is the same as i b, and 3"' the same as i~, &c. 

244. But when the divisor is itself. compound quantity, division 
becomes more difficult. Sometimes it occurs where we least expect 
it; but wben it cannot be performed, we mu.t Content oorael,. 
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with ftlpresenting the quotient by a fraction, in the maDDer _tllat we 
have-already dellCrihed. Let us begin by considering some casu. 
ill which actual division succeeds. 

245. Suppose it were required to divide the. dividend ,a c - b ~ 
by the. divisor 4 - b, the quotie'llt mUlt then be aucI, ,,;. when mul.ti­
plied by the divisor a ,- b, will produce the di"ide"d a c - b c. 
Now it is evident, that this quotient must include c, since without it 
we could not obtain ac. In order, therefore, to try whether c is the 
whole quotient, we have only to multiply it by the divisor, and see if 
that multiplication produces the whole dividend, or only part of it. 
In the present case, if we multiply a - b by c, we have a c - b c, 
which is exactly the dividend; so that c is the whole quotient. It 
is no less evident, that . 

(aa + ab): (a+ b) = aj (3 a a-2 a b): (3 a-2 b) = aj 

(6 a a-9 a b): (24-3 b) = 3 a, &c. 

~6. We cannot fail, in this way, to find a part of the quotient; 
if, therefore, wl,at we hafJe found, toAen multiplied by the tlicisor, 
does not yet exha'Ult the difJidend, we have only to _ ditlide th. re­
mainder again by the ditlisor, in order to obtain a second part of 
tke quotient j and to continue the same method, until we hatle. 
found the whole quotient. - ' 

_ Let us, as an example, divide a a + 3 a b + 2 b b by a + b j it 
is evident, in the first place, that the quotient will include the term a, 
since otherwise we should not obtain a a. Now, from the multipli­
cation of the divisor /J + b by a, arises a a + a b j which quantity 
bring subtracted from the d.ividend, leaves a remainder 2 a b + 2 b b. 
This remainder must also be divided by a + b j and it is evident 
that the quotient of this division must contain the term 2 b. Now 2 b 
multiplied by is + b, produces exactly 2 a b + 2 b b j consequently 
/J + 2 b is the quotient required; which, multiplied by tbe divisor 
a + b, ought to produce the dividend a a + 3.a 6 + 2 b b. See 
the whole operation : 

a +b) aa +3ab+ 2bb(a +211 
aa+ab 

2.'ab+2bb 
2ab+2bb 

O. 
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94"1. nit 4IfM/ltion will bt facilitat,d· if tN e1aoNe OM -I fAt. 

t .... · of "e diftlor to 'e writ, eft jirn, and tlad, _1UT.~ cA.' 
term, of tke dividend, begin with the higlwt P*"r, tJ/ tMt .fwd 
term of'''t a,NOr. This term iD the preceding eumpIe was a; 
the fOllowing examples will render the operation more cleI1'. 

a - b) a' - 3 a a b + 3 a b b - b' (IS a - 2 a b + b ,. 
al-aab 

-2aab+ 3ahb 
"":2alJb+ 2abb 

abb-lI 
abb-h' 

o. 
a+.b)aa-bb(a-6 

aa+ab 

-ab-bb 
-ab-bb 

o. 

3 a - 2 b) 18 a a - 8 h b (6 a + 4'6 
18aa-.12ab 

124 b-8 bb 
12a b-8bb 

CI + b) as + b8 (4 a - a b +. b b 
a&+aab 

-aab+bS 

-aab-abb 

o. 
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2" _ 6) S ~ - b (" 6 (I + 2· a 6 + 6 II 
8a -4aflb 

.. a II b -lJ. 
4aab-2abb 

2abb-bB 
2abb-bB 

O. 

aa--2ab+bb) 11'- 4 aB b + 6 a a h b - 4 a hi + b' 
aa-2t1b+66) a'- 2 a' b + a a 66 

• 

-2a1 b + 5t1t1bb-4ab' 
-2ib+4atlb6-211b' 

aabb-2tJb' + b' 
tJ tJ b b .- 2 a b8 + b' 

o . 

tJ tI .~ 2 (I b + 466) tJ' + 411 a h b + 16 b' (a tJ + 2 tI h + 4 h II 
tJ'-2a'b +4tJabb 

2 a' 6 + 16 b' 
2aB b"-4aabb + 8ab' 

4 II a b b - 8 tJ 11 + 16 II' 
4 a a b 11 - 8 tJ ". + 16 b· 

O. 

a a - 2 a II + 26 h) 0' + 4 b' (a a + 2 tJ 6 + 266 
a'-2a'b+2aab6 

2a'6-2aabb+"b' 
2aBb-4aab6+4t1b' 

2 tI a 6 6 - 4 a 68 + 46' 
2 tJ tI 6 h - 4 tI b' + 46' 

o. 
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1 - 2~+:a:~) 1- 5 a:+ 10'.21.21-10 r#' + 51!' - rt! 
1-3a: + 3a:x- rII) 1- 2 x + x'x 

..:... 3 x + 9 x x - 10 Xl 

-3x+6clII-3rt! 

3xx-7r11+5a:' 
3 111111-6 Xl + 3x' 

-a:' + 2 a:' -x' 
-a:' + 2111' -III' 

o. 

CHAPTER V. 

Of tke Buolution of Fractiom ~nto Infinite Sene,. 
248. WHEN the di vidend· is not divisible by the ditisor, the quo­

tient is expressed, as we have already observed, by a: fraction •. 
Thus, if we have to divide 1 by 1 - a, we obtain the fraction 

_1 __ • This, howefer, does not prevent us from attempting the 
1- a 
division,. according to the rules that have been given, and continu­
ing it IS far u we please. We shall not fail to find the true quo­
tient, .thoUgh under different forms. 

249. To prove tbis, let us actually divide the dividend 1 by the 
divisor 1 .- a; thus: 

a . aa 
1 - a) 1 (1 + 1. a; or, 1- a) 1 (1 + a + r::a 

I-a 1 .,;.... a 

remainder a 

remainder a a 
To find a greater number of forms, we have only to continue 

dividing II a by 1 - "; 
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al ~ 
l-a)lIa (aa +r=a' then 1-a) a' (a' + 1-11 

aa-a' a'-o.' 
III 

and again 1 - a) a' (a' + ~­I-a 
o.'-tl 
-tj',&c. 

250. This sh~ that the fraction -1' 1 may be exhibited under 
-a 

all the following forms: . 
a aa 

I.) 1+ I _ a ; n.) l+a+ 1_,,; 

~ , a' 
m.)1 +1I+lIa+ I-a; IV.) 1 +a+aa+tI+ 1 -'a. , 

V.)I+a+aa+a'+a'+ -1t1 ,&c. -a 
Now, by considering the first of these expressions, which is 

II d. 1-11 . ha 1 + 1--' an remembenng that 1 is the same as 1--t we ve -a -a 

a I-a a 1-a+a 1 
1 +1-a==I-II+ l-a=l.=a==r=a· 

If we follow the same process with regard to the second expres-

sion 1 + a + 1 II II , that is to say, if we reduce the integral part 
-a 

-I-aa 
1 +" to the same deDominator 1 -a, we shall have 1 -a' to 

. . aa I-aa+aa. 
wh~bifweadd +-1 ,we shall have -I ,that 11 to -a -a 

, 1 
say,r=ti. 

In the third expression 1 + a + a a + -1 al 
t the iDtegers re. 

-a 
l-a' , 

duced to the denominator 1 - a make -I -; and if we add to 
-0 

11' 
that the fraction -1 a , we have -I ...-; wherefOre all these expres-

-a -a 

aioDl are equal in va1~e to 1~; the proposed fraction. 
-a 

EKl. IJ.~. 10 
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251. This being the case, we may continue the series as far as 
we please, without being under· the necessity of performing any 
more CJlculations. We shall therefore have 
l ' . 8 

1_- = 1 + a + a a + as + a4 + 'al + as + aT + -1 a. ; 
-a -a 

or we might continue this further, and still go on without end. For 
this reason it may be said, that the proposed fraction has been re-
solved into an infinite series, which is . 

I+a+aa+a3+a4+a6+a8+a7+a8+a8+alo+all+al', &c. 
to infinity. And there at:e sufficient grounds to maintain that the 

value of this infinite series is the' same as that of the fraction. 1 1 a; 

252. What we have said may, at first, appear surprising; but the 
consideration of some particular cases will make it eastly understood. 

Let us· suppose, in the first place, a = 1; our~series will become 

1 + 1 + 1 + 1 + 1 + 1 + I, &c. The fraction -11 ,towhicb -a 
it must be equal, becomes d-. Now, we before remarked, that d- is 
a number infinitely great; which is, therefore, here confirmed in a 
satisfactory manner. 

But if we suppose a = 2, our series becomes = 1 + 2 + 4 + 8 

+ 16 + a2 + 64, &0. to infinity, and its value must be 1 1 2' that is 

to ~ay, I 1 = - I ; which at first sight will appear absurd. But 

it must be remarked, that if we wish to stop at any term of the above 
series, we cannot do so without joining the fraction which remains. 
Suppose, for example, we were to stop at 64, after having written 
1 + 2 + 4 + 8 + 16 + 32 + 64, we must join the fraction 

. 128 128 
--o,or -1' or - 128; we shall therefore have 127 -128, 
1-~ -
that is in Cap, - 1. 

Were we to continue the series without intermission, the fractioD 
. indeed would be no longer considered, but then the series would 
still go 00 •. 

253. These are the considerations which are necessary, when we 
usume for a numbers greater than unity. But if we suppose a less 
than I, the whole becomes m~e intelligible. 
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. For example. let CI =.i; we shaD have 
1 . I 1 

r::Ci = 1 -1 = t = 2, 

which will be equal to'the following series: 

1 + i + * + -I + n + n + w\- + Tg.g., &c. to infinity. 
Now, if we take only two terms of tbis series, \Ve have 1 + i, and 

. h' be I· 1 It wants i, t at It may equa to 1--'= 2. If we take three -a 
terms, it wants i; for the sum'is 1 t. H we take four terms, we 
have It, and the deficiency is only i. We see, therefore, that the 
more terms we take, the hiss the difference becomes, and that, COD­

sequently, if we continue OD to infinity, there will be no difference at 
aU between the sum of the series and 2, the vaJue of the fraction 

1 ' 

I-a' 

254: Let (I=i; ourtlaction '1.1 a will be = Iii = f= If, 

which reduced to an infinite series, becomes 

1 + .. + t + n + .t.r lln, &0. 

aad 10 which ------1. 1 . i. consequeDtly equal. 
-a 

When we take two terms,·we have Ii, and there wants... If w.e 
take three terms, we. have 1*, and there will still be wanting -h. 
Take four terms, we shall have 1M, and the difference is n. Since 
the error, therefore, always becomes three times less, it must ~vi­
dently vanish at .last. 

. 1 1 ' 
255. Suppose 11= i; we shan have 1 _ a = 1 _ i .= 3, and' 

• the series 1 + i + t + -I-r + * + '.1\\' &0. to infinity. Taking 
first Ii, the 6rror is Ii; taking three terms, which make 2.i, the 
error is .. ; iaking four terms we have 2H, and the error is H. 

I 11· 
256. If a = i, tBe fraction is 1 -I = i = I!; and the series 

_omes 1 + t + n + n +rh, &c. The two first terms mak­
ing 1 + i, will give T'" for the error; and taking one term more, 
we have 1,\, that is to say, only an error of -h. 

I 
257. In the same manDer, we may resolve the fraction 1 + a' into 
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an in6nite series by actually dividing the numeDltor 1 by the de­
nominator 1 + a, as follows: 

1 + a) 1 (1 - a + a a ..- aa + •• 
1+4 

aa 
4a + as 

a· 
a· + a l 

- ai, Itc. 
, 1 

Whence it (ollows that the fraction 1 + a is equal to the series 

1- a + aa-a' + 4·-a'+ a'-.', Itc. 
258. If we make a = 1, we have tbis remarkable comparison: 

1 1 I' lI_ •• 
1 + a = i = 1 ~ 1 + 1 - 1 + 1 - 1 + -, -.C.1o.Bl-

tinity. Tbis will appear rather contradictory; for if we stop at - 1, 
the series gives 0; and if we finish by + 1, it gives 1. But this is 
precisely what solves the difficulty; for si~e we mbst 10, on to in. 
finity without stopping either 'at - 1 or at + 1, it is evident that 
~e sum can neither be. 0 nor 1, but that this result must lie between 
these two, and therefore he = I. . 

-I . 
969. Let us DOW make a = .... aDd our fraction will be 1 + 1 == I, .. 

which must therefore express the nlue of the series • 
,i "':"'i+t-i+n-rh+n, &tc. to infinity., 

I( we take only the two leading terms of th~ series, we have i, 
which is too small by t. If we take three tenns, we have it which 
is too much by'-rlr. If we take four' terms, we have i, whlcb is too 
small by -A, &c. 

260. Sup~ again, a' =! ~ our fracti~n will be =: 1 ~ 1. == I, 
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and to this the series 1 - t + -i-- '* + n - m +,-h, &c. 
continued to infinity, must be equal. Now, by considering only two 
terms, we have i, which is too small by.ft. Three terms make 
i, which is too much by ..J.. Four terms make "" which is too 
small by Th, and so on. I " 

1 ' 
261. The fraction r-+ may also be resolved into an infinite a . 

-series another way ; ,namely, by dividing 1 by a + 1, u follows: 
1 1 1 1 1 

a + 1) 1.(---+- -- +-a aa a' a' a' 
1 

'1 +-
(J 

1 
(J 

1 1 ----(J CIa 

1 
aa 

1· 1 
"+a l 

·1 
- CI ' 

1 1 . 
- 0* - a' 

1 
0' 

1 1 
ii' + at 

1 
-.' &c. G 

Consequently, o~r f~uon;. ~ l' is equal to the infinite series 

1 1 1 1 '1 1 -- - + :1- - +.- - -, &e. Let us make' (J = 1 and .. aG a rJ' at o' , " ' 
we ~1 bave'the series 

- 1 + 1-·1 +"1 + I, &a.. == i, u before • 
.bd if' .. IIIppo1e ", =: 2, we thaD baY .. the series 

i-t + i - n + rr- -h&c. == I· 
• 
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262. In the same manner, by. resolving the general fraction a ~ b 

into an infinite series, we shall h~ ve, 

e be bbe b3 e 
a + b) e (-;z - a a + 7 -7 

be e+ -a 

be 
a 
be bbe 
a a a 

bbe 

b3 c 
-7 

b3 c b' e 
-7--7 

, e 
Whence it appears, that we may compare a + b with the spies 

e be bbe b3 e .. -'- - + - ---, &c. to mfimty. 
a aa a 3 a 4 

Let a = 2, b = 4, Ii = 3, and we shall have 
e 3 

a + b = 2 + 4 = i = Z = ~ - 3 + 6 - 12, &c. 

Let a = 10, b = 1, and e = 11, and we have 
e 11 

a + b = 10-1 = 1 = H - "Nrr + T~h - rrr/trrr, &c. 

If we consider only one term of this series, we have H, which is 
too much by -y\r; if we take two terms, we have -.lJrr, which is too 
small by rtrr; if we take three terms, we have Hs,t, which is too 

much by ~, &c. 
263. When there are more than two terms in the divisor, we 

may also continue the division to infinity in the same manner. 



Chap. 5. Of Compound Quantities. 79 

1 
Thus, if the fraction 1 _ a + ali were proposed, the infinite 

series to which it is equal would be found as follows: 

1-a + a a) 1 (1 + a - a 3 - a4 + a 8, + a 7, &c. 
l-a+aa 

We have therefore the equation of 
1 ---- = 1 + a - a 3 - a 4 + as +a 7 _a 9 _a IO &c l-a+aa ' . 

Here, if we make a = 1, we have 

1 = 1 + 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 + 1, &c. 

which series contains twice the series found above, 

1 - 1 + 1 - 1 + 1, &c. 

Now, as we have found this = i, it is not astonishing that we should 
find ~, or 1, for the value of that which we have just determined. 

Make a = i, and we shall then have the equation 

1 - = ~ = 1 + .z - t - -i"6" + 6\- + Th - ~ h, &c. 
i 

Suppose a = t, we shall have the equation 

1 t = t = 1 + t - ..;.,. - -s\- + m, &c. 

If we take the four leading terms of this series, we have VI, .which 
is only rh, less than t· 

Suppose again a = i, we shall have 
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1 , 
i =f= l+f:-Irr-H+fIr, &co 

This series must therefore be equal to the preceding oDe; and sub­
tracting one frorp the other, * - .;., ~ 'tt + H, must be = o. 
These four terms added together make - /r. ' 

264. The method wbich we have explained, Berves to resolve, 
generally, all fractions into infinite series; and, therefore, it is often 
found to be of the greatest utility. Further, it is remarkable, that 
tJn infinite leriel, though it netler tetJIel, "'"Y hatle a detemintJte 
"a1ue. It may be added, tbat from this branch of mathematics 
inventions of the utmost importance have been derived, on which 
account the subject deserves to be studied with the greatest attention. 

CHAPTER VI. 

Of the Squares of Compound Quantities. 

265. W BEN it is required to find tbe square of a compound 
quantity, we have only to multiply it by itself, and the product will 
be tbe square required. 

For example, the square of tJ + b is found in the following 
manner: 

tJ+b 
tJ+b 

aa+ab 
lib +bb 

tJ tJ + 2 tJ b + b b. 

266. So tbat, when the root comistl of two terms added together, 
tS tJ + 6, the Iquare comprehendl, lst, the Iquare of eael term, 
namely, tJ a, and b b; 2d.ly, twice the produa of the two Ie,.." 
namely, 2 tJ b~ So that the sum tJ tJ + 2 a b +' 11 b is the square 
of 6 + b. Let, for example, tJ ~ 10 and b= 3, that is to say, 
let it 'be required to find the square of 13, we shall have 100 + 
-60 + 9, or 169. 
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267. Wem., easily find, by means of this formula, the squares 
of numbers, however great, if we divide them into_two parts. To 
find, for example, the square of 57, we consider that this number 
is = 50 + 7;' whence we conclude tbat its square is 

, = 2500 + 700 + 49 = 3249. ' 

268. Hence it is evident that the square of 6 + 1 will be 
aa + 2 a + 1 ; now since the square of 6 is 6 a, we find the 
square a + 1 by adding to that2 6 + 1 ; and it must be observed, 
that this,2 6 + 'I is the sum of the two roots 6 and a + 1. 

Thus, as the square of 10 is 100, that of 11 will be 100 + 21. 
The square of 57 being 3249, that of 58 is 3249' + U5 = 3364. 
The square of 59 = 3364 + 117 = 3481; the square of 

60 = 3481 + 119 = 3600, &0. 

269. The square of a compound qdantity, as 6 + b, is repre­
sented in this manner: (a + b)'. We have tben 

'(a + b)' = a a + 2 6 b + b II, 
whence we deduce tbe following equations: 

(6 + 1)' = a 6 - 2 6 + 1; (a + 2)' = a d + 46 + 4; 
(6 + 3)' = a a + 6 a + 9; (6 + 4)' = a6 + 8 ~ + 16; &c. 

270. lfthe root is a - b, the .quare of it i. a a- 2 a b + b b, 
flJhich contai7&8 alBo the .quar .. of the two terml, but in .uck 6 
manner that we muit take from their BUm twice the product of 
tho.e two term •• 

Let, for example, a = - 10 and b = - 1, the square of 9 will 
be found = 100 - 20 + 1 = 81. 

271. Since we have the equation (a - b)' = a n - 2 a b + b b, 
we shall have (a- 1)1 = a a - 2 a + 1. TMsquareofa-l 
is found, therefore, by .ubtracting from a a theium of the two root. a 
mad a-I, namely,' 2 a-I. Let, for example, a = 50, we have 
6a= 2500, and a -1 = 49; then 491 =2500-99= 2401. 

272. What we have said may be also confirmed and illustrated 
by fractions. Forif we take as the root t + f (which make 1) 
Lhe squares will be: 

.l~ + -h + -» = H, that is 1; 

Further, the square of i- t (or of l) will be 
i-t + i==n. 

11 

Digitized by Google · 
'. 



• 

Set,t. g .. 

273. When the root consists of a greater Dumber of \'el'tnS, tbe 
method· of delermining the square is the same. Let us find" for 
exaJDple, Ike ''lusre oj a + b + c. 

a+b+c 
a+b+c 

aa+ab+ac +bc 
a b + a c + b b + ,b c + c c 

G a + 24 b + 2 a c + b b + 2 be + >ce • . 
We see that it include" first, thu'l,uare of each term oJthe root, tmd 
belith thai, the double product, oltho,e te1'ml multiplied two by two. 

274. To illustrate this by an example, let us divide the number 
256 into tbree parts, 200 + 50 + 6 ; its square will tben be com­
~ of th~fonowing plllSf: 

40000 
~ 

36 
20000 
2400 

600 

66536 

1536 
1280 
51~ 

65536 
. which is evidently equal to the product of 256 X 256. 

275. When ,ome teN'n8 01 the Toot are negative, the ''l,uare u 
,tillfou.nd by the ,ame rule; but we must take care what,igns we 
prep to I/£e dou.ble product,. Thus, the square of a - b - c 
being a a + b b + c c - 2 a b - 2 a c + 2 b c, if we repre­
sent the number 256 by 300 - 40 - 4, we sball bave, 

Positive Parts. 
"---y--J 

+ 90000 
1600 

320 
, 16 

+ 91936 
-26400 \, 

Negative Parts. 
"---y--J 

-24000 
- 2400 

- S!6400 

,655'16, the square of 266, as before. 
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CHAPTER VII. 

01 the Extrac~ion 01 Root. applied to' Compound Quantitie •• 

276. IN order to give a ce11aip rule for this operation, we must 
consider attentively the square of the root a + 6, which is 

a /J +,2,a b + b b,. 
tbat we may reciprocally find the l'09t of a given gqullre .. 

277. We must consider therefore, fitst, that as the square 
a a + 2 a b + b b is cQmposed of several terms, it is certain tbat 
the root also will comprise more than one term; and that if we 

, write tbe square in such a manner that the powers of one of the 
letters, as a, may go on continually diminishing. the 8rst term will 
be the square of the first term of the root. And since, in the pre~ 
ent case, the first term of the square is tJ tJ, it is certain that tbe 
drst term Qf .tbe root is a. 

278. Having, therefore, maud the first term of tbe root, that is to 
say a, we must consider the rest of the square, namely, 2 a b + b b, 
to see if we can derive from it tbe second part of the root, whicb 
is b. Now this remainder 2 a b + b b may be represented by the 
product, (2 a + 6) b. Wherefore the rem8'inder having two fac­
tors,2 a + b, and b, it is evident that we sban find the latter, b, 
which is tbe second part of the root, by dividing the remainder 
2 a b + b b by 2 a + b. '. . 

279. So tbat the quotient, arising from the division of the above 
remainder by 2 a + b is the second term of the root required. Now 
in this division we observe, that 2 a is the cIouble or the In& term a, 
which is already determined. So tbat althougb too second term is 
yet unknown, and It is necessary, for the present, to leave its place 
empty, we may nevertheless attempt tbe division, since in it we 
attend only to the first term 2 a. But as soon as the quotient iI 
found, which is here h, we must put it in the empty place, and thus 
render the division complete. 

280. The calculation, therefore, .., which we find the rcNlt of 
the square a a + 2 a b + b b, may be lepreseo&ecl thus : 
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AIK·n. 
CI CI + 2 tJ 6 + 6 b (a + 6 
aa 

2tJ+b)2a6+bb 
2ab+66 

o· 

Sect. 2. 

281. We may, in the same manDer, find the square root of 
other compound quantities, provided they are squares, as the fol­
lowing examples will show. 

a tJ + 6a b + 9 b b (a + 36, 

2 tJ +'3 b) 6 tJ b + 9 bb 
6tJb+9bb 

o. 
4 a a - 4 a b + b b (2 ,. - 6 
4tJa 

4a-b) - 4a b + b b 
-4tJb+6b 

o. 

9 P 11 + 24 P q + 16 g q (3 P + 4 q 
9pp 

6 P +" q) 24 P f + 16 g q 
24p 9 + 169 q 

o. 

25 '" .1: - 60 .1: + 36 (5.1: - 6 . 
25.1:.1: 

10 If - 6) - 60.1: + 86 
-60.1: + 86 

o. 
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282. When there is a re_der after tbe division, it is a proof 

tbat t~ root is composed of more than two terms. We then COD­

sider the two terms already found as fOrming the first part, and en­
deavour to derive the other from tbe'remaiDder, in the same m .... 
Der as we found the second term of the root., The following ex­
ample will render this operation m0J'8 clear. 

Ga+2ab-2ae-2be+bb+ce(a+b-c 
aG 

, 
2 a + b) 2ab- 2 a e - 2 be + b h + c c 

2ab + b b 

2" + 2b-c)-2ac-2be + ce 
- 2 a c - 2 b c + cc 

o. 
,,' + 21.1 1 + 31.11.1 + 2 a + 1 (1.1 1.1 + a + 1 

a' ' 

2 a 1.1 + a) 2 (II + 3 a a 
'2a l + aa 

2 a a + 2 a + 1) 2 a a + 2 a + 1 
2 a a + 2 a +-1 

o. 

a' - 4 a l b + 8 a bl + 4 b' (a G - 2 a b - 2 b b 
a' 

2 aa- 2'Gb) -4 a l b+ 8 a b l + 4 b' 
-4a l b + 4aabb 

2 a 1.1 - 4 a b) - Sal» b) - 4 ~ a b b + 8 a b l + 4 b' 
'- 4 a a b b + 8 a b' +:4 b' 

O. 
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a 8 _6a 5 b + 15a 4bb _ 20a 3b3 + 15aab 4 -6ab 5 + b6 

as (a 3 - 3aab + 3abb - b' 

~a3 _ 3aab) -6a5b + 15a'bb 
- 6a.6b + 9a 'bb 

----------------------
2a 3 - 6aab + 3abb) 6a 4bb - 20a 3bs + 15aab' 

6a'bb - 18a 3b3 + 9aab 4 

----
2a 3 _ 6aab + 6abb - b 3) - 2a 3b3 + 6aab 4 _ 6ab 6 + b8 

- 2a 3b3 + 6aab' _ 6ab 6 + b6 

O. 
283. We easily deduce from the rule which we have explained, 

the method which is taught in books of arithmetic for the extraction 
- of the square root. Some examples in numbers: 

529 (23 
4 

43) 129 
129 

O. 

. . 
4096 (64 
36 

124) 496 
496 

O. 

1764 (42 
16 

82) 164 
164 

15625 (125 
1 

22) 56 
44 . 

2304 (48 
16 

88) 704 
704 

O. 

9604 (98 
81 

188) 1504 
1504 

O. 

998001 (999 
81 

189) 1880 
1701 

245) 1225 1989) 17901 
1225 17901 

O. O. 

, 



C.hap. s. 81 

284. But when tbert is a remainder after the whol.e opelatioD, it 
is a proof that tpe number proposed is not a square, and conse­
quently that jg.rOOt eaooot be assigned. In such oases, the radical 
sign, which we before employed, is made use of. It is written before 
the quantity, and the quantity itself is placed betweell parentheses, 
or under a line. Thus, the square root of a a + b 6 is represent­
ed by V(GG+ f1i), or by VGG+ nj and V(I-zx),or .vI-xx, 
expresaes tbe square root of 1 - tlJ tlJ. Instead of this radical sign, 
we may use tl1e 1i'aetional exponent i, and represent the square roo& 

of a a + h h, for instance, by (a a + b b i, or by "+ 6 61 t. 
~ '. I • 

CHAPTER VIII. 

Of tAs Calculation of Irrational Qvtmtit.ie •• 

285. WBEl! it is required to add together two or more irrational 
quantities, this is done, according to the method before laid down, 
by writing all the terms in succession, each with its proper sign. 
And with regard to abbreviatiQD, we must remark that i'llltead of 
lit! a + Va, fOr example, we mte 2 .va ; and that .va -.va = O~ 
because these two terms destroy ooeone another. Thus, the qua'll­
titie.3 + .v2 arJd 1 + -Vi, 'added together, make 4 +2 -Vi 
or 4 + .v8; the sum of 5 + .va and 4 - -va is 9; and that 
of 2 -va + 3 .v2 and va -.v2 is 3 V3 + 2 -V2. 

286. Subtraction also is very easy, since we have onll to add the 
proposed Bumbers, changing first their signs; the following example 
Will show. this; let Ulf subtract the lower number from the upper. 

4- .v2+~-V3-3V5+4.v6 
1 + 2 V2 - 2 -va - 5 -V5 + 6 -va 

: 3 -3 -V2 + 4 .v~' + 2 .vi - 2 -va 
287. In multiplication we must recollect tbat V .. ·naultiplied by 

.vil.prodUC6. a; and that if the number. which follow the Bign -v' 
are different, tU a and·b, we ha"e .vab for the product of .va 
multiplied by .vii. After this it will be easy to perform the fol-· 
lowing, examples : 
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1 +.vi 
1 + .vi 
1 +.vi 

+.v i +2 

1 + 2 '\I i + 2 = 3 + 2.v2 

4+2.v1 
2- '\Ii 

8 +4 '\Ii 

Sect. 2. 

-4'\12-4 

8-4=4 
288. Wbat we have said applies also to imaginary quantities; we 

shall only observe further, that .v=a multiplied by .v=a pro~ 
d~e,-a. . 

If it were required to find the cube of - 1 + .v - 3, we should 
take the square of tbat number, and then multiply that square by 
the same number; see the operation: 

-1+V-3 
-1 +.v="3 

1-.v-3 
-'\1=3-3 

1-2V-3-3=-2-2V=3 
-1 + '\1=3 

2 + 2 '\1-3 
-2V=3+6 

2+ 6=8. 
289. In the Ji.n,ion of ,urd" we hate only to expru, the pro­

pl),ed quantitie, in the form.f!/ a fraction; this may be then changed 
into another expre8lion ha"ang a rational denominator. For if 
the denominator be a + V ii, for example, and we multiply both it 
and the numerator by a - Vb, tbe new denominator will be 
a a - b, in wbich there is no radical sign. Let it be proposed to 

3 +2 -
. divide 3 + 2 .v2 by 1 + .v2; we shall first have 1 + ~ :. 
Multiplying now the two terms of the fraCtiOD by 1 - .vi, we 
~all have for the numerator: 
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3 + 2-\,,2 
-3'\1'2-4 

3- '\1'2-4=-'\1'2- 1; 
and for the denominator: 

1 +'\1'2 
I--\,,2 

1 + '\1'2 
-'\1'2- 2 

S9 

1-2=-1 
-'\1'2-1 

Our new fraction therefore is -=--L- ; and if we again mul-

tiply the terms by - 1, we shall have for the numerator -\"2 + 1, 
and for the denominator + 1. IN ow it is easy to show that '\I'!J + 1 

3 + 2 -
is equal to the proposed fraction 1 + ~;; for '\1'2 + 1 being 

multiplied by the divisor 1 + -\,,2, thus, 

1 +'\1'2 
1 + -\1'2 

1 + '\1'2 
+'\1'2+2 

we have 1 + 2 '\1'2 + 2 =3 + 2 '\1'2 . . 
Another example: 8 - 5 -\,,2 divided by 3 - 2 -\1'2 makes 

3
8- 25 -\"~. Multiplying the two terms olthis fraction by 3+ 2 -\1'2, 

- '\1'2 
we have for the numerator, 

Eul. Alg. 

8-5'\1'2 
3+2-\,,2 

24 - 15-\1'2 
+16'\1'2-20 

24 + '\1'2 - 20 = 4 + -\1'2 ; 
12 
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and tor tbe denominator, 

3- 2 V 2 
3 + 2 V2 

9-6 V2 
+6'\12- 8 , 

9-8= + 1. 
Consequently the quotient will be 4 + .v2. Tbe truth oftbia 

may be proved in the following mannel' : 

4 + V2 
3-2 vi 

12 + 3 V2 
-8V2- 4 

12 - IS .v2 - 4 = 8 - IS ,\,,2. , . 

. ' ~. I~ the same manner, we may transform such fractions into 
6tlred, that have rational denominators. If we have, (or example, 

the fraction 5 _ ! vii' and Qlultiply its numerator and denommatol' 

by 5 + 2 v 6, we transform it into this ' 

5 + 2 V6 IS + A '­--)-- = ... V6. 

In like manner th.e fraction _ 1 +2 V _ 3 assumes this form, 

. 2 +2 v=3 1 +.\I.-=--3 
" --4 -:= .-2-' 

.vii '+ '\15 . ,11 + 2'\130 ' 
~d +/I ~ Vi becomes , --1-- = 11 + 2 V~· 
291. Wlaen tke denominator contai,., ,etreral tentll, !De may ,i" tA, 

ICftIN manner fllti!'e tie radical nK'" in it flaniiA ORe by ORe. Let 
1 

the &action .vl0 -.v2 _ .va be proposed; we first m~ltipl1 

these terms by .v1O + .v2 + .v3, and ob..uo the fractioa 
.vro + V2 + va 
-5- 2 .v6 -. f 

Then multiplying ita ~meratol and deJ,ominatol' by IS + i .vi, 
we have 5 .viO + 11 .vi + 9 .vi + 2 .vii). 
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CHAPTER IX. 

0/ (Nbe., aad the &tractio" 0/ OU6e &011, 

'191. To find tAa cu6e of. roM .. '+ b, we _y mekiplr iii 
, tqi1IIe II a + 2 • 6 + 6 b again by 4 + 6, thus, 

aa+2a6+66 
a +'6 

,.'+~.ab+.6i 
, allb+iaib+6' 

and the cube Will be = a' + 3 a a b + 3 a b 6 + b'. 
It COfItaia, therewre, tAe cube. of tke ttllO pcrt. of tlae roo,t, and 

beside that, 3aGb + 3 ab b, a quantity equal to (3a b) X (a +b); 
that is, the triple pr04ltu:t of the ttDo Fb, a tUUl b, multiplied by 
tAei,. "' ... 

293. So that whene.er. root is cempoaed of two' terms, it is 
easy to find its cube by this roie. , For example, tbe number 
S = 3 + 2; its cube is therefore '27 + 8 + 18 X 5 = 125. 

Let '7 + 3 == 18 be the root; the cube will be 
343 + 2'7 + 63 X 10 = 1000. 

To find the cube of 36, let 111 suppose the lOOt 36 :- 30 + 6, 
aod we have for the power 1'equired, 

, 27000 + 216 + 540 X 36 = 46656 • 
.. B.t if, OIl ~e other hand, tbe cube ~ gW8D, pamell, 

la' + a a« 6, + l,tI 6" + b' , and it be required to6nd its 1'OOt, 
~ 1DU!t premile the .feIiewing remarks: 

First, wbett the cube is arranged according to the powers of ODe 

Mter, "'" .. ,. bow by cbe fiat teJQl a', the fint te..,. a of. the 
....x, .. 1M c,*-.91 it is ,,' ; if, therefure. we ~ Utat c~ 
iom the cube propqllMl. we obtain the remainder, 

3 II a b + 3 a b 6 + b3, , 

which molt fumish the second tenn of tbe root. 
i95. But as we aheady know that the second tenn ia + h, we 

haft priDcipally to discover how it may be derived fiorD the abo .. 
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remaiader. Now that remainder may be expressed by two {ac­
ton, IS (3 0 0 + 3 G b + b 6) X (6); if, tberefore, we divide 
by 8 G 0 + 3 0 b + b b, we obtain tbe second part of tbe root 
+ b, which i. require4. : , . 

296. But as tbis sebood term is supposed to be unknown, the 
alivisor .s.o is _known; neve~less we have the first tenn of that 
divisor, which is sufficient; .or, it is 3 a a, that'is, thrice the square' 
of the first term already foulld; and by me~Qs of this,' it is not diffi­
cult to find also the other part, b, and then to complete the divisor 
before we perform the division. For this purpose, it will be ne­
cessary to joio to 3 a 0 thrice the product of the two terms, 01' 

3 a b, and 6 b,or the square of'tbe second term of the root. 
29'7. Let us apply wbat we have said,to two examples of other 

gi,en tubes. . . . . 

: . I. a l + 12 lJ a + 48 a +64 (a + 4 
/II 

30a+ 19 (I + 16) 12 a a + 48 a + 64 
, 12 .. 0 + 48 0 + ~ , 

o. 
n. a'-6a' + 15fl~-2Oa1+15ti';""',6a + 1 

a' . (aa-26 +1 
I 8a~":" 6ai + .4aa) _ 641 6 + 15a~ _ 2Oa 3 ( 

- 6a1 + 12a~ - 8,a l . , 

'3a'-1ia' + Ih + Sa' -6a + I) 3tt-12a' + 15Ird--6a + 1 
, .3a'-l2a·+I6atJ-&'+.l 

, . 
, o. 

,. 298. The' analysis which we have' given is the tbundati(JJuitbe 
cOmmon rule (or the extraction of the cube root in IlUmbera. All 
example of the operation in the number 219'7: 
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2197 (10 + 3 = 13 
1000 • 

300 1197 
90 
9 

3991197 

o. 
Let us also extract the cube root of 34965783 : 

34965783 (300 + 20 + 7 
27000000 

270000 7965783 
18000 

40 

288400 5768000 

307200 2197783 
6720 

49 

313 2197783 

o. 

CHAPTER X. 

01 the H.gher Power, of Compmnd Quantitie,~ 

299. Aft •• squares and cubes COIDe higher powell, cw pow«l 
of a greater number of degrees. They are represllltecl by eJlponenta 
in the manner which we before explained: w~ have only to re­
member, when the root is compound, to inclose it in a parenthesis. 
Thus (II + b)1 means that II + 6 is rais9d to dle fifth degree, and 
(II - 6)' represents the sixth power of II-b. We sball ia this 
ehl'pter explain the nature of these powers • 

• 
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300. Let 1& + 6 be the root, or the fint power, aDd the higher 
powen will be found by 'multiplication in the following manner: 
(a+6),=a +6 

a +6 ,-
tT + ab 

+a6+bb 

(II +b)'==r+2ab+bb 
a +b 

al + 2aab + abb 
+ ad + 2aM + bl 

, 

(a+6)I=r+3aab+3abb + £1 
a +6 

a' + aali + 3aabb + 061 
+ alb + 3aGb6 + Sabl + b' 

(a + b)' == a' + 40l b + 6aabb + 4ab' + h' 
• +6 
r + 4a'b + 6.'bb + 4tJab1 + abe , 
+ a'b + 4a'bb + &.61 + 4" + II 

(a + 6)'==r + 5a'b + 100'66 + 1~+6ab' +i' 
a +b 

II' + 5a6b +- 100'66 -+ 1&-6' + 50Gb' + ab' 
+ a6b + 5a'bb + 10a'bl + 106_' + 'w + .' 

(ti + )' == r + 6a'b + 15a'66 + .'b' + 100Gb' + 6Gb' + b' 
SOl. The powers of the root a - 6 are fOPnd in the same man-' 

'Mr, and we shall immediately perceive that they do not tti1I'er fiom 
die ~, emtptillg tIau tile fld, "., 6 ... _. ...... are 
..... by •• IIIinuI; 

• 
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.---
all-b 

-Gb.+b6 

(a-bt=at - 2ab + bb 
a - 6 . 

• ,- 2aGb + aM 
.- aGb + saabb - hi 

(a-b)I:=I1'- 3aab + 3abb - b' 
a -6 

a' - 3a'6 + 3aabb ~ 011 
- ttb + 3aabb - 3ab' + b' 

(d-i)'-a'-4a'b + 6aabb-4ab' +Ib' 
d -b, .' 

. " a' - 4a'b + 6a8bb - 4aab9 + abe 
- lI'b + 4a'bb - 6aab' + 4ab' - bl 

-------------------------(a-b)'=lJ''':'' 5a'6 + lOa'bb-10tiab8 + OOb'-h'. 
II -b 

". - 5a'b + lOa'bII-10,,'b8 + 5a.~' - a6' 

• 

. - alb + oo'bb + lOa'b8 + 10aab'-5Gb' + ". 
(a-bjf=a'-6aI6 + 15a'bb-20a868 + 15aab'-6alf+'" 

. Here we see that all the odd powerS of 6 have tbe sign-, while 
the even powers retain the ~ign +. The reason of tbis is evident; 
for since - 6 is tbe tenn of the root, the powers of tbat letter will 
ascend in tbe following series, - 6, -+ bb, - b', + 6', ...... b' p 

+ II' ,&c. whioh clearly shows that tbe eyen powers must be ... 
fected by the ~iga +, .nd tbe odd ones by tbe contrary sign -~ 
, 302. AD ~po~aDt qu~stion occurs in this place; namely, bow 
we may find, without beiDg obliged always to perfonn the ~ 
calculation, all tbe powers either of a + b, or a-b. 

We must remark, in tbe first place, that if' we can assign aUth" 
powets of a· + b, those of a - b are also found, since we have ooly 
to cbaQge the ligns of the eYen tenDS, tbat is to say, of the. seeood,. 

I 

• 
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the fourth, the sixth, &e. The business then is te e..wish k mle,· 
by which afty power of a + b, ho~t1" high, ... y: he determiaed 
without tAt mceuity of calciclating all .the preceding onet~ 

303. Now, if from the powers which 'We have already tletermlo. 
ed we take away the numbers that preCede .each term, which are 
called the coefficient., we observe in all the terms a siagularord~r ;: 
fir,t, we .e. the first term a of the root railed to the pottier tDhic1& 
iI required; in the following terms the potDen of a .dimi'llilA.co'l&­
tinually by unit!l,and the power, Qf'b iacrY., in lite ,tulU pro-. 
p01'til)1l; .0 that the sum of the exponent" of a, end. of b ii al­
way' the ,atM, and always equal to tlte exponenl of the power re­

. quired; a!,d, la,tly, we find the term b by itselfrAised'to the lame 
power. If, therefore, the tentb power of a + b were ' required, 
we are certaintbat the terms, without the coefficients, would suc­
ceed each otberin the follQWwg ,order; a~o • . a t Il, a' bl , aT ~', 
a' b', at bt , (J~ be, a3 b T, .a' b8 , a bt,.b lo., .' . 

304. It remains, therefore, to show how we are to' detel'mj~th8 
coefficients wbich belong to tbose terms, or tbe numbers by which ' 
they are to be multiplied. Now, with respect to the firt' term, it, 
coeffiaient is always unity j and with "egard to the ,econd, it. coeffir.­
cient is constantly the exponent of the power j bot with regard to tbe 
other terms, it is not so easy to observe any order in ~ ~tfi. 
ciel)ts. However, if w~ continue those coefficients,:we shall not . 
fail to Waeover a law, by wh.icll,we. may advance.as fiu:. as we please. 
This the iOllowing table will show; . 

-towers. 
I. 

II. 
lII. 
IV. 
V. 

vi . . 
. VII. 

:VlII. 
,. IX. 

x. 

C6efficientl. 
1, 1 

1,2, 1 
1,3,3; 1 

1,4,6,4, 1 
1, 6, to, 10, 5, 1 

1,6, 15,20, 15,6, 1 
l~ 7,21, 35, 85, 21, 7,1 

1, 8, 28,56, 70, 56, 28, 8, I 
'J, 9, 36, 84, 126, 126,84,86,9, 1 

·1, 10,45, 120,210,252, 210, 120, 45; 10, 1. &e. 

W •• e. tben, that the tenth PQwer of " + b will be a 10 + 
10 a' b + 45 a8 bo + 120' aT b"+ 210 a 8 04 +~2 a6 b 6 + 
~lO 0' b'.+ 120 a's b T .+ 45 {HI.b' + 10 ~. b' + .b~ 0. • 
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305. With regard to the coefficients, it must be obstrwetl, thGt for 
each power their Item mtut be equal to the number 2 raued to tAt 
.ame power. Let a = 1 and b = 1, each term, without thecoetft­
cients, will be = 1; conseque~tly, the value of the power will be 
simply the sum of the coefficients; tbis sum, in the preceding ex-
ample, is 1024, and accordingly , 

(1 + 1)10 = 2 10 = 1024. , 
It is the same with respect to other powers; we have for the 
'I. 1 + 1 = 2 = ~I, 
II. 1 + 2 + 1 = 4 = 2-, 

III. 1 + 3 + 3 + 1 = 8 = 2', 
IV· 1 + 4 + 6 + 4 + 1 == 16 = 24, 
V. 1 + 5 + 10 + 10 + 5 + 1 = 32 = 2 1, 

VI. 1 + 6 + I~ + 20 + 15 + 6 + 1 = 64 = 2', 
VII. 1 + 7 + 21 + 35 + 35 + 21 + 7 + 1 = 128 = 2', 

&c. ' 
306. Another necessary remark, with regard to the coefficients, 

is, that tbey increase from the beginning to the middle, and then d~ 
crease in the same order. In the even powers, the greatest coeffi­
cient is exactly in the middle; but in the odd powers, two co­
efficients, equal and greater than the others, are found in the mid­
dle, belonging to the mean terms. 

The order of the coefficients deserves partioular attention i for it 
is in this order that we discover the means of determining them for 
any power whatever, ..yithout calculating all the preceding powers. 
We shall explain this method, reserving the demonstration how­
ever for the next chapter. 

301. In order to find the coefficient., of any power propo.ed, 
the Ie"enth, for example, let us write the following fradiom, OM 

. after tl&e other; 
t. I. i. t, f. f. t· 

111. thu arrangement we percei"e that the numerators begi" bY tAt 
e:.cponent of the power required, and tl,at they diminuh mcce.Ii~I, 
by unity; while the denominators follow in the natural order of th. 
"lImber., 1, 2, 8, 4, ~c. Now, the fiTlt coefficient being alway. 
1, the first fraction givu the ,.econtl coefficient. The product of 
the two first fractiomp maltiplied together, represent. tAe third co­
efficient. The product of the three first /radiou repre.MtI the 
fourth coefficient, and 10 on. 

Em. Alg. 13 

, 

Digitized by Google 

• 



. Algebra... ' Sect. ~. 

So that the first coefficient = 1 ; -the second = t = "; the 
third = t X f = 21 ;.the fourth = f X f X 4- = 35; the'fifth 
=f X f X .. X t=35; the,siJl.th=-r X f X t )(! X i=~n; 
lhe .seventh.= 2l X f = 7; the eighth = 7 X t = 1. 

308. So that we have, for the second power, the two fractions 
-i. i; whence it follows, that the first coefficient = I ; the se'lond 
= t = 2; and the third = 2 X f = 1. 

rhe third power furnishes the fractions t. i. i; wherefore the 
first coefficient= 1 ; the second = ~ == 3 ; the third = 3 X i = 3 ; 
the fourth = t X f X i = 1. . 

We have for the fourth power, the fractions t. i. i. 1; coose­
quentlythe first coefficient = 1 ; the second. t = 4; the third 
+ X i = 6; the fourth t X J X i = 4; and the fifth + X f 
X txt = 1. 

309. This rule evidently renders it unne~essary for \lS td find 
the preceding coefficients, and enables us to discover immediately 
tbe coeftiC~D~ which belong to any power. Thus, for the tenth 
power, we write the fractions \1'.1.4. I. f,t. t, i, i, ta, bymeaus 
of wl\ich we find 

the first 9Qefficient = 1, 
the second = y = 10, 
the third ,,, .. - 10 X 1= 45, 
the. fourth = 4S X.I =' 120, 
the fifth = 120 X t = 210, 
the sixth = 210 X f = 252, 
the seventh == 252 ~ '" = 210, 
the eighth = 210 X t = 120, 
the ninth = 120 X i = 45, 
the tenth = 45 X i = 10, 
the eleventh = 10 X -rlr= 1. 

310. We may also write these fractions as they are, without com­
puting their value ;,and in this way it is easy to express any power of 
. G + h, however high. Thus, the hundredth power of G + b, will be 
. . . .100X99 \ 
( a+b yoo = alO O + ttO X aUb + ---- + a'· b- + . . lX2. 
100 X 99 X 98 nb l 100 X 99 X 98 X 97 .. u & 

1 X 2 X 3 a + -rX 2 X TXT a fJ +, c., 
wbenCe the law of the succeeding tenwi may be easJly deduced • 

• 
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CHAPTER XI. 

311. IF we trace back the origin of the coefficients which we 
have been considering, we shall find, that each term is presented, • 
as many times as it is possible to transpose the letters, of wbtch thac 
term consists; or, to express the same thing differently, tM coelfi:­
ciant of each term is equal to 'the number of transpositions that the 
letters admit, of which that term is composed. In the second power, 
for example, the term a b is taken twice, that is to say, its coetlicieDl 
is 2; and in fact we may change the order of the letters which com­
pose that term twice, since we may write a b and 0 a; the tenn a a, 
on the qGntrary, is found only once, beCause the order ofthe-1etters 
can undergo no change or transposition. In the third power of 
a + h, the term t.l a h may ,be written in tbree di6'erent ways, a a h, 
a h ,a, h a a; thus the coefficient is 3. Likewise., in t~e (ourtb power, 
the term a ' h ,or,. aa h, admits oHour d~reDtarraDgements, (Ja a h, • 
a a h a, a h a a, h a a, a; therefore its coefficient is 4. The term 
aa h h, admits of six transpositions, a a h h, a b b a, b a b 6, ab G.b, 
b b a a, h a a II, and its coefficient is 6. It is the same in ~ eases. 
, 312. In fact, if we consider that the fourtb powet', for example, 

of any root consisting of more than two terms, as (a + h + c + d)', 
is found by multiplying the four factors, I. a + h +.c + d; 
II. a + h + c + d; III. a + h'+ c + dj IV. a + b + c + d; 
we may easily see, that each letter of the first factor must be mul­
tiplied by each letter of the second, then by each ,letter of the 
third,. and lastly, by each 'letter of the fourth.' " 

Each term must therefore not only be composed of four lettets, 
but also present itself, or enter into the Sl1m, as many times as those 
letters can be differently arranged with respect to each ocher, 
whence arises its coeffiCient.' 

313. It is therefore of great importaoce to know, ill how lDIIly 
different ways a given Dumber of letters may be artanged. And, in , 
this inquiry, we must particularly coDsider, whether tbe letters in 
question are the same, or different. When they are the same, 
tbere can be DO transposition of them,' and for this reason the 1Iim­

pie powel$, u a', ai, a', &e., allha\'e unity for the CO'e1IicieiU. 
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314. Let us first suppose all the letters different; and beginning 
with the simplest case of tWQ letters, or a b, we immediately' dis­
cover tbat two transpositions may take plae,e, namely', a b, and b a. 

If we hare t~e letters, abc, to consider, we observe that each 
~f the three may take die ~rst place, while the two others will ad­
mit of two transposition,s. For if a is the first letter, we have two 
anaugements, abc, a-c b; -if b is in the '6rst, place, wehav&. lhp. 
arrangements, 6 a c, be a; laStly, if c occupies the 6rst place, we 
hate also two arrangemeots,namely, cab, c b a. Ail~ conse­
'Iuently tbe whole D\Imber of .arrangements is 3 X 2 =: 6., 

Ifthera are, four letters, abc d, each may occupy the- 6rst place; 
.nd in each case the three others may form six different. arraQge­
m~ts, 8S we have just !leen. The whole numbetof transpositionS' 
is th~refoie 4 X 6 == 24 = 4 X 3 X 2 X 1. ' 

If there are five letters, abc tJ. 6, each of the fiv~. must be tbe 
first, and the. four ot~ers will admit of twenty-four trans~itions.; 
10 that the' whole Dumber of transpositiops will be 

5 X 24=:120=5 X 4·X 3 X 2 X I . 
. 31~. COllSeq~eiltli, however great the number of letters may be, 

• it is evident, provided they are all different, that we may easily de­
tetmine the number of transpositions, and that we may make use 
of the . following table: 
!tulJlberot LetteJ'll. Numbn of TrauBpositiOD8. 

v I \ V' .I 

I. 1 = 1. 
11& 2'X 2=2. 
la 3X2Xl=~ 
.IV. 4 X 3 X 2 Xl =24. 
~ '5X4X3~2XI'I~ 
VL 6X5X4'X3x2XI=1~ 

VU& 7, X 6 X 5 X 4 X 3 X 2 X 1 , .. 5040. 
VIII. I 8 X 7x.6X 5,>.<4 X 3 X 2 Xl =40320. 
,IX. ,.9- X 8 X 7 X 6 X Q X 4 X 3 X 2 X 1 = 362880. 

X. 10 X 9 X 8 X 7 X '6 X 5 X 4 X 3 ><-2 X 1 =.3628800. 
316., BUt, as.we have iDtimated, the numbers in this 1able QIlD be 

maae 'use of only when the letters are different; COl: if twp 01' 

.more of therp ~ alike, the nu~ber of transpositions becomes much 
less ;', and ifall the tetters are ~h~ same, ~e have only one ll1'J'8oge­
mente We shall DOW 'see how the. numbers in ,the table Ue tQ ,. 

dinlioished, according to the DUmber of letters that are alike. 

Digitized by Google 



\ 

Cbap.l1. Of CompOUM Quantitiu. 101 

317. When two letters are given, and those letters are the same,· 
the two arrangell)ents are reduced to one, and coasequendy' th~ 
'number, which we have found above, is reducEld to the half ; that is 
to,s;ry:, i~ must be divide~ by 2. If we have three letters alike, the 
,iris transpositions are reduced to one; whence it follows that the 
Bumbers in the table must be divided by 6,=' 3 X' 2 X 1. And 
for'the same reason, if four letters are alike, we must 'divide the 
numbers found by 24 or 4 X 3 X 2 +,1, &c. ' 

It is easy therefore to detel'mine how many transpositions the let- , 
ters a a a 6 6 c,' for example, may undergo. They are in number 6, 
and conseqUently, \f they were all different; they would admit of 
6. X 5 X 4 X 3 X 2 X i transpositions. But since a is found 
thrice in those letters, we must divide that number of transposition!, 
by 3 X 2 X I; and since 6 occurs twice, we must again divide it 
by 2 X I; the number of transpositions required will therefore be 

6X5X4X3X2XI, 
= ~X 2 X 1 X 2 X-l-,- = 5 X 4 X, 3 =,60. 

818. It will now be easy for us to determine the coefficients of 
, al;l tbe terms of any power. We shall give an example of the 
seventh power (a + h)'. ' 

The first term is a', which occurs only 9nce; and as all the 
other terms have each seven letters, it follows that the ,number of 
minsposi~ons for each term would be 7 X 6 X 5 X 4 X 3 X ~ X ] , 
if all ihe letters were different. But since in the second term, a' h, 
we find six lett~rsalike, we must divide the above. produet by 

'6 X 5 X 4 X3 X 2 X I, whence it follows that the coetficientis 

==: 7 + 6 X 5 X 4 X 3 X 2 X-.! = t 
,6X5x4X3X2XI • 
In the third term a l b h, we find the same letter a'five times, and 

the same letter h twice; we must therefore divide that number .fil'8t 
by 5 X 4 X 3, X'2' X I, and then also by 2 X I jwheDCe re· 
, .' 7 X 6 X 5 X 4 X 3 X 2 X I 7 X 6' 

suIts the coeffiCIent 5 X 4 X 3 X 2 X TX' 2 X 1 = 2 xi' 

The fourth t,rm a' 61 contains the letter a four times, and the 
letter b thrice j coDsequently., the whole number of the transposi­
tiODS of the seven letters must be divided, in the first place, by , 
4 X 3 X 2 X I, and secondly, by 3 X 2' X 1, and t~e coefficieDt 

7X~X5X4X3X2XI '7X.6X5 
~~s'='.i)(73 X 2 X I X 3 X 2 >s 1 == 1 X 2.x 3' 

" ,'7X6X5x4" 
In the sante manner we find I X 2 X 3 X 4 for the coe1Iicient 
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or the fiftb term; and so of the rest l by which the iule before 
pen is demodstrated • 

.319. These 'considerations carry us further, and show us also how 
lo- find all the powers of roots composed of more than two terms. 
We shall apply them to the third power of II + b + c; the terms 
of which must be' formed by all the possible combinations of three· 
letters, each tenn having' for .its coeffieient the number of its trans-
positions, as above. ' '. , 

Without perfonning the multiplication, th41J third power of 
(a + b + c) will be a3 +3aab +3a.ac +3abb + 6abc 
+ 3 ace + b l + 3 b b.c + 3 be c + c" 

Suppose'1J = I, b = 1, c = 1, the cube of 1 + 1 + 1, or of 
3, will be 1 + 3 + 3 + 3 + 6 +- 3 + 1 + 3 + 3 + 1 = 21. 

This result is accurate, and confirms the rule. ' 
If we had supposed a = 1, 6 = 1, and c = -1, we should have 

found for the cube of 1 + 1 - 1, that is, of. 1, 

1 + 3 - 3 + 3 - 6 +3 + 1 - 3 + 3 - 1 = 'J •. 

CHAPTER XII • 

. f!J the Erpru,ionoJ Irrational power, by Infinite Senu. 

320. As we have shown the method of finding any power of tbe 
root II + b, however great the exponent, \Va.are able .to eipleSs 
generally, the power of a + b, whose exponent is undetermined. 
It is evident that if we represent that exponent by tI, we shall haYe 
by the rule already given (art. 307 and the following) : 

1& . 1& 1&-1 ,..' 1& - I 
(.+b)-=d' + rr1b+I X -2-0--''6'+1 X -r. X 
1&-g 1& n-l 1&-2' 1&-3 -:a- "~'b' + f X -2- X -3- +-4- r b', &c. 

321. If the same power of the root a ~'b were .. required,.we 
should Only change. tbe Bigos of the 1IeCOIUJ, fouith, sixth,: kc. 
terms, and should have 
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'ta ",.-1' "" ,,-1 (a-11)" = a" - - a"-I b + - X -- a"-'~'- - X -' - X ,,1 1 ~, 1 ~ 

71-2 -Ib l +' 71 71.....;.1 ft-~ 71-3 II-.b. 17 
~ a I X -2- X, -3- X -4- a , ""c. ' 

322. These formulas are remarkably usefUl; for they serve also 
to express all kinds or.r~dicals. We have shown that all irratioDal 
quantities may assume the form of powers, whose exponents are 

.. 2 1 s' t " t 
fractional, and that .vii = a~; .vii = a ,and .vii ~ a , &c. 
We have therefore, also, ' 

,v(G '+ b)'= (a + b)l; ~(II + It) == (a + bit 

and V'(II + b) = (a + b)t~ &c. 
Wherefore, if w\I wish to find the square root of a + b, we have 

only to substitute (or the exponent n the fraction i, in. the genere,1 
formul!l [art. 320], and we shall have for the first, for the codi­
cients, 

71 1 71-1 1 71-2 a 71-3 5 -=_. -- ==--_. -- ---- -- =---
1 2' ~ 4' 3 ....... 6' 4 8' 

,...-:-4 7 71-, ' 9 --r == -1O;:-G" == - i2' 
Then 

(/' = i =.vii and d'-I = -l. d'-~:z::: ~ • a"-I = ~ 
.vII' a.vll' aa.va' 

&e., or we might express those powers of a in the following maDner; 
_ a".vii a".vii ' 

(/'- .. 1 • fJ"-l = ---' (1"-'_ -- -', --ya, ' 4-fJ' -a'-a" 

"-a (Jrt , .vii ,,-, a" .va & a = -. = -. ; a = ... = -::l"', e. , a a a II 

,323. This being ,laid down, the square root of a + b may be 
expressed in' the following mann~r: 
V(II +.#1)= ' 

¥a +,'!b.vii -! X!bb Vii +! X! X ~b·¥ii -! X !, 
~ a 2 4 afJ 2 4 6 a l 2 4 

3 5 .va 
Xijxab'-.,&e. 

fJ, , 

324. If a, therefore, be a square number, we may ~igo tqe 
value of V ii, and consequently, the square root of fJ + b may be 
expressed by an inGnite series, without any radical sign. 



lot 

Let, for example, (J -:- C c, we shall have.vii == c; th~n 
" ,1 b '1 bb 1 ,b' 5 b·' , 

.v(cc+ II) =c + ~ X c-s7.+ 16 X Ci-l28 X C7' &c. , 

We' see, therefore, that thete is no nUll)ber, whOse square root w~ 
m~y not ext,ract in th13, same way; since every number may be re­
~lved into two parts, one of which}s a square represented by c c. If 
we require, for example, the, square root of 6, we tnake6 :....... 4 + 2, 
consequently c c = 4, C = 2, b = 2, whence results 

·".v6 = 2 + i--h + n - TCfn', &c. ' 
H we take only the leading terms of this series, 'we shall have 

2j. = i, the square oC which, '-j, is t greater than, 6; but if we 
consider three ~erms, we have 2-h = it, the sqqare ,of which, 
VII, is still H~ too small. ' ' , . 
, 325. Since, ill this example, t approaches very naarly to the true 

value of .v6, we shall take for 6 the' equivalent quantitY '1/ - f. 
Thus cc = y; c = !; b = - t ; and calculating only t~e two 
.leading terms, we find 

.v6 == J + * X =1 = t ~ * X t = t - * = H: , f' f, 
the square of this Cracti,oD being \'J.,J, e~eeds the square ,of .v6 
only by.h. , ' , 

'Now, making 6 = \'YJ- -.h, sothatc= Hand b-:-m; 
aDd still taking Qnly t.he two leading terms, we have 

.y'6=n +* X 'Ji"a=H-* X ~t=t3~~==~&, 
the square of which is 2NHseN. Now 6, when reduced to the 
same denominator, is = WNIJJ'; the error therefore is only 

nihn-' 
326. In the same manner, we may express the cube root of 

(J + b by an infinite'series. For 'since J(~ +b) = (a +b)i we 
shall have in the genera1.formula n = i, and for the coefficients, 

n 1 71-1' 1 71-2 ,5 n~a 2' 
'i =3; -2- = - 3;, -a-,-= - 9; -4- == - 3; 

71-4 11 
-5- '= - 15' &c,' 

and with regard to the powers of ~, we shall have 
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, I 8 8 ' 

, a, ·.vii .vG .vii 
art = .vii; a .... 1 = -; a--I = -; a-' = -a; &c.; , ' a , a a a, 

tben 
a 8 8 

8__ 8 _ 1 .vii l' .vii 5 • .vii' 
.v(G+6) =,.vG+3 X b7 - g X bbQij+81 X b 7-

1 '.' , 8 _ 

10 b,.vG R_:" 

243 X 7'!olIN' 
S 

327. If a therefore be a cu~, or a = c', we have .vii = c, and 
the radical signs will vanish; for we sha,ll have ' 
B___ 1 b ,I bb ,5 b3 10 b' , 

.v(c3 + b)= c + 3 X cc -9 X eli +81, X 'CS-24t1 X (;ii' &c. 

328. We have, therefore, arrived at a formula, which will enable 
us to find by approximation, as it is called, the cube lJ)Oi ,of IDf 
nWQber; since every ,iium~~ may' be, resolved, into two parts; as 
c' + b" the firSt of which is a cube. " ; 

If we wis.h; for example, to determine' the cube roOt of 2, .we 
represent 2 by I + 1, so that c == 1, and b = 1, consequently 

S • ." .. 

.v2 = 'I + i - t + v\, &0., the two 'leading terms oC this series 
make H == t the , cu. oC which, Jt;is too great by n. Let us 
then make 2 = It - H, we have c = • and b == - H, and 

consequently ~ -' • + i X =!J.' , The~ two tenos, give , 

! - ..ftr = fi, the cube of which is HitH· . . 
Now, 2 = Hmt, so that the error is vftih. 10 this way we 

might still approximate, and the faster in proPQrtion as we take a 
greater number of terms. 

CHAPTER XIlI. 

Qf .the Buf!~on of NegatifJe PO'IDer.. • 

, ' 1 
829. 'YVE have alr~ady ShOWD~ that we may ~pre~ (i' by a.,-I; 
, , 1 • , 

we may th~refore also expr~ a + b' by (a + b)~1 ;, sO that the 

Eul. A~. 14 
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power who"ij, exp,ment is 1 ond ftom this follows, tbaiih~ 
series. already found as the value of (a + b)" extends also to tbis 
case. 

330. Sinn::, th"·r .. f:.~"·,, a+b sa,::" as (a 

snpposc, in "he 
for the coefficitmts 

fommla, === - Wn chall line 

ft n-l n- n-3 i =-1;-2-=-1;-3- =..-1;· =-1, &e. 

Then, for the powers of a; 
1 1, 

o"==;a-I =-' 0"-1=,,"-'=-' a-I Ie: -' a"-8 = - &te. a ' . n' , 0 1 , . . 0" . 

80 that, , 
. . ~". 

(a+ 6)-1= +6= --I + .-. + ""'i -'.' &te. a a 40 S a a 
aDd this is the same Be1.'1es that we found bcfore by Pivision. 

h31. Further, (0 ~ 6)' beh'g thc camc witP (a UG 

this {IUanPty tz:, anml1Dlbn serict. we 
,G,lst {CIIPOSe n =.,:- 2, and we,shall first have fortbe~fficieDts 

n 2 n-l 3 n-2 4 n-3 5 . 
f'=--; =-' =- ,1 =:-4' &te. 

Then~ for the powers of a ; 
.... 1 . 1 0_' 

a ' = 6' O!.e. o 
We therefore obtain 

1 1 2 b2 ab 
(a + b) = (a + b)' = as - I X aa + 1 X 2 X (ii ~ 1 

3 4 ~ 2 2 4' 5 
XX X ~ + 1- X 3 x, 3 X X - &te. 

Now, 
i = , ! 3 ; X X ~ ;, f t t 5, ltc, 
CODscpnently we have 

1 ~ h ~ ~. ~ ~ 
(a : b)i f0-2(ji~3f0-4;t+5(ji7-6 +7{j@i 

&e. 

• 
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S3J. Let us P1'9Ceed and suppose" ;:::: - 3.and we shall ha.ve a 

8eriesexpress~g the vlllueof (a:;' h)3f or of (a + b)-a. Theco­

efficient! will be 
" ,,3 n-l 4; ,,-2 5 ,,-3 6 
1=-1; ~=-2; 3 =-3; --r-==-i'&o. 
~nd the powers of a become, , '. 

. 1 . - 1 1 
./II ' .. I ,,-I & . ... = 'I; a - = ~; a = i, c. a a a 

which gives 
1 1 3 b 3, 4 b' 3 4 56' 3 

(a + b)' =iji-l a' + I X 2 (ji --:-1 X'2 X 3 (ie, + I 
. 45, 6b' 
X 2 X 3 X ilf' &0. 

I' b bib", b' bfl Il = '1-3.+6'1-10 .. + 15,-21:8 + 28. a a 0 a a' .... - a 
'b' b8 

- 3610 + 45 Ii, &c. a a 
Let us now make" = - 4; we shall have for the coefficients 

ft 4 n-l 5 n- 2 6 ,,- 3 '7 
1=-1; -r =-2 i ,-a=-.a; -4-=-i'&c.,· 
_d for the powers, 

1 1 1 1 1 0"=.; 0,,-1=_. a,,-I __ . a,,-I= -' 0"-'=., &c., 
IJ tI' ' - a' , a'f , 0 

whence we obtaint 

1 1 4 b 4' 5 11 4 5 - 6' 'b' 
(a + b)' = ;l- I X ;t + '1 X 2 X (it - I X 2 X 3 X (j 

4 5 6 '7 ~ -
+I X 2 X ax i x jii,&e. 

1 b bl iI" b' Ii 
==:A- 46 -10. - 20"1 + 35. -56 :8"4tc. 

II a 0 " a ... 
333. The dift'ereotcues that have been considered enable us to 

eonclude with- certainty, that we shall have, generally, for any nega­
tive power of" + b; 
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1 I ' m ' b m m+l b' m 
(a + '0)'" = am-I X am + 1 +1 X - 2- X am+ 1 -1 X 

m+l m+2 b3 

-2- X -3- X am+ 3' &c. 

And by.means of this formula we may transform all sllch frac-' 
, tions into infinite series, ' substituting fractions also, or' fractional ex­

ponents, for m, in ordet to express irrational quantities. 
334. The following considerations will illustrate this subject fur-

ili~ , 

We have seen that, 
1 1 0 0' b3 0' b5 

a + 0 = a - as + as - ;t + (f ~ tt' &c. 
'If, therefore, we multiply this series by a + b, the product ought 

to be = 1; and this is found to be true, as we shall see by per­
forming the multip'lication : 

1 b' 02 b3 04 b& 
--2 + --- + ..... _ - +, &c. a a a,l a4 a5 as 

a+o 

1. ", 
335. We have also found, that 

1 1 2 0 3 b b 4 03 5 b4 6 05
, & 

(a + b)' = aa-Q! + 7-7 + 7 -7' c. 

If .. therefore, we multiply this series by (a + b)', tpe product ought 
also to be = 1. Now (a + b)I "= a a + 2 a b + b b. See the 
operation I 

," 



Chap.13. 

1 
a'a 
aa 

Of Compound Qtumtitiu. 

5 
+ a@ 

2 b 3 b b 4 b3 5 b4 6 b6 

1 - - + a a - <73 + (i4 - g£6 +, &c. 
4b b 8b4 

aa 
-, 

b b 2 b3 3 b4 4 bi 

+ -..;....-+---+&c a a a' a4 a' , • 

109 

1 product, the natt,r±c1 thing r<701<7i<7<7d. 

336. If we multiply the series which we found for the value of 

(a ~ b )U by'a + b only, the product ought to answer to the frac~on 
1 

i¥+ b' alreadp namel" 
£ 

1 b b b b' bl -- - + --- + - ·&c a . a' aa (14 aU '. 

and this the actual multipliuatis:m will coDfirmc 
2b 4b i 

&c. 

. :1 . 2b 3 bb 4b' 6 b' , &c~ . . ~-- -7 a'a· 
b . 3b3 

~I' &c. +-- ~. +7 aa a 

1 b· bb b1 b4 

&c. ~+ aa 

• 
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SECTION III. 

OF RATlOS AND PROPORTIONS. 

CHAPTER I. 

OJ Arithmetical Ratio, or of the Difference between Two Numbers. 

ARTICLE 337. Two quantities are either equal to one another, or 
they are not. In the latter case, where one is greater than the other, 
we may consider their. inequality in two different points of view: we 
may ask, how much one of the quantities is greater than the other? 
Or we may ask, how many times the one is greater than the other? 
The results, which constitute the answers to these two questions, 
are both called relations or ratios. We usually call the former 
arithmetical ratio, and the latter geometrical ratio, without how­
ever these denominations having any connexion with the thing 
itself: they have been adopted arbitrarily. 

338. It is evident that the quantities of w)lich we speak must be 
of one and the same kind; otherwise we' could not determine any 
thing with reg~d to their equality or inequality. It would be 
absurd, for example, to ask if two pounds and three ells are equal 
quantities. So that, in what follows, quantities of the same kind 
only are to be considered; and as they may always be expressed 
by numbers, it is of numbers only, as was mentioned at the begin­
ning, that we shall treat. 

339. When of two given numbers, therefore, it is required to find 
how much one is greater than the other, the answer to this question 
determines the arithmetical ratio of the two numbers. Now, since 
this answer consists in giving the difference of the two numbers, it 
follows that an arithmetical ratio is nothing but the difference be-

, . 
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tween two gumber's : and as tbis appears to be a better expression, 
we shall reserve the words ratio and relation; to express geometri­
cal ratios •. 
, 340. The differenee·between' two numbers is found, we know, 
by subtracting tbe less from the greater; nothing therefore can be 
easier than resolving the question, ~ow much one is greater than the 
other. So that wben the numbers are equal, the difference 'being 
nothing, if ii be inquired how much one of. the numbers is greater 
than the other, we answer, By nothing. For example, 6 being 
, = 2 X 3, the difference between 6 and 2 X 3 is O. 

341. But when the two numbers are not equal, as 5 arid 3, and 
it is inquired how much 5 is greater than 3, the answer is 2; and it . 
is obtained by: subtracting'3 from 5. Likewise 15 is greater than 5 
by 10; and 20 exceeds 8 by 12. 

342. We have three things, therefore, to consider on this sub­
ject; 1st, tbe greater of the two numbers; 2d, the less; and 3d, 
the difference. And these three quantities are connected together 
in such a manner, that two of the three being given, we mayal­
ways determine the third. . 

Let the greater nuniber = aj tbe less ~ b,and the difference 
= d j the difference d will be found by subt.racting b from a, so 
that d = a - h; whence we see how to find d, when a and h ve 
given. 

343. But if the difference and the less of the two numbers or h, 
are given, we can determine the greater number by adding together 
the difference and the 1ess number, which gives a = b + d. For, 
if we take from b + d the less number b, there remains d, which 
is the known differ,ence. Let the less llumbe.r = 12, and the dif­
ference = 8; then the greater number will be = 20. 
'. 344. Lastly, if beside the difference el, the greater numbel; a is 

given, the other number b is found by subfracting. the difference 
from the greater number, which gives b = a-d. For if I take 
the number a - d from the greater· number a, there remains d, 
which is the given difference. 

345. The connexio~, therefore, among the ~umbers a, b, el, is or 
sueh a nature as to give the three following results: I'" d = a - b; 
2 1• a = b + el; 3d. b = a - d; and if one of these three com­
parisonsbe just, the others must necessarily be so, also. Wherefore, 
generally, if % == W + y, it necessarily (ollows, that y == % - w, 
andx=%-y. 
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. 346. With regard' to these arithmetical ratios we IQust remark; 
that if tile add to ,the two number. a and h, a n~e~ c ~d at 
pleoaure, or .ubtracted from them, ihe' dijJerence remain. the .ame. 
That is to say, if d is the difference bet,ween ~ II,nd II, tbat number d 
will also be the difference between a + c and'b + c, and 'betwe~ 
a - c and b -'~ For example, the differeD~e between the num­
bers 20 and 12 being 8, that difl'ere6ce will remain the same, what­
eyer 'number we add to the numbers 20 and 12, and whatever num-
OOrs we,subtract from them. , \ . , 

347. The proof is evident; for if a - b' = d we have also 
(a + c) - (b + c) = d;' and also (a - c j - (6 - c) = d. 

34'8. If we ,dott.ble the two number. a and b, the dijJerence will 
'aU9 become dotthle. Thus, when a -- b = d, we shall have, 
2 d - 2 b = 2 d; and, generally, n a -..:. n b :::I n d, tIIl&ate"tr 
"alue' IDe gW~ ~o n., . 

CHAPTER II. 

Of ,Arithmetical Proportio~: 

349. W BEN two arithmetical ratios, or ;relations, are equal, this 
equality 'is called an .arithmetical proportion. 

Thus, when a - b = d and p -:- q = d, so that the difference 
is the same between the numbers p 'and q, as betwee,n the numbers 
.a ~d b, we say that these four numbers' form an ari~metical pro­

, portion; whjch we write' thus, a - b = P - q, expresSing clearly 
by this, that the difference between a an,d b is equal to the difFer .. 
;ence between, p and q. ( 

350. An arithmetical proportion consists therefore o~ four terms, 
which must be such, tliat if we subtract' the second &omth~ first, 
the remainder is the same as wben we subtract the fourth from the 
third. Thus, the four numbers 12,7, 9,4, form an ari~h~etical 
proport10n, because 12 -7 = 9 - 4.· 

, • To show: 'hat these terms make suoh a proportion, IIOID8 write 
themthua; 12 .. 7::9 •• 4. 
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8S1. W/&ea file AM_ a,. flritAtJtetietil proportiofr, GI a;...; b :ilia P-ih 
we raaJ fIIcke tlae ,8COftd ,qf#.d tkird, cAange pltIfU, .nt'v' ',,; 
, a-'p=b-q; 

and tlai, equality will be ~o less true; for, since a ..:.... &:::i: p .;;.. 9, 
add 11 to both sides, and we have a ~ b + p - 'g ;'theosubtrapt 
p fro~'both"sides, and we have a-p = b ~ g. 

In tbe saine maimer, as 12 ~ 7 = 9- 4, JO also , 
, . , . . . '. 

12-,9=7 -4. 
352.. 'We may, in euery arithmetical proportion, rut the ,et;onl 

term also in the place of the fir.Bt, if we make the same trampilsition 
of the third andfourtA. That is to say" if a - b = p --:- g, we 
have also b -:-a = g- p. For b-a is the negative0f a-b~and 
!l -pis' also the negative of p - q: Thlls, since 12 -, = 9 .....-4, 
we have also 7 -' 12 =4 - 9. ' 

353; Bu.t thegr,eat property of every arithmetic"l prOportitm,' 
thi&; that the sum of the ,econd and third term is always e9ua1 to 
tAl ',um of tke' first, arid fourth. '~his pJ:operty, which 'we, 'must 

" particularly consider, i~ expressed also 'by saying, tliat the sum of 
the mealls is equal to the sum of th~ extremu. Thus, since ' 

12 -,,(- 9 - 4, 

we have '1 + 9 = 12 + 4:; and ihe sum We Gild is 16 in ,both. 
354. In order to demonst(rat~ this principal property,fet " 

'a~b'=p-g; " 

if we add to both b + g,'we haye a + q = b + Pi tha~is, the 
sQm of the first and fourth, terms)s equal to tbe sum otthe second 
and third. And con"ersely, if four numbers, a l b, ,p, q, are ~uclJ 
that tie sum of the second andthirdis,equal to the s~'" o/thefir.t 
.ndfourth, that iSjif b + Pi::::::::: IJ + g, wecpnclude,,,pthou"a'p'ot 
sibility of mistake, 'that thes,e numbers are in ar:ithmetical proportion, 
and that a - '6'= p - q. For, since a + g 'h + p, if-w • 

. subtra~t from both si'des b + q, we obtain a, - b = p""':' f. 
Thus, t~e numbers 18; 13, 15, 10, being ~uch, that the IJllm"of 

the mea!lS (13 +15=28), is equal to,sum,Q(t~ stoomea 
(18 + 10 = 28)" it is cer~in, that they also forlD,~n aritbmek4llf.~ 
proportion; and, consequently, that ~8 - 13 = 15,......; 10. , 

355. It is easy, by means of this, property, to resolve tbe follow­
ing qu'estio\l. ' The three first terms of an arithmetical pl'Qporlion 

Eul. ~lg. '15 ., 

• . , 
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. 'heiD, given, to Goa Jhe fourth? Le1 tJ; h, p,.be the three first 
terms, IU!d let us express 'the founh by 9.; which it is required to 
determine, then a + 9. = b + p; by I\ubtracting a from both 
sides, we obtain q = h 4- p - a. .' . 

. Th~s, the.fo~rtk term i, found ~y adding together the leco.~d an4 
third, an.d ,.btrm:ting thefir,t from. that ,"m. Suppose, for exam­
ple, tbat 19, 28, 13, Rre tbe three 6rst terms given, the sum:,of the, 
second and third is = 4] ; take from it the first, which is 19, there 
.remains 22 for the fourth term sougbt, and tbe aritbmetical propor .. 
'lion will be l'epre'Sented by 19 -:- 28 = 13 - 22, Ql' by . , 

28 - 19 = 22 ~ 13, 
,or lastly, by 28 - 22 = 19- 13 .. 
.. 356. w,he" in. an arithmetical proportion, the lecond term it elJ1lal 
to the third, we have only three number, ; tbe property of which is 
,bis,. tbat ,the first, ~in~s the second, is equal to the second, ~inus 
'the 't~ird; or, that the'difference between, the first ,aDd the second 
~umber is equal ~o the di1fere~ce between the seC()nd and the third. 
The three numbers, 19, 15, 11, are ot this kind"since .' • 
, '. " 19 - 15 = 15 - 11. ' 

857. Three lUCk number, are. ,aid to form II continued arith­
met~al proportion, whic~ is sometillles written thus, 19: 15: 11. 
Such prpportion, are auo called arithn;letical progressiona, partic­
ularly if a greater number of term' lollow each other according '0 the ,a"'e law. . '. . . .' 

An ari.hmetical progression may be either inertanng, or aecrea,­
inK. The former distinction is applied wheu the terms go on in­
tre~ing, that is to say, wh~n the secoqd exceeds the first, and tbe 
third exceeds the seoond by the same quantity; as in the Dumbers 

• 4; 7, 10. The decreasing progression is that, in which tbe terms 
go on always dimini~hing by'the same quantity, such as the Dum­
bers 9, 5, t.' : 

. 358. 'Let us sUppose the 'numbers a, b, c, to be in arithmetical 
'~rogression; then a -.II = b ~ c, whence it foliows, from tlJ8 
6quality between ~he'surn ofthe extremes and that of the means, 
that ~ h = a + c j and if we subtract a from l>oth,. we have 

c~2 b-a. 
359. So that when the two jir:t term., a, b, 0/ an 'arithmetical 

progreuicna are given, 'he, third u foar&d by' taking the fir.t froa 
. , 

• 
• 
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ttDice'tl,e. ,econd, Let I·and 3 be the ~wo 6rsttenntt of an anth-· 
metical progression, tire third will be . 2'X 3 -,1 = .~' And 
these three numbers, 1, 3, '5, give tbe proportion l' - 3 = 3 - 5', 

360, By following the same method, we may pursue the arith­
metical progression as far as :we please; we had omy to fiwl Qae 
f,)urth by mea1ll of the second and third, in the same manner as we 
determined the third by means'of the first and second, and JO pD, 
Let abe the first term, and b the second, the third will be = 2 b ~ cr, 
the fourth == 4 b ....:.. 2 a ..:.... b.= 3 b - 2 a, the fifth . 

= 6 b - 4 a ...... 2 11 + a = 4 b - 3 a, 

&he sixth =8 b - 6a - 3 b.+ 2." = 5 b - 4 ",'the seventh 
= 10 b - 8 a - 4 '6' + 3 CI == 6 b....,.. 5 a., '&lIe.. 

CHAPTER UI; 

Of Arithmetical Progreuion, •. 
, 'I": 

.,.1. WI: have remarked already, that a series ofnumbel'icom;. 
Posed of any number of terms~ which always increue, or'deereaie 
by the same quantity, is called an' arithmetical pTogresrion~;· .' .: 
. Thus, the. natural nunibers written in their order, (as 1, 2, 3,4, 

5, 6, 7, 8, 9, 10, &c.) form an arit hmetical progreuion, because 
tltey constantly increase by unity; ·and tbe series 25, 22J 19, 16." 
13,10,7,4, 1, &0, i$ also·~b' propession, .inee the DUmben 
constantly decrease by 3. . '. . .: 

362. The number, or quantity, by whion the terms olao· uicb.! 
metieIU 'progression become greater or less, is called tbe tlifferffl~ 

. So that when the first·.erm and the 4ii1Ference are give, we .... , 
eontinue the arithmetical progression to any length. . 

For examplej let: the first term = 2, a~d the di1f'etence.·= 3; ana 
w, shall have tbe fotIowiog increasing progression; ~, 5~ 8,.11.14, 
17, go,. 2;1, 26,.29, ~, in which each term iJ~Dd,.by Iddiag.dat 
dift'erence to the precediDg term. . ~ .: ..! 

361. l. ii uSllal to write .~ Datual numlMn, 1, i" 3, 4, .Ii, ,I.tc. 
". the __ or 1UIh .... ~~ ~.io ~ .. . '. - . 
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""ma1 inun_tel1 ~ive the rank which,any term holds in ,the 
pmpssion. These.numbers, written above t~e terms,~ay be called 
irtdice,; and the 'above uample iswfitt~D as foll()w8 :, 

Indicu; 1 '2 3 4 5 .. 6 7 8' 9 ,10, 
.I1"'A. Pf'og. 2~. 5, 8, 11, 14, Ii; 20, fla, 26,,29, &c. 

wbere we see that 29 is the tenth'term. 
364. Let a be the first term, and d tbe difFerence, the arithmeii­

eal progre..'lSion will go 00 in the following ord~r: , 
12 3 4 ,5' 6 7 
a, a + d, a + 2 ti" tJ + 3 d) a + 4 d, a + 5 d, a + 6 d, &c. 

wbeo~e it appears, tbat any term of tlie progression migbt be easily 
found, without the necessity ,of finding all the preceding ones, by 
DJeans only of the first term 0, and the difference d.For example, 
the tenth term will be = a + 9 d; the hundredth term = a + 99 d, 
aDd generally, the term n will be = a + (n - 1) d. 

, 365. When we stop at ~ny point of tbe progression, it is of im­
pOrtance tQ attend to the first aQd the last terlll, since the index of 
the last will represeot'the number of terms. 1f, therefore, the fird 
teTIII::;= a, the difference = d, and the number ofteTm8 = n,'we 
.hallAafJe the lad term = a + (n - 1) d, which u'comequently 
found by multiplying the difference by the number of teTm8, min". 
Ole., __ adding the fir" tsrIR 'to that product.. SUPP95e, j)r e~am­
p; ia III l1'itbmetical' progression of a hundre(i tel'PlS, tbu fil'st tfU'Qa 

is = 4,aDCi the 'di1feJ'e~e = 3;theo the last Uirm willbe .• 
== 99 )( 3 +- 4 ==:,301.. 

, .. Wt.n we bow 'the first term .a.aad the last%, wlth'the 
V'aillbtr f4' terms'., we ean find the di1fereoce,d. For, since the 
.... lena • == '" + (G - 1)., if ,",subtract a from boib sides, W8 
obtain !r - tI = (n ~ 1) d. 'So that by subtracting the first Wl'ID 
&om tbe'Jut, We bRT~ the product of the difference multipHed. by 
UM1lUlI)ber of terms._ 1. ,We have, therefore, billy. ~o di,,,, 

, .• - • b, .. - 1 to obtaiD the required mu. of the diftereooe l 
. ,a-a ' , '. ' 

W~~.be·~ "-1',' Th~ resul~ furnisbesthe follo\ViJlgmle: 

IdkrtJa t18 fir" lenA ft. lite ltut" dieid~ tAB r;.rntrituler by lIN 
...... 0/ ,.,., tRiM I, mad tA., qUotietlt tAll ie ~Ae, mY'",," I 
by meaDS or which we may writ~ the whole pogressioo. 
, 1St. '.Pl*M', bo exampte, that 'We have aD arithmetical pro­
,....· ..... tel'dJlt wboee'~' is liD .,&ad laat.~ _,I.hti. 
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it ' is required fo 'find ,the, ddFerenee. 'We m,tst. "b~t the Arst 
term, 2, from thlllast, 26, and divide, the remainder, whi~h is 24, 
by 9 - 1, that is, by 8; 'the quo~ient 3 will be equal to'thedi1fer-
ence required, and the whole progression will .be . " , 

1 23' 4 5 6 , S 9 
2, ,5, B,' 11, 14, 17, !to, ~, 26. 

, , ' 

To give another eumple, let us suppose, that the first term = 1, 
the last ::l::: 2, the nU,mber of terms = 10, and that the arithmetical , 

• progression, answering to these suppositions, is required; we sbtUI 
, ',2-1 I, 

immediately -bave for the- difference 10 -1 = 9' u.d then~e con- ' 
- . " 

elude that tbe progression 'is' 
1 -:, '2 3 4 5 6 7' e 9 10 
1; ll,' H, H, 1., It, It, :If.. If 2: 
.A.notAer ExtstIJple. Let the first term == 2!, the b,st·~ 121: 

and the number of terms = '; the difference will be 
, '12h-~! iot _'61 1,26 . 

, '...,...1 ~ 6 - 36 :;: , 36' 
~d consequen,t1y' the progression 

1 2: 3 4 5 6, 1 
2" 4ab, 5{i" 'It, 9i, IOU, " l~' 

• 368. If now the ~t. term, 0, ,the last term z, and the di&reac8.cI. 
ue given, we milY' from them find the number of terma n., For 
aiQ~e z - a = (n - 1) d, by dividing the two sides by tl"wfI ,have· . ' 2-a ' "If" == n':"'" 1.' No~, 11 being greater ~Y 1 t~~ n"':" 1, we~ave • 

- 'z-a 
'ft ~ --r +-1 j, coosequently, the.WIIber of I.,.... u,f..,.iJ·hf 
.m,i~ing the rlifference &etween the first and the lad ierm, or z .:.... a, 
by iAe diff.renee of the pTogr:einon, titul adding uri#y to' tAe guQ~ient, 
z-is '...,.. .. ' 
-d-' . .. '. . 

For e~ple~ let the first term = 4, the' ~st = 100, and the 
" , , , ' . , . 108-4" 'i' 

dDFerence = '12', the Dumber or~erms will be ~~ + 1=9; 

and these Dine terms will be 
1 234 5, 6 7 8 9 
" 16, sae, 40, 6SJ, 64, '6. es, 100, 
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,If the 6,.t term = 2, the 'las~ == ~ and diWerenC8, -= Ii, the 
" ' ' 4' .' 

number of ~erms will be Ii + 1 ~ 4; and these four'terms will,bt:~ 

,'. 1 2' 3 4', 
2 3i, 41, 6. 

Again, let the first term = 31, the last, = 11, and t~di1Ference . 
. " 72 -3! 

==, It,,the ,~umber of terms ~ill be = ;- + 1 = 4; w~ich 
are, 

'3}, '4t, ~" 71. " ' 

369. It must be observed, however, that as the number of terms 
is necessarily an integer, if we hod' not obtained such a n~mber for 
ft, iIi' the examples of the preceding article, the questions would 
have.been absurd. 
. WheD9ver we do not obtain an integral Dumber for the "!llue of 

* d a, it will be impossible to resolve the question;' and couse­

q.uently, in order that questions of ~ kind lOay be ~ble, * -- aj 

must be divisible by d. 
370. From' what has been said, it may be concluded, that we 

have always four quantities, or things, to ~.ider in ,arithmetical 
progression ; 

; I. The 6rst tenn a. , 
II. The last term *. 

" III., The. dift'~nce d. 
IV. The number of terms ft. ' 

',' ,. 

And the relation of these quantities to 'each ,other are such, that if 
we know three of them, we are able to ~ete~m.ine the fourth ; for, 

i. If a, d, lind n are lmOtDn,. IDe hate z :.;:: a +'{n"':"l) d. • 
. n.1f z, d, and Dare 1mbum, IDe ha"e a = z - (n ":"'1). d •. 

. . . . z-a 
"m. If;~, I, and, D ~r~ ~oum, ID~ ha"e d = n -1' 

I-a . 
. IV.,1/. a, I, mad d ar.1moum, till h"". D = ~ + I. , 

\ 

Digitized by Goog Ie 

1 



\ 

01 &not·antI Propomon. 1'19 

CHAPTER IV. 

Of the Summation of Arithmetical ProgreBlion •• 

. 371: IT is often necessary also to find the sum of an arithmetical 
progressidn. This might ,be done by adding all the telms together; 
but as the addition would be very tedious, w hen the progression ~on­
sist!3d of a great number of terms, a rule has been devised, by 
'whicll the sum may b~ more readily obtained. '. ' , 
• 372. We shall first consider a particular given progression~ such 
that the first terril = 2, the difference = 3, the last tenn = 29, 
and the number of terms = 10; . 

1 2 3 4 5 6, 7 8 9 10 
2; 5, 8, 11" 14, 17, 20, 23, 26, 29. 

We see, in this progression, that the sum of the first and the last 
term = 31; the sum of the seeond and the last but one = 31 ; 
tbe sum Qf the tbird and the last but two = 31~ ,and so on; and ' 
thence we conclude that the sum of any two terms equally distant, 
the one fro~ the first, and the other from the last term,"is always 
equal to the sum of the 6rst and tbe last term. 

373. The reasons of this may be easily traced. For, if wesup-" 
pose tbe first = a, the last = %, and the difference = d, the s~m 
of tbe,first and the'last term is = a, + %; and the se09nd term 
being ~ a + d, and' the last but one = %'...;... d, the Sum of these 
two terms is also = (I + ;. Further, the third term being a + 2 d, 
and the last but two == % - 2 d, it is evident that these two terms 
also, wbeb· added together make a + %. The defuonstr~tion may 
be easily extended to a11 the rest. . 

374. To determine, therefore, tll~. stim of the progression pro­
posed, let Ulil write the same progression term by term, inverted, 
aDd add the corresponding terms together, as follows: 

2 + 5 + 8' + 11 + 14 + 17 + 20, +. 23 + 26 + 29 
29+26+23+20+17+14+11+'8+ 5+ 2' 

31 + 31 + 31 + 31 + 31 + 3t + 31 +.31 + 31 +' 31'.· 

This series of equal terms is evidently equal to twice the sUm of 
the given progreuicm; now the numbetof these equal terms is 10, 
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as in the progression, and their sum, consequently, 

= 10 X 31 =310. 

. Sect. 3. 

So that, since this sum is twice the sum of the arithmetical pro­
gression, the sum required must be = 155. 

375. If we proceed in the same manner, with respect to any 
arithmetical progression, the first term of which is = a, the last 
= z, and the number of terms = n; writing under the given pro­
gression the same progression inverted, and adding term to term, 
we shall have a series of n terms, each of which \\ ill be = a + z; 
the sum of this series will consequently be = n (a + z), and it will 
be twice. the sum of the proposed arithmetical progression; which 

n (a + z) 
therefore will be = --2 -. 

376. This result furnishes an easy method of fi"llding the sum of 
'any arithmetical progression; and may be reduced to the following 
rule: 

Multiply the sum of the first and the last term by the number of 
terms, and half the product will be the sum of the whole progression. 

Or, which amounts to the same, multiply the sum of the first and 
the last term by half the number of terms. 

Or, multiply half the sum of the first and the last term by the 
whole number of terms. Each of these enunciations of the rule 
will give the sum of the progression. 

377. It may be proper to illustrate this rule by some examples. 
First, let it be required to. find the sum of tlie progression, of tbe 

natural numbers, 1, 2, 3, &Lc, to 100. This will be, by the first rule, 

100xlOl • 
= --2- = 50 X [01 = 5050. 

If it were required to tell how many strokes a clock strikes in 
twelve hours; we must add together the numoers 1, 2, 3, &c. as 
far as 12; now this sum is found immediately 

_12 X~_ 6 X - 2 - 13 =78. 

If we wished to know the sum of the same progression continued 
to 1000, we should find it to be 500500; and the sum of this pro­
gression continued to 10000, would be 50005000. 

378. Another Q'uestion. A person buys a horse, on condition 
that for the first nail he shall pay 5 halfpence, for the second 8, ~ 
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De _it'd 11, .ad '80 OIq always inoreasieg'3 balfpeDee 'more ... 
each,~.ODti ; the' borse·ha'fing 32 aaits, is is ~ Itt arB 
how.'&Dooh he 'fIiIl croat the pulthaser. . . 

IQ tb'is qUestiOD" it is IVquired to tind the .um of an 'an_tical 
protteaieb, the w.',tenn of whicb is 6, the dilereaee = 3, aI!id 
~ 'Rum~ of terms :::z ~ We lIl",t tbereilJe begin by deter- , 
.. rung the,last ~rm ; we find it (by the rule in articles 366 and 3'70) 
=- 5 + 31 X 3,,= 98. Aier w~ the Bum required is easily 
,~ . 103 X 82 '. 
wuod = ~-' == 103 'X 16; whence we 'eo~elude that the 

bQrse cost 1648 baWpeace, or 31.81. ad. 
879. Generally, let the first term be = a, tbe dii'erence = tl, 

aDd .tbe a_ber of terms == nJ end let it.be required So find,. by 
IIlM'n$ of these Qatai the sum ()( the whOle progreaioo. .ts the last 
.... must be.:. Q + (n - 1) d; tbe'lUID oftbe Drst aDd last will 
be ::0=1 2 4 + (,.., - 1) d. Multiplying tbit sum by the number of 
.... n, ., have. 2 n' 'II + n (n - 1) d; the sum re'luired tllere-

• ~ -!11 1.._ . .+ II Cn - 1) d 
IURt 'Will ~ =-: ~ CI '2 ,-

This formula, if applied, to the precedioa ~ple, or to 4 :;III: 5, 
Ii = 3, and ft ~ 32, gives , 

. , 32 X 31 X 3" . 
5 X 31 + --.. ~- == 160+ 1488 == 1648; 

the same sum tbat we obtained heme. 
'380. If it be required. to add together all the natural .numbers 

from 1 to A, we baYe, for findiag this tum, the first tean -= 1, the 
last term ,,;,;. n, and the nw;ober of terms = _ ; wherefore the sum 

."~' tltt+'",' _(n+l) , 
requlI'8d JS = -- ::=-'----. 2 . 2 

If' we ~ake ,,=- 1766, the sum of all the Dumbent, i.om 1 to 
1766, wili be = s8a X 1767= 1560261. 

38~. Lei ,.,,_ protrusion' of 'utae"", ,""",,,,, be pra.fOIeli, 1,3, 
6, 7, &te. continued to " terms, and let the 110m of it be required: 

Here the first t~rm is = 1, the ·9rlfeN'Joce = 2, the number of 
terms = "; the last term will therefore be 

.= 1 + (n':""l) 2=2"-1, 
and coll!lequentll the' sum required = " flo , 

The whOle thereae CODsi.sts in multipJying lbe .... )er o( teaM 

by itself. So that tMM61Ier:fttItIIber 01 ''''01 tMt.". ....... we 
U . ..4%~:. XG I 
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.111 ..... ~ ..... , .s.a. 

.tII/;llopiM, ..... • ·lte 41..,. 'ff ,,..,.,, ..... ,,,.tie' ... 
vt!M·",..,.. .• ,· .... TJUawe aWl neplify.8IfOIeIn: I. 
lntlicu, 1 2 3 4 6' <6.. 1 8·' 10, &e. 
Progr_. 1, :a, 6, '7, 9, II; 13, II, 1'7, . 19, &e. 
&m,. 1, 4, " 18, ~, 86, 49, 6i; 81, lOO,·ko. 
. 392. 'Let the 'first term be == 1, the' di1Ferenee = a, aild the 

Dumber' or terms = n j' we shall have the progression 1,4, '7, 10, 
&c. the .ast'temu{ which will be' 1 + (n''':'' 1) 3 = a " ~:2; 
wherefOre the sum of the firs~ aad the la4 term == a " - 1, Q.D4 
Consequently, -the sum of this progression . ' 

n (3,. - 1) a,.n -ft-
... 2 == 2 • 

II we IlUppoe&3 =:t to; tbe sum 'trill be -10 X·89 =- SUO.' " 
383. Again, let the first term == 1, lhedift"ereace == d.,aod" 

Dumber of tel'$S == ft'; then the last term will be -= 1 + (ft- 1)'1-
Adding the first, we hne 2 + (" - 1) ·tl,. and nrultiplying by tbe 
number of terms, we have 2 n +' n (n - 1) d; whence we d .. 

: ." n (n - 1) d 
Juce the 8um of the progresslOD == n + I 2 •. 

. ' We subjoiD tbe ConOwing small table: 

If ~ 1 £L-, • + n (~ J) ft ft + " . 
g= ,~sumlS~~ , .. ~2 =-.2 , 

. 2,.(.-I-l} '" , 

d= 4, 

d--5, 

d == 1, 

d-8, 

. "'~==9' .. g , 
, I _ • "',"', " 

d== 10, 

=" + --g-- "" . . 
, a,.(,,-I) ann-. 
,-.+-~.- -I . 
, 4,.(n-l)' . 
==.+~- -in .• ~n 

. . '5,. (n-l) 5 n,,":" a,. 
=n+ ---~' . ' '2 • " - . 

, 6n(.-I) . . = n + ............:.--- ==a".- Sh • 
. 2. . • 

_.= n + 1~(:.~) == 1 n n.;- 5~ 
. 8"(11-1) . =,,+ --2- =4nn-a,. 

. , 

. 9,n(n-:-l) 9n,.-1.: 
=*=n+ - ==--. . ..., .,2 . .' . ~ . 

. 10n(_-I) .' , 
.= n + 2 == 6 ''''.-'' ft.· 
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Chap. 5. Of Ratio, and Proportion. 123 

CHAPTER V. 

Of Geometrical Ratio. 

384. THE geometrical ratio of two numbers is found by resolving 
the question, how many times is one of those numbers greater than 
the other? Th,is is done by div!ding one by the other; and the 
quotient, therefore, expresses the ratio required. 

385. We have here three things toconsider; 1st, the first of the 
two given numbers, which is called the antecedent; 2dly, the other 
number, which is called the consequent; 3dly, the ratio of the two 
numbers, or the quotient arising from the division of the antecedent 
by the consequent. For example, if the relation of the numbers 
18 and 12 be required, 18 is the antecedent, 12 is the consequent, 
and the ratio will be H = Ii; whence we see, that the antece­
dent contains the consequent once and a half. 

386. It is usual to represent geometrical relation by two points, 
placed one above the other, between the antecedent and the con­
sequent. Thus a: b means the geometrical relation of these two 
numbers, or the ratio of b to a. 

We have already remarked that this sign is employed to repre­
sent division, and for this reason we make use 'of it here; because, 
in order to know the ratio, we mUit divide a by b. The relation 
expressed by this sign, is read simply, a is to b. 

387. Relation therefore is expressed by a fraction, whose nume­
rator is the antecedent, and whose denominator is the consequent. 
Perspicuity requires that this fr;;tction should always be reduced to 
its lowest terms; which is done,. as we have already shown, by 
dividing both the numerator and the denominator by their greatest 
common divisor. Thus, the fraction H becomes i, by dividing 
both terms by 6. 

388. So that relations only differ according as their ratios are ' 
different; and there are as many different kinds of geometrical re­
lations as we can conceive different ratios. 

The first kind is undoubtedly that in which the ratio becomes 
uDity; this case happens when the- two numbers are equal, as in 
3 : 3; 4: 4; II:; tbe ratio is here 1, and for this reason we call 
it the relation of equality. 



• 

Nest Yow those ..,latioas jg wbiclt tbe ratiO is another wide 
bU"'; iD": 2 tbe ratio is 2, and is called ,dou1Jle, ratio; jn 12 : " 
tile ratio is 3, and is called trip~.~ j, ill 24 : 6 the ratio is 4, and 
it caU~d quad. ratio, &C. 

We may Rext eooside~ those·relation\' whose ratios are expresSed 
by liactioos, as 12: 9, where the ratio is t or It; 18: 27, where 
1he Rtio. i!I I, Itc. We maT tho distinguish those relatiobll in 
.Web ., ooose4JU8llt 'CODtaias "~y twice, thrice, &te. tn ant,e.o 

eedubt; such are the relatious 6: 12, 5; 15, ~ the ratio of which ' 
I!IOhle call, whtluple, ,w,m,16, ke. ratios. . , 
, ·I\mb., .., .call that ratio ~, which is • ezpl'88lible 
1lam~, tb~ antecedent and cODll8queat beiDg imagers, u ,ia·ll : 1, 
,,: I,' &c. ad we -c8l1 chat an ~l Or ~d ratio,· which· .. 
II8idler be niCtly' expftlUed Dy its.", 1101" by iadious.' .... 
Vi:. 8; 4:.vi. ' 
.' 1St. Let .. be die aDtecedeDt, b ihe eOasequnt"antl'd ..... 
,.' ' '.. "s' . 

we bow iheady tlIat • and b beiDg given, we Gall iJ, == J' . 

" 'If" tbe cOuseqeent r. were ciND willi the rau, welbouY iiJd b 
Utecedent II == b d, becauae·6-dClmded 'by I «ift" d., Idf. 
when tbe ~ent ~ is given, aad the· ... i, we.fioil lb ...... .. ". ..,: " .. ' 
..-:h' d;' CQr, dividing ~ IDw~t\ II :by th" ~~ 4' 
we obcabt the qm,tient ";tbat is'to -1, tbe ratie. . " ... '. 

390. ' E"ely telaliOn a! b remains the same, tbough we multiply 
or di'fide th~ uatepedent tmI ccmsequeut by the .. 1M wdlWrj '. 
eauSe the iaho is tbe same. Let tl be the ratio' of d: 6, we have 

"Ca '. .' '. ',' " ' .. " .. ' 
4.'-'J- JIOW·the ratio>of '&be _tiQn n G: nit ja.,Uo;,; -= fI.t. ~ 

, •. , , 't ' , ". 

~ ... ~~ .• L .. ~ • 'II 6. 1:L"'-:_ a J 
_ VI r.oa _1CI08 - 'r 18 U&C¥I'_ 2"'=11'/8 •. 

n B U 

.' 391. Wnea. a ratio bas been ,reduced to itS IOWest'terms, it is easy 
10 petceive and 8D1,Jaciate the ~l.tioD. For example, when t~e 

"'i·~~,~_·~l,'1re..,: -.. " 
'" ' g, . ' , 

. 1!',~.,:;;:::":.fJ a,:6::,p,:g.. , " 
.... ,It..a, ••• ,b.".tof· Tbu.tboN&io~.re1~ 
.. £·8 ... f,' .. 2 .. we, 811· 6.: ~ ~. 2J l~ . W. I",. ,1ike1rise 
18: 12 = 3 "" aod 24: 18 == ,,: 3, and. 30..; 45 ;::;:.2:..8, ~~ 
., it Ihe ~o caobOt be abridced, the ,elation ~ not become 
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'1DOte e\1ideat; we do.DOt _pnr,. ·the NIacioiJ by ~ 
9:7=9: T. 

, 392. On the other hand, we may sOmetimeS change the relation 
of two very great numbers into one that shall be more simple and 
evident, by reducing both to their lowest terms. For example, 
we can say 28844: 14422 == 2: 1; or, ' 

10566 : 7044 = 3: 2; or, 57600: 25200 = 16: 7. 
~. In order, therefore, to express 8ny relation in tbe clearest 

manner, it is necessary to reduce itto the smallest possible numbers. 
This is easily done, by dividing the two terms of the relatioo by 
their grea~ common divisor. For example, to reduce the rela­
tioo 57600: 25200 to tbat of 16: 7, we have only to perform the 
single operation of dividing the numbers 576 and 252 by 36, whicb # 

• is their gt:eatest common divisor. 
894. It is important, the ... ~re, to know bow to find the .plelt 

eemmoa divimr of two given numbers; but th. requires a lUle, 
whidb;weilhall eiplaia in·tho followiag chapter. 

CHAPTER VI. 

Of tM ".,atelt COfIIIIOA DWor of tWlO pen NvrJJer,. 

395. TBJ:BJ: are aome numbers w1Uch have DO other common 
divisor than unity, and when the numerator and denominator of a 
hctioD are of ibiJ nature, it cannot be reduced to 8 more conven­
leot form. The two numbers 48 and 35, for example, have no 

. COIDIDOD djvisor, thougb each has 'its own divisors. For this reason 
we cannot express the relation 48: 35 more simply, because the 
divilioo of two numberS by . 1 does not diminish them. 

396. Batwbell the tw~ numbers have a co~ divisor, it • 
found by the following rule: 

Divide the greater of the two numbers by the less; next, divide 
the preceding divisor by the remainder; what remains in this second 
division will afterwards become a divisor for a third division, in 
which the remainder of the preceding division will be the dividend. 
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, . 
We ..", ___ Iii; .,.,... __ ..... ., • iii .... ,., 
Ie." ftO remtAfldtr; the di~ 01 tAil dwirion, _ COMe-­

~ tk last dlf1ilor, tDill be the gr~tlJ:'.t co,.m (ii_or. oj tie 
two"if.tJefl ,m.&mber... , 

See ~is orratioD. for the two munbe~ 576 and t 262~ 
252) 57~ (2 . . 

S64 

, 1!) 252 (3 . 
216 . 

86) 11 ~ 
72 . 

o. ' 
, So 6 .. , ia 1his instmce, the gMICtII CGIIIDlOD .... is' 3&: 

891. 'k wan. J. proper CG itMtate· this rule b' ... .CJIh.· ..... 
pies. Let the grtMeI$ ~ cti .... of .......... iOl .... 
312 be, required. 

31fa) 604 (1 
312 

192) 312 (I 
19'1 

120)192 (1 
,Ito 

, ,'Ji) itO (I 
'Ii 
~ 

~) ~ Q. 
4B 

24) 48 .('2' 
4& 

'-

• ~. , I; • 

• ' 1.' 

: "'.' 
'. 

o. . , , . '. ... 
, \"thatt.t.tbfJ'grn~,,,,,~"""lhe 

fttatlord5M'! 31t ts· redilcM' to ~ .• t·: 1." ,,' " : ," , : 
. 398. Let ~ retatiOll 625 :'g be'giYea, ad,'" ... .,... 

~OD eli •• or these two DUDlben be"requiNdl . . ' , . . 
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829) ~25 (1 
i29 

96) 529 (5 
480 

.. 

49) 96 (1 
49 

47) 49 (1 
47 

2) 47 (23 
46 

1) 2 (2 
2 

O. 

127 

.. 

Wherefore, 1 is, in this case, the greatest common divisor, and 
consequently we cannot express the relation 625: 529 by less 
numbers, nor reduce it to less terms. r 

399. It may be proper, in this place, to give a demonstration 01 
the rule. In order to this, let a be the greater and b the less of the 
given numbers; and let d be one of their common divisors; it is 
evident that a and b being divisible by tI, we may also divide the 
quantities a - b, a - 2 h, a - 3 h, and, in general, a - 11 b by d. 

400. The converse is no less true; that is to say, if the numbers 
h and a - 11 h are divisible by d, the number a will also be divisi­
ble by d. For n h being divisible by d, we could not divide a -11 b 
by d, if a were not also divisible by d. 

401. We observe further, that if d be the grltJtelt eoIDl'DOIl di­
Yisor of two numbers, b and a -" h, it will also be the greatest 
common divisor of the two numbers a and h. Since, if a greater 
common divisor could be found than d, for these numbers, a and h, 
that number would also be a common divisor of h and a - 11 h; 
and consequently d would not be the greatest common divisor of 
these two numbers. Now we have supposed d the greatest divi­
sor common to h and a - 11 b; wherefore d must also be the 
greatelt common divisor of a and h. 
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• 
400. ~e three -things being liUd d9wn, Jet ~ mnde, ~ 

mg to tbe rule, tbe greater number a by lbe less h; and let us top­
pose the qootient = n; the remainder will be a -" h, \Yhicb must 
be less than ,h. Now thie remainder a -n ,; having the s,ame 
greatest common divisor with b, as tbe given Dumbers6 and h, we 
have only: to repeat the division, dividing t~Q pr~eding divisor ' h 
by the remainder 6 - ti h; the new remain.der, which we obtaio~ 
will still have, with tbe preceding divisor, the same greatest com-
mODqivisor, and so on. ' , ' 

'403. We proceed in the same.manner, till we arrive au division 
without a remainder ; that is, in w~ich' the remainder is nothing. 
Let p be the last divisor, contained exactly a certain number of 
umes in its dividend ; tbis dividend ';nn therefore be divisible by p, 
and will have tbe form m p; so Wat the numbers p and", p, lie 
both divisible by p; and it is eertaiJ tbat they have no gtelter 
common divisor, because DO number can actually be divided by • ' 
number greater than itself. Conseql,lently, this last divisor is also 
the greatest common divisor of the given numbers a and h, and the 
rule, which we laid dow!!, is demonstrated. 

404. We may give another eXllIDple of the same rule, requiring 
the greatest common divisor of the numbers 1728 and 2304. The 
operation is as follows; 

.1798) 2804 (t' 
1728 ' 

'. ' 
', .": . 1. 

_, r: • 

I' . ,' , ' 

, , ~ ' 

. --
676) l7~ (8 

, 17~ . 
'I· :~· . 

o. 

" . ... • _... .' . ~a ~ , , 

, . ,: ; . • '; ' ~ i ' , 

. .. FJQ8l'.thle .... '"ewJ,~.l'57$ ~tbe~. ~.dir ... ~d *' ·th~ Jeiawo l1SiS ;,~ is ze~ee4 to . ~ :-." .... ~ ~ ~ N. 
p~ ,is ~~04.Jbe ~~~3 it5 to 4". : ". ~ 

: " ~ , ',' . ~ \ , : ~. . ' ~ , " .' . . ' . ,. ' ~ , J f . : ,: ,'. . : , ' ~: 

• : . ,~ '" .' , I , ,. , " , .. . , .... t · , , " ; . ..... ' ! 

I ' ., • , ,, : ,~ ~ ~ " , ~ .,', l • ' • .. " .. 
)" c. " ,' i ' . " ,'. : ." . " . : ' .: . ; ' , ' . 
" .. f , ~ .. ,. '.: 

. ', ' . .... • . ' t " t'" ,~. !. . . . 
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Chap. 1. Of .&tio. (IfId Proportion. 

CHAPTER vn. 

Of . Geometrical Prop'OrliOfll. 
. . 

405.· Two geometrical relations are equal, when their ratios are 
equal. This equality of two ~Iatioris is called a geometrical pro-
1'Orlion; and we write for example a: b =t: d, ora: b :: c: d, to 
indicate that the relatiori a: b is equal to the relationc : d·; but this 
is more simply expressed by saying a is to has' c to d; The iOl­
)Qwing is such a . propo~on, 8 : 4 = 12: 6; for the ratio of the 
relation 8: 4 is t, and this .is also the ratio of, the relation l~: 6. 

406 •. So that a: b = c : d being a geo,netrical proportion, the 

ratio must be the same On both sides, and i = a;. and reciprocany, 

'" 'a c 
if the fractions b and dare' equal, we have a : b : : c: d. 

407. A getlmetrical proportion consillts therefore. of four terms, 
such, that .the first, divided by the second, gives the same quotient 
as tbe third divided by the fourth.' Hence we deduce an important 
property, common to al).geome~l proport.ion,wbicb is, thai the 
product of the first arid the lad term u always equal to .the product 
of the .econa and third; . or; more simply, tbat the product of the 
"treme. iI equal to the poduct of the mea",. 

408. In order to demonstrate this property, let us take the gao-
, 

metrical proportion a:b.=c:d, so that i-~ If we multiplybotb 

these fractions b~6, we ~b~jn a = bdC' and multiplying both sid~ 
further by if we have a d = 6 c. Now a d is the product of the 
extreme terms, b c is that of the means, imd these two products 
are found to be equal. ' , . 

409. Beeiproeslly, iftlte f9urfttllrl&ber.; a, b,c,d,aruuch tAat thB 
product fJf th eI'IDO·e:stietfaei Ii and d U equal to the product of the two 
tneOtII It dIAl c, ell are Genain that t"ey form .. geometrical propor­
•• 'For since a d = 6- c, .a·haTe ooly to «Uvicle. both sides. by 

. •. ,_d -b Cae .. 
b d, which gIves us h d = b d or b = d' andcon~queDtly 

a:b = c:·d. 
~.~. 17 
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130' Sect. s. 
410. The/our terml of a geometrical proportion, ". a: b =c d, 

may be transposed in different way., without destroying ihe propor­
tion. For the role being always, that the product of the extremes 
is equal to the product of the means, or a: d == b c, we may say: 

111. b: a = d : C; z»1' a: c = b : d; 3'dJy· d : b = c : a ; 
4tbl1• d : c = b: a. . 

411. Besides these four geometrical proportions, we may deduce 
some others from the same proportion,. a : b = c: d. We may say, 
the firlt term, plus th~ second, is to the first as the third + the 
fourth is to tke third; tbat is, a + b : a = C + d : c. 

'We may further say; the first - the second is to the firll, as the. 
third - the fourth is to the third, or a - b : a = c - d: c. 

For, if we take ,the pl'Of,luct of the extremes and means, .we ' 
have a c - b c = a c - a d, which evidently leads to the equal­
ityad=bc. 

Lastly, it is easy to demonstrate, that a + b : b = c + d: d i 
and that a - b: b = 'c - d: d. . 

412. All the proportions which we have dedpced from a: 6 = c: d, 
may Qe represented, generally, as follows-: 

m a + tI 6: p ,a + q b = m C + tI d: p. c + q d. • 
For the product of the extreme terms is 

m pile + tip b c + m q a d + tI q b d; 
, which, since a d = 6 c, becomes 

mp a c + tip 6 c + m q 6 c + tI (ib d. 
Further, the product of the mean terms is 

m pac + m q 6 c + tip a d + tI q.6 d; 
or, since a d = b c, it is m'p a c + m q 6 c + tI P b c + tI q b d ; 
so that the two products are equal. 

413. It is evident, therefore, that a geometrical proportion being 
given, for example, 6:3 = 10: 5, an infinite number.of others 
may be deduced from it. We shall give on~y a few: ' 

3 : 6 = 5 : 10; 6 ': 10 = 3 : 5; 9: 6 = 15 : 10; 
3 : 3 = 5: 5; 9: 15 = 3 : 5; g : 3 =.15: ''5. 

414. Since, in every geometrical proportion, the product of the 
extremes'is equal to the product of th" means, we may, when the 
three first terms are known, find the fi>urth from them. Let the 
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three first tenns be 24: 15 = 40 to •••• as the product of the 
means is here 600, the fourth term multiplied by the first, that is, by 
24, must also make 600 ; consequently, by dividing 600 by 24, the 
quotient 25 will De the fourth term required, and the whole propor­
tion will be 24: 15 = 40: 25. ' In general, therefore; if the three 
fi~t terms are a : b = e: •••• 'we put dfor the unknown fourth let­
ter ; and since a d = b c, we divid~ both ,sides by a and have 

d = b c. So that the fourth term is =~, and u found by mult~ 
a a' 

plying the seetmd term by the third, and dividing that product by 
the first term., '" , 

415. This is the foundation of the celebrated Rule of Three in 
arithmetic; for what is required in that rule ?, We suppose three 
~umbers given, and seek a fourth, which may 'be in geometrical 
proportion; so that the first may be to. the second, as the third is 
to the fourth. ' 

416. _ Some particular circumsta~ces deserve attention here. 
First, if in two proportions the first and the third terms are the 

same, as in a: b = c: d, and a :f=c:g, 1 say that the two second 
and the two fourth terms will also be in geometrical proportion, and 
that b: d =/: g. For, the first proportion being transformed into 
this, a: c ...:.-' b : d, and the second into this, a: c = f: g, it follows 
that the-relations b: d and f: g are equal, since each of them is 
equal to the relation a : c. For example, if 5 : 100 = 2: 40, and , 
5: 15 = 2: 6, we must have 100 : 40 = 15: 6. ' 

417. B~t if the two proportions are such, that the mean terms are 
the same in both, I say that' the first terms will be in an inverse pro­
portion to the fou{th terms. That is to say, if a: b c: d, and 
f: b = c :g,it{ollowsthat 4:f= g :d. Let the proportionsbe,for 
e:xample,24:8 = 9: 3, and 6:8=9: 12, we have 24 : 6 = 12': 3., 
The reason is evident; the first proportion gives p d = be; the 
second gives f g = be;' therefore, 

ad =fg, and a:f=g:d, or a:g,::f: d. 

418. Two proportions being given, we may always produce a 
new one, by separately multiplying the first term of the one by the 
first term of the other, the second by the second, and so on, with 
respect to the other terms. Thus, the proportions a : b = c : d'and 
e : 1 = g : h will furnish this', a e: b f = c g: d h.' For the first 
giving a d = 6 c, and the second giving e It = f g. we have also • 
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ad e,h == be/g. 
Now /I de A is the product of tbe extremes" aDd be/ g is 'the pro­
duct of the 'me9DS in the, new proportion; so that the two products 
being equal, the proportion is true. • 
, 419 •. ,Let the two proportions be, fur example, 6,: 4 = 15: 10 

and 9: 1~, = 15: 00, their eombiJi~tioD will give the proportion 
6' X' 9: ,4 X 12 = 1'5 X 15: 10 X 20, . 

or 54 : 48,= 225 : 2PO, 
or 9: 8 = 9: 8. 

420. We shall obServe lastly, that if'two products are equal, 
II tl = b c, we may reciprocally convert this equality into a 'geometri­
~I proportion; for we shiill always have olie of the factors otthe 
first"prOdUct~ in the same proportion to one of the factors of the 
secOnd prOduct, as the other factor of the second product is to the 
other factor of the first product; that is, in'the present case, 
(J : C = b: d, or a : b.= c : d. Let 3 X 8 ' 4' X '6, and we inay 
form from it this proportion, 8: 4 = 6: 3, or this, 3 : 4 = 6: 8. 
Lihwise~ if 3 X 5 = 1 X 15, w.e shall have 

'3; 15 = 1 ; $, or 5: 1 = 15: 3~ or 3: l' 15: 5~ 

CHAPTER' vm. 

, O~eJ'11atiom on ,the Rid., of Pr~t~ and t~tir: Utility. 

,421; Tall thebry is so Useful in the occurrences of common fife, 
that scarcely any P!!rsoD can do without it. There is always a pro-

, portion between prices and commodities; and when different kinds 
of money are the subject of exchange, the whole consists in deter­
mining their mutual relati~ns. The examples, fUlllisbed by' tJ:lese 
reflections, will be very proper (of illustl'llting the principles ,of pro­
portion, and showing their utility by the application of, diem. 

422. If we wished, to know, for example, the relation between 
two kinds of money; suppose an old louis d'or and a due~t; we 
must fimknow the.nlue of those pieces, when compared to others 
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of, the sa~e kind: Thus, an old louis being, at Berlin, worth 5 rix 
dollars. and 8 drachms, and a ducat beiog worth'3,rix dollars, \Ve 
may reduce these two values to one denomination; ejther tQ rik dol,:, 
l~~ which gives the proportion I L: 1 D =5! R3:R,or= 16:9; 
ortodrachms,iD wbicQOO8e we have 1 L: 1 D = 128:12 = 16: 9. 
These pl'Oportions evidently give the true relation of the old louis to 
the <Lcat; for the equality ofthe producJs of the extremes aod the 
means gives, in both, ,9 louis = 16 ducats; and, by m~ans of this 
comparison we may change any sum of old'louiS into ducats, and 
"ice",",'. Suppose it we~ required to tell how many ducats 

, there are in 1000 old louis, we have this rule of three. If·910uis 
, . are equal to 16 ducats, what ,are 1000 louis e~ to ? The an-

swer will be 1 777 ~ ducats. '. " ' 
If; on the contrary, it were required to find bow l'llIqIy old'louis 

d'or there ~ in 1000 'ducats, we have the following proportion. 
If 1~ ducats are equal to 9 louis; what are 1000 ducats equal to:1 
AnltlJ6r, 56ii old louis d'or. , ' . 

423. Here (at Peter$burg), the value of ~e ducat v,.ries, and 
depends on the course of exchange. This course determine's the 
value of the ruble in stivers, or Dutch half-pence, 105 of which 
make Ii ducat. ' , ' 

So that when the .exchanp is at 45 stivers, we have this' propor­
tion, 1 ruble: 1 ducat = 45 : 1~ =3:;7 ; and hence this equality, 
7 rubles '= 3 ducats; , 

By this we' shall find the value, of a ducat in rubles; for 3 du~ 
cats: 7 rubles = 1 ducat:." ••• ~tlJer, % rubles. 
, If the exchatlge were a~ 50 stivers, we should have this propor­
tion, 1 ruble: 1 ducat = 50 : 105 = 10 : 21, which would give 21 
rubles = io ducats; and we should hay~ l' ducat = 2rcr rubles. 
Lastly, when the exchange is at 44 stivers, we have ~ ruble: I'du:. 
cat = 44: 105, and 'consequently 1 ducat = 2H rubles' 2 ru-
bl~s 3St'Tcopecks.;t ' 

424. It follows from this, that we may also compare' ~ifterent 
kinds of money, which we'have frequently occasion to do in billsof 
exchange. Suppose, for example, that a person of this place has 

• The rix donar of Germany is valued at 92 cents 6 mills, and a 
drachm is one twenty-fourth pan of a rix .cfollar. 

t, A eopeok ie m part of a rpbJe,: u i. easily deduced &om the 
, 'aboYe. ' 
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1000 rubles to be paid to him at Berlin, and that he wishes to know 
Ute value of this sum in ducats at Berlin • 
. . The exchange is here at 47i, that isto say, ene-ruble makes 47;l 
stive(s. In Holland; 20 stivers make a florin; 2i Dutch florins 
make a :Dutch dollar. Further, the !"xehange of Holland with 
Berlin is at 142, tliatis to say, for 100 Dutch dollars, 142 dollars 
are. paid at Berlin. : Lastly, the ducat is worth·3 dollars at Bllrlin. 

425. To resolve the qu~tions proposed, let us proceed step by 
step. .Beginning therefore with the stivers, since 1 ruble':o::::: 47k 
stivers, or 2 rubles = 95 stivers, we shall have 2 rubles: 95 stivers 
= 1000: : ••• A1l8wer~ 47500 stivers. . If we go further and say 
20 stivers: l' Borin = 47500 stivers: .t • •• we· shall ha"ve 237'5 
florins. Further, 2t florins = 1 Dutch dollar, Gr 5 florins == 2 
Dutch dollars; we shall therefore have 5 i1orins: 2' Dutch doliars 
= .2375 Borins : ..... Answer, 950 Dutch dollars •. 

Then taking the dollars of Berlin, acCording to the'exchange at 
14~, we shall have 100 Dutch dollars: 142· dollars = 950:' the 
fourth term, 1349 dollars of Berlin. Let us, lastly, 'pass to the du­
cats, lUJd . say 3 dollars: 1 ducat = 1349 dollars: ••••. Amwer, 
4491 ducats. . 

426. In order to render tbese calculations still more complete, let 
us suppOse that' the Berlin banker refuses, under some pretext: or 
other, to pay this sum, ana to acce'pt the bill Of exchange without 
five per cent. discount; that is, paying only 100 instead of 105; In 
that case, we'must make use of the {ollowlng proportion; 105: 100 
= 4491 : a fourth tenn, which 1s428» ducats. ' : 
4~. We ha:ve ~hown' that six operaiions are necessary, in maiing 

use of the Rule of Three; 'but we 'can greatly abridge those calcu­
lations, by a rule, which is called the Rule of ReductiOn. To 'e'l(­

plain this 'rule, we shall first. consider the two antecedents Qf. eac~ 
of the six operations. ...... . . . ., 

1. 2 rubles 95 stivers~ 
II. 20 stivers 1 Dumb fior. 

ID. 5 Dutch flor. 2 Dut~h doll. 
IV. loo-Dutch doU. 142 dollars . 

. . V. 3 dollars . 1 ducat •.. 
VI. 105 ducats 100 -du~ats_. 

If we noW look over the preceding calculatioQs, we shaH observe, 
*hat we have always multiplied the given sum by the second terms, 
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and that we Dalle divided the 'products by the first; it is evident 
therefore, that we shall arrive at the same results, by multiplying, al 

once, the sum proposed by the product of all the second'terDls, and 
dividing by the product of all the first terms. Or, which amounts to 
the same thing, that we have only to make the following proportion; 

• as the product of all the first terms is to the product of all the seoond 
, terms, so is the given number of rubles to the number of ducats 
payable at Berlin. . 

428. This calculation is abridged still more, when amongst the 
first terms are found some that have ,common divisors with some of 
the second terms; for, in this case, we destroy those terms, and 
substitute the quotient arising nom the division by that common 
divisor. The preceding' example will, in this manner, assume the 
following form." 

Rubles ~. 
~. 
¢. 

100. 
3. 

1~$,21. 

19,~$ stiv. 1000 rubles. 
1 Dutch fiQr. 
~ Dutch dollars. 

142 dollars. 
1 ducat. 

$,1~~ ducats. 

63~ " 2698 = lO~:-
7)'26980. 

9) 3854 (2 

, 428' (2. An8~er, 428i' ducats. 

-429. The. method which must be obs~rved, in using the rule of 
, reduetiQn, is this; we begin with the l\ind of money in question, and 
'compare it with Mother, which is to begin the next relation, in 
which we compare this second kind with a third, aod so on. Each 
relation, therefore begins with the same kind, as the preceding re­
lation ended with.' This operation is continued, till we anive at 
the kind of money which the apswer requires, and, at the end, 
we reckon the fractional remainders. 

• Divide the Ist aod 9th by 2, the 3d and 12th by 20, the 5th and 
12ih (which is now 6) by 5, also the 2d ,and 11th by 6. 
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430. Other examples ire· add~ to facilitate 'the pr8ctice of this 
calculation. 
. If ducats gain at JIamburg 1 p¢r cent. on two dollars banco; that 

is to say; if 50 ducats lU'8 worth, not 100, bilt 101 dollars banco; 
and if the exchange between Hamburg and ·Konigsberg,. is 119 
drachms of Poland; 'iliat is, if 1 CloUar banco gives 119 Polish , 
drachms? how many Polish flonns will 1000 ducats give? 

30 Polish drachms make 1 Polish florin. .' 
Ducllt 1 ~ doll. BO. 1000 d1ic.' 

t~,50. : 101 doH. B~.I 
1: 119 Fol •. dr. 

30 : 1 Pol. flOt'; 
, 

15~ : 12019 = 10~ due. : •••• 

~>. 120190 

5) 40063. (1 

8012 (.3. .8mwer, 80121 P. fl •. 

431. We may abridge a little further, by writing the number, 
which forms the third term, a~ve the second row; for then the 
product of the secolld row, divided by the prodllCt of the first row, 
·will give the answer sought. 

Que.tio'll., Ducats of 'Amsterdam ate brought to Leipsic, hav~ 
ing in the former city the valu~ of 5 flor. 4 stivers current; that is 

. to say, 1 ducat is worth lQ4 stivers; and 5 ducats are worth 26 
Dutch florins. If, therefore, the agio of tke bankft' at Amsterdam 
is 5 per cent~ that is, if 105 currency are equal to 100 banco, and 
if t~e e;xchange frO~ ~ipsic to Amsterdam, in bank money, is 
33l per cent. that is, if for 100 dollars we pay at· Leipsic 133f 
dollars; lastly, 2 Dutch dollars making 5 Dutch Borins; it is ie­
quire~' 10 find ho~ many dollars we must pay at Leip~c, according 
to these e~changes, for 1000 ducats? . .. 

• The difference of "alue ~twee~ Dank money and cllttent IDOney 

. ; 
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, $, ;(~~ ducats. ' 

Ducats $ 
;(~$,21 

j.~,~ 
$ 

21 

26'Bor.l>titcb curro 
4,~, ;(~~ Bor. Dutch banco. 

533 doll. of ,Leipsic. 
~ doll. banco. 

3) 55432 (I. 

7) 18477 (4. 

2639 • 

137' 

.An,wer, 2639H ~ollars, or 2639 dollars and 15 drachms. 

CHAPTER IX. 

Of Compound Relatio."'. 

432. COMPOUND RELATIONS are obtained, by multiplying the 
terms of two or more relations, the antecedents by the antecedents, 
and tbecoDsequents by the con~equents; we say then, that the rela­
tion between tbose two products is compounded ofthe relations given. 

Thus, the relations a: h, c: d, e:f, give the compound relation 
(J c e: h df.. 

433. A relation continuing always th,e same, when we divide 
both its terms by the same num~er, iD order to abridge it, we may 
greatly facilitate, the above composition by comparing the antece­
dents and the consequents, for the purpose of making such reduc­
tions 8J! we performed in the last ~hapter. 

For example, we find the compound rE11ation Qf the following 
gi ven relations, thus; 

• Each of these three ratios is said to be one of tbe roots of the 
compound ratio. 

Eul . .Alg. 18 
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BtlatiOftl giVeR. 
12 : 25, 28 : 33, and 55 : 56. 

't~, 4, 2 : 5, ~. 
,. tt, sa· 
U, tt: ~, U· 

2: 5. 
So that 2 : 5 is the compound relation required. 

Sect. 3. 

434. The same operation is to be perfonned, when it is required 
to calculate generally by letters; and the most remarkable case is 
that, in which each antecedent is equal to the consequent of the 
preceding relation. H the given relatioJlS"8re 

a:b 
b: c 
c:d 
d:e 

e : " 

the compound relation is 1 : 1. 
435. The utility of these principles will be perceived, when it is 

observed, that the relation between two square fields is compound­
ed of the relations of the lengthlJ and the breadths. 

Let the two fields, for example, be A and B; let A have 500 
feet in length by 60 feet in breadth, and let the length of B be 360 
feet, and its breadth 100 feet; the relatiQll ofthe lengths will be 
500: 360, and that of the breadths 60: 100. So that we have 

. ~,5 6,~. 
.t~. 

5 6 
Wherefore the field A is to the field B, as 5 to 6. • 

436. Another Example. Let 'the field A be 721 teet long, 88 
feet broad ; imd 'let the field B be 660 feet long~ and 90 feet broad; 
the rela~ions will be· compounded in the following mwmer. 

Relation of the lengths, ,~, 8' : 15, fHJ, _ 
Relation of the breadths, ., $, ~ ':. • 

Relation of the fields A and B, .16 15 .. 
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437. Furtber, if it be required to compare two chambers with 
respect to the space, or contents, we obse"e ,tbat that relation is 
compounded of three relations; namely, of that of the lengths, that 
of the breadths, and that of the heights. Let there be, for example, 
the chamber A, whose length = 36 feet, breadth = 16 feet, and 
height = 14 feet, and the chamber B, whose length = 42 feet, 
breadth = 24 feet, and height = 10 feet; we shall have these 
three relati<;>ns; , 

For tbe length ~,$ 
For the breadth i$, ~, 2 
For the height i~, 2 

4 5 

So that the contents of the chamber A : co~tents of the chamber B, 
as 4: 5. 

438. When the relations which we compound in tbis manner are 
equal, there result multi plicate relations. Namely, two equal rela­
tions give a duplicate ratio or ratio oJ the .quaru ; three equal re­
latiOOs' produce the triplicateratio or ratio of tM cubu,.and so on ; 
for example, the relations a: b and a,: b give the eompound rela­
tion a a: b b; wberefore we say, tbat the squares are in the du­
plicate ratio of their ,roots. And the ratio a: b multiplied thrice, 
giving the ratio ;'3 : bl, w:e say that the cubes are in the triplicate 
ratio of their roots. 

439. Geometry teacbes, tbat two' circular spaces are in the du­
plicate relation of their, diameters;, this means, that they are to 

each other as the squares of their diameters. 
Let A be a circular space having the diameter = 45 feet, and 

B another circular space, whose diameter = 30 feet; the ,first 
space will be SO the second, as 45 X 45 to 30 X 30; or, com­
pounding tbese t~o equal relations, , 

~,;,3 2,$,~. 

~, ;J 3 2, $, ~. 

9 4. 

Wherefore tbe two areas are to each other as 9 to 4. 
44Q. It is also demonstrated, that the solid contents of spheres are 

in the ratio of the cubes of the 'diameters. Thus, the diameter oJ a 
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globe A, being 1 foot, and th~ diameter of a globe B, being 2 feet, 
'the solid contents of A will be those of B, as 1 I: 2 a i or,'as 1 
t08. 
, If, therefore, the spheres are formed of the same substance, the­

sphere B will weigh 8 times as much .as, the sphere A. 
441. 'It is evident, that we may,in this manner, find the weight 

of cannon balls, their diameters and tb'e weigbt'of one, being given. 
For example, let' there l:ie the ball A, whose diameter = 2 inches" 
and weight = 5 poun~s; and, if the weight, of another ball be 
required, wbose diameter is ,8 inches, we have this p~portionJ 
21: 8 1 = 5 to the fourth, term, 320 pounds., which gives the 

, weight or'the ball B. ' For l!Jlother ball C, whose.diameter = 15 
, inches, we should have; 

2 a: 151 =,5: : •.. .da.twer, 2109llb. 
, I 

442.' When the ratio of t~o fractions, as ~: a' is ,required, we 

may always express it in integer numbers; for we have only to 

multiply the fractions by b d, in order to obtain the ratio ad: b c, 
whi~h is equal to the other; from which results the proportion ' 

'a c ' 
b : d = ad: b c. 

If, therefore, a d and 6 c have common divisors, the ratio ':Day be 
reduced to less terms. 'rhus, ' 

it : Ii = 15 X' a6 : 24 X 25 = 9: 10., 

443. If we wished to know the ratio of the fractioQs ~ and~, it is 

evid~nt that we should have ~: ~ = b: a; which ,is ~xpressedby 
saying, that two fraaioru, which hafle unity for their numerator, are ' 
in the reciprocal, or inflers~ ratio of their denominator,. The,ame' 
may be said of two fract~n', whick hafle ~ny common numerat()f' j' for 

; : ~ = b : a. But if two fract~ hafle their denomi~or, efJual, 

as ~ :~, they ore in tAe dirut ratio of tire numera~or' ~ namely, as 

~ :b. Thus, i : -/r, " -h :,t\r = 6 : 3 -:- 2 : 1, and, 
y : y = 10 : 15, or, ~ 2 : 3. 
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, 444. It is observed, that in the free descent of bodies, a body 
falls 16· feet ina second, that in two seconds of time it falls ,64 
feet, and that in three seconds it falls 144 feet; hence it is conclu­
ded, that the heights are to one another as the squares of the times; 
and'that, reciprocally, tpe times are in the suhduplicate ratio of 
the heights, or a!l the square roots 9f the heights. . 

If, therefore, it .be requjred to find how IQng a stone mllst take to 
fall from the height of 2304 fee.t.; we have 16 : 2304 ~ 1 to the • 
square of ·the time sought. SO that .the square :o~ the' time sought 
is 144; and, consequently, the time required is 12 seconds. ' 
~~. It is requi~d to find how far, or through what height; a 

stone will'pass, by descending fo~\~e .. space of an hour; that is; 
36~ seconds. We Sl),y, therefore, as the squares of the. times, 

. that is, l' : 3600'; so is the given height = 16 feet, to the height 
.. required • 

.1 : 1-2960000 = .16: U ••• 207360000. height required. 
16 

'77760000 
1296 

207360000 

If we now reckon 19200 feet for a league, we sball find this.height 
to ~e 10800; and consequently, nearly four times greater tban the 
~ia~eter of the earth. 

446. It js· the same with regard to the price of precious stones, 
whicb, are not sOld in the proportion of their weight; every 'body 
knows that their prices follow a much greater ratio. The rule for 
dilllJ)onds is, that the price is in the duplicate ratio of the weight, 
that is to say, the ratio of the prices is equal to ~e square of the 
ratio of the w~ights. The weight of diamonds is expressed in ca­
rats, and a carat is equivalent'to 4 grains; if, therefore, a diamond 
of one carat is worto 10 livres, a diamond of 100 carats will be 
worth as many times JO livres, as tbe square of 100 contains 1 ; 
so that we shall have, according to the rule of three, 

i' : 100' = 10 ·livres, . 
or ,I : 10000 = 10 : •••• .A~er, 100000 livres; 

-15 is used in the original, 88 expressing the desceDt in Paris feet. 
!tis here altered to EngJ.ish feet. 
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There is a diamond in Portugal, which weighs 1680 carats; its 
price will be found, therefore, by making 

I J: 1680' = 10 live : •••• or 
1 : 2822400 .-:...' 10: 28224000liv. 

447. The posts, or mode of travelling, in France furnish exam­
ples of compound ratios, as the, price is, according to the compound 
ratio of the number of horses, and the nUf!Jberof leagues or posts. 
For example, one horse costing 20 sOus per p,ost, it is required. to 

, find how much is to be paid for 28 horses and 4! posts. 
vy e write the first ratio of horses, . I: 28, . 
Under this ratio ,we put that of the stages or posts, 2: • 9, 

And, compounding the, two ratios, we have 2 : 252, 
Or, 1 : 126 == 1 livre to 126 francs, or 42 crowns. 
Another Question. If I pay a ducat for 8 horses, for 3 Ger­

man miles, how much must I pay for thirty horses for four miles? 
The calculation is as follows: 

,$, 4 5, i$,~; 
3 4, 

1 5, = I ducat: the 4th term, which will be 5 ducats. 

1148. The sarne composition occurs, when workmen are to be 
paid, since those payments generally follow the ratio compounded 
of the number of workmen, and that of the days which they have 
been employed •. 

1£, for example, 25 sous per day be given to ,oile mason, and it 
is ~quired to' find what must be paid to 24 masons who have 
worked'for 50 days; we state this calcuhltion ; . 

1 24 
I 50 

1 1200 = 25: •••• 1500 fraoos. 
25 

20) 30000 (1500. 

As, in such examples, five things are given, the rule, which 
serves to resolve them, is sometimes called, in books of arithmetic, 
The RJ,Ue of Five. 
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CHAPTERX. 

01 Geometrical Progreuion •• 

,449. A SERIES 'of numbers, which are always becoming a cer­
tain number of times greater or less, is called a geometrical pro­
gru.ion, because each term is constantly to the fonowing one in' 
the same geometrical ratio. And the nurpber which expresses 
how many times each term is greater than the preceding, is called 
the exponent. Thus, when the first term is 1 and the exponent 
= 2, the geometrical progression becomes, 

Terml1234 5 6 7 8 9 &c. 
Prog. 1,' 2, 4, 8,16, 32, 64, 128, 266, &c. 

the numben 1, 2, 3, &c. always marking !be place whieh each 
term holds in the progression. 

450. If we suppose, in general, the first term = a, and the ex-
ponent = b, we have the following geometrical progressioll; • 

1,' 2, 3, 4, 5, 6, 7. 8 .... A 

Prog. a, ab, ab', ab', ab·, aba, ab', a'b' •••• ab~l ... 
So that, when this progression consists of A,terms, the last term is 

= a b,,-I. We must remark here, that if the exponent b be greater 
than unity, the terms increase continually;' if the exponent b = 1, 
the terms are all equal; lastly, if the expon~nt b be less than 1, or 
a fraction, the terms continually decrease. Thus, when a = 1 
and b = i, we have th,is geometrical progression; , . 

1, i, i,~, fa, iII, n, In. &c, 
451. Here therefore we have to consider; 

I. The first term, which we have' called a. 
- 11.- The exponent, which ~e call b. 
JII. The ~umber of terms, which we have expressed by A. 
IV. The last term, which we have found = a b-I • 

So that, when the three first of these are given, the last term is .found 
by multiplying the A-I :power of b, or bn - I , by the first tenn a. 

If, therefore, the 50th term of the geometrical progression 1,2, 
4,8, &c. were required, we should have a = I, b =. 2,', and 
A = 50; consequently the 50th term = 2". Now 2' being 
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= 512; 21\1 will be= 1024.' Wherefore thesqliare of 210, or2'o, 
= 1048576, and the square of this number, or 1099511627776 = 
240. Multiplying therefore this value of 2 40 by 2 8, or by 512, 
we have 241 equal to 562949953421312. 

452. One of the principal questions, which'occurs on this sub­
ject, is to find the sum of all the terms of a geometrical progression; 
we shall therefore explain the method of doing this. Let there be 
given, first, the following progression, consisting of ten terms; 

1" 2, 4, 8, 16, 32, 64, 128, 256, 512, 

the sum of which we.shall represent by 8, so that 

8 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + ~28 + 256 + 512; 

doubling both sides, we shall have 
, , 

28=2+4 + 8+ 16+32+64+ 128+256 + £SI,2+1024. 

Subtracting from this the progression repres~nted by 8, there re­
mains 8 = 1024,-1 = 1023 ; wherefore the sum required is 1023. 

453. Suppose now, in the same progression, that the llumberof 
te~s ,is undetermined and = tI, so that the sum in question, or 
8, = 1 + 2 +2' + 2' + 24 •••• 2 ~I. l( we multiply by 2, ' 
we have 28 = 2 + 2' + 2' + 24 •••• 2", and subtracting from 
this equation the preceding one, we have 8 = 2" - 1. We see; 
therefore, that the sum required is foun4, by'multiplying the last ' ' 
term 2"-1, by the exponent 2, in order to have 2", IIlld subtracting 
unity from that product. ' , , ' 

454. This is made still more evident by the following examples, 
in which we substitute successively, for tI, the numbers 1,2,3,4, 
&c. 

1=1; 1 +2=3'; 1+2+4=7; 1.+2+4+8=15; 
1 +2+4+ 8 + 16=31; 1+2 +4+8+ 16 +32=63,&0. 

455. On this subject the following question is generally proPQsed. 
A man offers to sell his horse by the nails in his shoes, which.are in 
number 32; he demands 1 liard for the first ~ail, 2 for the second, 
4 for the third, 8 for the fourth, and so on, demanding for each nail 
twice the price of the preceding. It is required' to find what would 
be the price of the borse ? 

Tbis question is evidently reduced to finding the sum of all the 
terms of the geometrical progression, 1,2, '4,8, 16, &c. continued 
to the 32d term. Now this last term is 211; and, as we have 

.. 
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, already 'foUDd t'~ = IG'48617G; and 2H 'z::= 1024, ", sball have 
2 10 X. 210 =2'9 equ" to .073741824Yllad mukiplying again 
by 2; the last term 2"1 ::;: 2147488648; doubling therefo~ ,this 
number, and subtracting unity from the product, the IlUm required 
be,:omes. 4294967295 li,ards. , These, hrds make I0'73'141828f 
sous, and divi,ding by 20, we, have 5368709l lines, 8 sous, 9 de-
niers for the j;uin required. ' " ,,' , 

456~ Let the etponeut now be,,= 3, and let it be requited 'to 
find the sum of the geometrica:l progression,' 1, 31 ~, Z7, 81, 243, 
729, consisting of 7 t~rm8. Sqppose it == ~, 8() that 

, i -::- J + 3 + 9 +2'7 + 81,+243 + 7iS; 
we shali then have, multipiying by 3~ , 

3 • = 3 + 9 + Z7 + 81. + 243 + 729 + 2187'; 
and, subtracting the preceding series, 'fire have' 

'2. = 2187 -1 = SlI86. 

So tb!l;t tbe' double of' the s~ ',~ 2186, and ~Jlsequently the s,1~ , 

required = 1093. , 
457., In the same 'progressiOn, Jet the Dumber of tenns' = ~ and 

the sum '="; BOthau = 1 + 3 + 3',4- 3 a + 3' + ...• 3"-1. 
Ifwe multiply :by 3, we bave 3.= 3 + 3' + 3' + 3'+ •• .; .3".' 
Subtracting from this the value of .,as all the tetlpS of it, except the 
first, destroy all'tru; terms or the value of 3 " except the lut, we ' 

, '~~1" , 
shalrhave 2, = ~ - 1; therefore, = ,-. So that the ,sum 
required is found by .riultiplying 'the, Jast term by 3; IUbtracting 1 
from the p~uct" and diViding the remainder by, 2. This will 
appear, also, from .tlie fOllowing ~o;Iple8 ; , 

, 3X3-i, '3X9-1 
1==1;1+3=="-2-==4;1+3+0= 2 =13; 

,.' , 
1 +3+9+27==3 X ~-l=40j 1+8+9+5n+8f== 

~~I-l=lil. 

458. Let 118 DOW IlUppose~ geneialJy, the first term == a, the ex,.­
~ == lI, the number of terms '= "" aDd their SUftl = I, so that 

'. == G == a b + a b' + G b' + a it' +' ... .'. 6-:-1• 
, , 

If we multiply by h,. we. have 
Eul. Alg. 19 
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6,==tJob + cab' + cab' + (J 64 +·tJ b' + .... ab", 
and subtracting the aboye equation, thefe remains 

, (6-1) I = a be-a'; 
, .' "ab--a 

whence we easily deduce: th.e· sum required, = b -1 r Come-

quently the IUm of any geOmetrical progre8~ion is found by multi­
plying, the lad term by the exponent of the progrusion, BUbtracting 
th~ fird term from the prodUct, and dividing thd remainder by 
the exponent minm unity. ' 

459. Let th~r:e be a geometrical pro&ression of seven tenns, of 
'which the first = 3;. and let'the eXponent be = 2 ;' we shall then 
have a == 3, b = 2, and t& = 7; wherefore'the lallt'term = X 2', 
or 3<.?< 64 = 19'J; and the whole progression will be ' " 

3,6, 12,24,48, 96, 192. 
Furth",r, if we maltipJy the last term 192 by the exponent 2, 

we have 384; subtracting the first tenn, there remains 381 , and 
dividing this by b "':'-1, or by 1, we have 381 for the sum of the 
whole progression. 

460~ Again, let there he a geometrical' progression of six terms; 
let 4 be the first, and Jet the exponent be = f. The progression is 

, 4,6,9, ,:/, .y.,~. ' 
If we'multiply this last tel'Dl1.fL by ~he exponent i, we shall 

have Withe subtraction 'of. the firSt term 4 leaves the remainder 
\V-, wbieh, diTided by b -1 == i, gives ,AJi = 83i.' ' 

461. When the exponent is less than 1, arid consequently, when 
the terms of ' the progression continually diminish, the sum of such 
a decreasing' progression, which :would go on to iDfinity, ql8y be 
accurately expressed. , , . , ',' , . ~ 

, .For example, let the first.. term = 1, the exponent = i, and 
the sum = I, so that , 

. ·s =. +*.+:1+i+i. +ni- "+&0. 
ad infinitum. 

If we multiply 'by 2, we ,h!lve, 

_.2 ~ = 2 + ~ +1+ ~ + ir+ n+ &0. 
ad irifirutum.· . , . '. . . 

, , . 
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And, 8ubtrllctmg the preceding prOgression. t1lere remllins, =i 
fur the'sum of the proposed infinite progression. 

462. If the first term = 1, the exJlOnent = i, and the sam = , ; 
so that ' 

, = 1'+ i + oJ + n + iT + &teo ad infinitum. 
~lultip1ying the 'whole by 3, we have 

3 8 = 3 + 1 + i + 1 + n + &c. ad infinitum; 
and subtracting the value of ,8, there remains 2, = 3.; wherefore 
the sum 8 = 1*. 

463. Let there be a progression wbqse sum = I, first term = 2, 
and exponent = i; so that 8 = 2 + i + f + H + M + &e. 
ad infinitum.' ' 

Multiplying by!, we have!8 =4 +2+i+~+ n+u+ 
&e. ad infinitUm. Subtracting now the progression 'i there remains 
i , = ~; wherefore the sum required . 8. 

464. H we suppose, in general, the first term = a, and the ex-
b" • 

ponent of the progression = -, so that this fraction may be less 
c 

than 1, and consequently c greater tban b j the sum of the pro­
gression, carried on, ad infinitum, will be found thus ; 

lib a b' alb' a b4-
Make.=411+ +-+-. +-.. +&e. c cc, c c 

Multiplying by ~, we 'Shall have 
c 

b ab' ab' ab" ab· 
- , = '- + • + -. + -. + &0. ad infinitum, c c 'c 'c ,c 

And, subtracting this ~ation from the. p~ng, there remains 
b 

(1 -c) 8 = a. 

Consequently 
a 

,I = 1 b' 
c 

If we m~tiply both terms of this fraction by c, we have 

ac 
" '=c-7/ , , 

The sum of the infinite geometrical progression proposed is, there-
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lore ~cl, by divicliog tb~ first term a by 1 m~i!s 'the exPQDent, 
or by mUltiplying ~ first term II b, the denominator of the, exPQ­
nent, and dividing the product by the same denominator dimiDisbed 
by the numerator of the expone~t. 

465. In the S$JDe menner,we find the sums of progressions, the 
terms of which ate alternately a1I'ected by the signs + IlDd-. 
Let for example, ' , ' " , 

, , a b a 61 " ab', a b" " ' , =8-- +---:...; + --&c. , c c· C" C' 

KultiplyiDg by ~, we' have , c 
,. b - a'b a6 I (1'" ~b· -,=-, --' +-- ..... &c. ", c , C ' C I c· C,· 

And, addiDg this, equatiop to the preceding, we obtain 
b 

, (1 + c), = a. 

Wheuce we d~duce the sum reqUired, 
, a ac ' 

, = f+1r or , :;:: c + b· -, ' 

c 
466. We see, then, that if tbe first term a = i, and the expo­

Dent = I, ,that is to say, 6 ~ 2 !lDd c ;:: 5, we shall 6nd the sum 
of the progression i + 18 + loA + M + &0. = ,1 ; ~~e, by 
subtracting the exponent &om 1, there re~, I; and by dividing 
the first term by that remainder, the qUotient is 1. 

Further, it is evident, if the terms ~ alternately positive and 
Degative, and the progression assume this form ; 

. i-h+-N,.,-&+&c: 
the sUm will be 

a i 3 
1 +~=i=7· 

c 
467 • ..&aotA~ E-tarwple. Let there 'be proposed the infinite 

progression, ' 

, !.r + Th + TIn- + nhO' +-~ + &c. 
The fifst term is ~ere tlr, ,and ~e exponent is icr. Subtracting 

this last from 1, tbere remains !a, and if we divide the firsttermby 
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tbis fractioD, we have·! for the sum of the given progxession. So 
that taking only one term of the progression, namely, -h, the.ertor 
would' be n. , 

Taking two te~s -h + Th- = -Ma, there would still be want-
ing m to mak~ the sum == !. . 

468. A.notl&er F4ample. Let there be €;tven the infinite pro-
, gression,' ' 

9+-Irs+Th+*+~+&e. . , 

The first term is 9,~e exponent is w. So that 1, minus the 

exponent, = ~; and 1~ ~ 10, the sum required. 

Thi$ fI8ries is ~][pressed by a decimal fraction, thus 9,9999999, kc. 

CHAPTER XI. 

OJ Infinite DecimDl lirGCtiotu. 

469. IT will be very necessary to show how a vulgar traction mar 
be transformed into a decimal fraction; and, conversely, how we 
may express, the value of a d~al fractiOn by a vulgar fractioa. 

470. Let it be required, in genercil, to cluJnge the fraction ~ into 

, G tleeitMl fraction; (II .tAu fraction t.:11pf'e,," the quotient 0/ the 
ditJUion of t~e numerator a by the denominator b, let w write, in­
.tetld 0/ a, the gtMIfItity a,OOOOOOO, wkoletlalue ao" not at all dYfer 
from that of a, ftftCe it containa neither tenth P""', nor h.dredtA 
parlI, 4--c. Let at f&OtD ditlide tAu qwmtity by tAe n~er b, ,tIC­

cording' to tAe cOmmon rule. of diMon, obaertling to puttlr.e point 
in'tAe proper place, wAleA .eparm" the decimtil and ·tAe integen. 
This is'thewhole o~ration, which we shall illUstrate by some exam-
ples. .. . 

Let there be.given fint dle fraction i, the division in decimals 
will assume this form,' ' 

. 2) 1,0000000'' '1 
--0,6000000 = 2" 

Race it appean, that i is equal to-O,5000000 or to 0,6 ; which 
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is sufficiendy evident, since this decimal fractioo represents-h, 
which is equivalent to f. . 

471. . Let 1 be the given fraction, and we hav:e, 
3) 1,0000000· I 1 

" -n,3333333,&c.,= 3' 
, This shows that tbe decimal fraction, whose value·is = i, cao­

Dot, strictly, ever be discontinued, and that it goes on ad infinitum 
repeating always the number 3., And, for this reason, it has been 
already shown, that the fractions fa + rBtr + nmr + ~ &c. 
ad infinitum, added, together make i. " , 

The decimal &action, which expresses the value of i, is also con­
,tiDOed ad'infinitum, for we have, , 

3) 2;00()0000 2 
-. -0,6666666 &c~::;:: 3' 

And besides, this is evident from what we 'have just said, because 
t is the double of t. ' 

I 472. If t be thefractioo proposed, we have 
4) 1,0000000 ' 1 
-0,2500000 &c. = 4' 

So that i is equal to 0,2500000, or to 0,25; and this is evident, 
tince ~ + Th- = M = 1· " 

In lik,e manner, We should have for the fi:a:ctiop i, 
~3,OOOOOOO _ ~ 

'I " 07500000 - 4' 
, " 

So that 'f = 0,75; and in fact irs + Th = H~ = I. 
, The' fraction i is changed into a decimal fraction, by making 

4) 5,0000000 .5 
-12500000=4' 

,- '" ' 

, Now 1 + /k = 1. , " 
473. In thesamemaoner,-j-'will be foundequiU to 0,2; t = 0,4; 

t =' 0,6; t = 0,8; ! = 1 ; t = 1, 2, &c. ", 
Wh!!n tpe denominator is 6, we find i = 0,16($6666, &c. which is 

, equal to 0,666666 - 0,5. Now 0,666666 ' t, and 0,5 = i, 
wherefore 0,1~ -:- 1-i = t. 

We find, also, f, = 0,333333, &c. =,.; but .. becOmes 
0,5000000 = i., Further,,, =' O,~ ....:.. 0,333333 + 0,5, 
that is to say, t + i = •. , 
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" 474. When ,the deDomi~_tor is 7, the decimal,fract!ODS ~e 
more €;Omplicated. For example, we find + = 0,142857, however 
it must' be obsp.rved, that these six figures are repeated coniinu~y. 
To be convinced, therefore, thai this decimal fraction precisely ex­
.presses the valpe of. t, we may transform it, into a 'geometrical 
progressi~, whose first term is = -.faWN'I1 and the exponesit 

'= nodo en"; and,conseq~ently, the sum (art. 464) = 1 'n\~~ 
. . 1000000 

(multiplying both terms by 1000000) = **00 = f· 
475. We may prove, in a manner still more easy, that the deci­

mal fraction which we have found is exactly = t; for substituting 
for its value the letter " we have 

. , . 
, = 0,142857142857142857, &c. 

10 , = 1,42857142857142851', &c. 
100, = 14, 2857142857142857, &c. 

1000 I = 142, 857142857142857, &c. 
10000, = 1428, 57142857142857, &c. 

100000, = 14285, 714281)7142857, &c. 
1~, = 1~57, 142857142857, &c. 
Subtract I = 0, 142857142857, &c. 

999999 8 = 142857. 

And, dividing by 999999, we have I = Hllit = f. Where­
fore'the decimal fraction, which was made = I, is = ~"' 

476. In the same manner f may be'transformed, into a decimal 
fraction, which will be 0,28571428, &c. and tIiis enables us to find 
more easily the value of the decimal fraction, which we have sup­
posed ~ 'j because 0,28571428, &c; mrist, be th~ d~uble of it, 
aod consequently ~ 2 I. For we have seen that 

, " 100 8 ' 14,28571428571 &c. 
So that subtracting, 2, I = 0,28571428571 &c. 
, ----~'--------~----
there remains' 98, = 14 
wlierefo~ , I ,= .... = f. ' 
We-. also find f = 0;42857142857 &C. which, according to our 

suppositiou, must be = 3 '; now we have found that 
10 1== 1,42857142857 &c., 

, So that subtracting 3 I =:= 0,428~7142El57 &c. 

, we have 7 , = 1, wherefore I = '.f-. 
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47'1. When a proposed fraction, therero..e,has the denominator 7., 
tb"e-deciin9J,fraction is infinite, and 6 figures are continually repeat-ed. 
The reason'is,as it is .easy it) j)erceive, that whenweoontinue the 
ditision we'must return, sooner or later, to a remainder which we 
h~ve had Mready.· Now, in this division, 6 di1r~rent numbers only 

, can: form die' remainder, namely, 1, 2, 3,4, p~ 6; so tb~t, after ~he 
sixth division, at furthest, the same figures must retum; but "When. 
the deabmiriator is 'soch as to lead to a division without remainder, 
these cases' do 'no.t happ~n;' . . ' . 

478.~uppose, DOW, that 8 is th~ denom~at6r of the, fraction 
pt'OpQSed,; we shall find the folloWing decimal fractions ; 

. ," '. . " I 

l = 0,125; 'f = 0,25; i:;:::: 0,375; t = 0,5; t == 0,625; . .' , 

.. -.0,75; t = 0,8.75; ·&e •. 

If 'toe cIeno~inator be .9, we have i = 0,111 &c.; f =; O~ 
&c:; i =:= 0,333 &c~ . 
- Iftbe denoroinakJ~ ~ ~o, we,have : 

* = 0,1; ti,-'= 0~2; * = 0,3. 
This is evident tiomthe nature ~f the diing, as also that'Th- = 0,01; 
th~ fh = 0137; that NIrr0,256 ; that r#trn == 0,0024 &c. 

4'19 •. If 11 be the denominator of the given fraction, we $hall have 
n =:=0,0909090 &e. No~, suppOse it were required to find 
the 'Value of this decimal fraction ;','1et us'cali jt I, we sha}l, have 
1= 0,0.90909, and 10 I == 00,909090; fi,lrther 100 I = 9,09090: . 
if therefore, we subtract from the laSt the Value of I, we shall ba.ve 
99'." =;= 9, and consequently ,..= h'-.:..ft. We shall bave, alsol 

lr = 0,181818 &c.; !r = 0,27~27 ~c.; A = 0,545454 &c. 
460. ThE!re is' a great number of deCimal ~tions,·therefore, in 

which one; two, or more figures ,con$tantly recur, and. wbich .. eon­
tinue thus. to . infinity. SUch fractions are curious, and we. shall 
show how tbeit vQlue~ maybe .easily fQuod. . . .' 

Le~'us fu.st sUppOse, that a singl~ ·figure.i1i coilStantly 'repeated, 
and le~ us represent it by lJ, so that ~ := O,aqaaaaa. .We have . 

. ., " " . 
. ,10 I, = a,aaaaaa" 

and sUbtracting . -. == O,aaaaaaG . . 

'we have 
.' " ,a 

. 9 I =;a;wheret:Qre • ....:. 9. 

to 

Digitized by Google 



Chap. 11. Of Ratio. and Proportion. 153 

. When two fig!U'6S are repeated, as a 6, we have , == O~abababa.· 
Therefore 100 , == a6,ababab; and if we subtract' &om it, there 

remains 99 , = a b; consequent1y , = ~. 
When three figures, as a 6 0, are found repeated, we bave 

., = O,abcabcabc; conseque~tly, 1000, = abc,abcabc; and sub-

Ji • b .' I. b l". .abc tract, 10m It, t ere remams 999 , = a u C; W erelore s = 999' 

and so on., 
. Whenever, therefore, a deCimal fraction oftbis kind· occurs, it is 

elsy to find its value. Let there be given, for example, 0,296296, 
its nlQe will be ill = -Irr, dividing botb terms by 27. 

Tbis fraction o.ugbt to give again the decimal &ae.tion propoSed; 
a!ld we may easily be convinced that tbis i$ the real result, by di­
viding 8 by.9, and then that quotient by 3, because 27 == 3 X 9. 
We have 9) 8,0000000 . 

3) 0,8988888 

0,2962962, .&c. 
which is the decimal fraction tbat ~as proposed. 

481. We sball give a curi~us example by cbanging the f~tion 
'1' . .. 

1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10~intoadecimelfractioD. 
~e operation is as follows: . 

Eul • .dig. 

2) 1,00000000000000 

3) 0,50000000000000 

4) 9,16666666666666. 

5) 0,.04166666666666 

6) Q,00833333333333 

. 7} 0,00138888888888 

8) O,OOOl984126~1 . 

9) 0,00002480158730 

10) 0,000002755731~ 

0,{)()()()()()27557319 
20 

, 
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SECTION IV. 

or ALGEBRAIC EQUATIONS, ~ or THE llESOLUTION or TBOBB 
EQUATIONS., , 

CHAPTER I. 

01 the Soluti01l 01 Problem. in general. 

ARTICLE 482. The principal object of Algebra, 81 well as orall 
tbe parts of Mathematics, is to determine, the value of quantities 
which were before wiknown. This is obtained by considering atten­
tively,tbe conditions,given, which are always expressed ,in known 
numbers. For this reason Algebra has been defined, The SciBRCC 

w1&icA teaeAes low to determine unknotoR quantities by means of 
k1iOtoR quantities. 

483. The definition which we have now given, agrees with all 
tbat bas, been hitherto laid down. We have always seen the 
knewledge of certain quantities lead, to that of other quantities, 
which before might have been considered as unknown. 

Of this, addition will readily furnish an example, To find the 
sum of two or mare given numben, weba~ to seek for an unknown 
number which should be e'qual to those known numbers taken to­
gether. 

In subtraction we sought for a number which should be equal to 
tbe difference of two known numbers. 

A multitude of other examples are presented ,hy multiplication, 
Qivision, tbe involution of powers, and the extraction of roots; The 
question is always redu~d to finding, ~y meaDI of known quanti­
ties, another quantity till then unknown • 

• 
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. ' 484. In the last section also, different questions were resolved, 
in which it was required to determine a number, that could DOt be 
deduced from the knowledge of other given nllmbers, except un­
der certain conditions. 

All those questions were reduced to .finding, by tbe aid of lOme 
given numbers, a new nUmber which should have a certain connex­
.ion with them; and this connexion was determined by certain con­
ditions, or properties, which were to agree with the quantity 8OU!hl~ 

485. When we ha"e a queltion to ruoZ"e, we repru~t tAe ftUm­

ber .ought by one of the lalt letter. of the alphabet, and thm con­
lider in what manner the gi"m conditiom can form. an equality 
between ttDO quantities. This equality, which is represented by a 
kind of formula, called an equation, enables us at last to deter­
mine the value of the number sought, and consequently to resolve 
the question. Sometimes several numbers are sougbt; but they 
are found in the Bame manner by equations • 
. 486. Let us endeavour to explain.this further by an example. 

Suppose the following question, or problem was proposed. 
Twenty persons, me~ and women, dine at a tavern; tbe share 

of the reckoning for one man is 8 sous,· that for one woman is 7 
10US, and the wbole reckoning amounts to 7 livres 5 sous; required, 
the number of men, and, also of women? 

In order to resqlve this question, let us suppose that the number 
of men is = 11:; and now considering this number as known, we 
shall proceed in the same manlIer as if we wished to try whether it 
corresponded with the conditions of the question. Now, the number 
of men being = 11:, and the men and women making' tGgether 
twenty persons, it is easy to determine the number of the women, 
having. only to subtract that of the men from 20, that is to say, the 
DUmber of women == 20 - 11:. 

But each man spends 8 80US; wherefore II: men spen~ 8 II: sous. 
And, since each woman spends· 7 sous, 20 - II: women must 

spend 140 ~ 7 II: sous.· . 
So that adding together 8 II: and 140 - 711:, we see that tbe 

whole 20 peqlOns must spend 140 + II: SOUS. Now, we know 
already how much they have spent; namely, 7livres 5 sous, or i45 . 
sous; there must be an equality therefore between 140 + II: and 

• A ~U8 is ra of a livre; a livre i of a crOWD, or 17 cents 6 mills. 
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145; that is to say; we have the equation 140 + Ie = 145, ad 
thence 'we easily deduce.21 === 5. ' , " ' 

So tbat the cOmpany consisted of 5 men ~d:15' women. 
487. Another quution of the .ame kind. ' 
Twenty persons, men and women, go to a tavern; the men 

spend fU fiorios, and th., women as much '; but it is fOund that 
eaobman has spent 1 florin more than each woman. Required, 
tM Dum~r of men and tbe DUmber of women r ' 
, Let the number'of men ~ .21. 

That of the womeD will be = 20 - ft. 
Now these .21 men hamg spentfU Borins, the sb..e.' of each 
" • 24 B . man Ill. ~ onus • .21 
Further, the 20 - 11: WOOleD having aIsospent t4 florins, the 

24 ' 
share of e~h woman is 20 --a:' Borins. , 

Buf we know that the share of eaCh woman is one Borin less than 
that of each mIlD; if, therefore, we subtract 1 from 'the share of " 
man, we must obtain that of 8 woman ;', and conSequently 

24' 24 
. : -1= ---. 

11: 20..,-11: . 
This, therefOre, is the equation from wbich we are to deduce the 

value ot:iJ. Tliis value is not found witb the same ease as in tbe 
precedihg question; but ~e shall soon see that 11: :...... 8, whicb value 
corresponds to the equation; for V-I = H includes tbe equal-
it12=2. . '. 

488. It is evident how essential it is, in all problems, to consider 
tbe circumstances of the 'question attentively~ in order to de~tice 
from it an equation, tbat shall express by letters tbe numbers sougltt 
or upknown. After that, the wbole art consists in resolving those 
equations, or deriving from tbem tbe values of tbe unknown num­
bers; and this shall be die subject of the present section. 

489. We must remark, in the fint place, tbe diversity whieb 
subsists among the questions themselves. In some, we 'see~' only 
for one unknown quantity ; in others, we have to find two, or more; , 
and It iS,to be observed, with regard to tbis last case, that in order 
tb determine them all, we must deduce, from the ciroumsiaD:~es, 
or'the condiiiops of the problem, as 'many equations as tbere are 
unknown quantities. . 
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490. It must have already been. perceived, that an.equatioo COD- ' 

sists of two parts separated by' tbe sign of equality, =, to sbow that 
those two quantities are equal to one another. We are often obliged 
to perform & great Dumber of-transformations on those 'wo parts, in 
order to deduce from tbem tbe value of the unknown quantity ; but 
these transformations must be all foonded. on the following princi­
pies; that two qumatitiu remain equal, fI?laether we add to- them, 
or mbtract from tAem equal qucmtitiu; whether we multiply them, 
or dif1itk tkem by the ,ame number; whether"'e raue them ooth 
to the same power, or e:J)tract their roots of the ,ame degree •. 

491.· The equations, which are resolved m!lSt easily, are tb~e in 
which the unknown q~antity does not exceed tbe,first power, after 
the terms of the equation have been properly arranged; and we call 
them rirwplc. equations, or equations of I1&e fir.t degree. But if, 
after baving reduced and ordered an equation, we find in it tbe square, 
or the second power of the unknown· quantity, it may be calle~ an 
. equation of tAt ucond tUgr66, which is more ditlioult to reaolve •. 

CHAPTER II. 

Of the Ruoltition of Simple Equ~tiORl,' Of' Equations of the 
Fir,t· Degree • 

. 492. WHEN the number sought, or tbe unkD~wn qu~ntity, is're­
presented by tbe letter ~, and tbe equation we ba ve obtainecJ is such, 
that one side contains only tbat ~, and the other simply a knowo 
number, as fQr example, ~ ;= 25, tbe value of ~ is already found. 
We must always endeavour, therefore, to arrive at such a form . , 
howeve~comp~icated the equation may be wb~n first formed. We 
shall give, in the course or this section, the rules wbicb serve to 
facilitate these reductions. . , 

493. Le~ us.begin with the'simplest cases, and suppose, first, that 
we have arrived at the. equa.tion ~ + 9 = 16 ; we see immediately 
that ~ =,. And, in general, if we have found ~ + a = 11, wbere' 
a and· b expfell aay bown Dumhel'8, we have only to subtract a . 
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from both sides, to obtain the equation x = h . ......; fI, whiCh indi­
. cailf.7E the EEIEe of 

494. If the equation which we have found is x - a = b" we 
add to bnth sidEs~ End nblsin thfij naluu ufx = h + 'a~ 

prfE~fssd in samE manuuY'f if baY' this 
x-a= aa + 1; for we shall have immediately x =aa + a + 1. 

this - -6 we 

x = 20 - 6 a + '8 a, or x = 20 + 2 a. 

III a = + we hUEe x 50 + 
orx= 20-3 a. 

495. If the original equation has this form, x ...:... a + h = c, we 
may begin to sidffff, whicb fEill giUff + b c + 
and then subtracting b from both sides, we shall find x = C + Ii - h. 
But me alsu ffhd + - b onCE ilO borh side'l by tbi1§ 
we obtain immediaKdy x .:::.= C + - h. 

So in the following e1lUllples: . 
ff x a h Wu hffve 2 3 
If x - 3 a + 2 h = 25 + a + 2 h, we have x = 25 + 4a. 

x + - + we huue x 34 4 a. 
4bKZfr. When the nquatifskf which me haaf'; foud has form 

h, £)nly hiffide and haru 
b. 

BUt if the equation has the form Cl x + h - C = d, we mustfirst 
mah£) the t£)F:ms that accomprmy VaD18kf f to buth sidu8 
- h + C; and then divihiog the new equurion, a = d ~ h + u, 

by me havu = d.' ~ C 
a· 

We should have found the same value by subtracting + h - , 
from the equutiun; is, ;should have in samu 

, - +c 
form, a x = d - h + c, and x = ----. Hence, 

a 
H x + - we 2 12, und x 6. 
If 3 x - 8 = 7, we have 3 x = 15, and x = 5. 
Ir IX - - + 9 we 4 = 20 ' 12 

and, consequEntly, =·5 3 a. 

4Ph the 

both sides by a, in ord~r to have :II = a h. 

But if '\\Tn hnve b 
a 

h, we mnltiplh 
a. 

"I ,n.c 



Chap. Sl. Of -Egvatiofll. 

I» 
-=d-b+c, a . 

after which we find ~ = (cl- b + e) ~ = a d -a b + e. 
Let i I» - 3-= 4, we have -j- II: = 7, and I» = 14. 

159 

-Let * I» - 1 + 2 a =3 + a, we have * I» = :t - a, and 
II: = 12'::'" 3 a. 

I» I» -
Let --I-I=a,wehave --1 =a +l,andl»=aa-I. a- a- . 

498. When we have arrived at such an equation as T = c, we 

first multiply by b, in order to havE! d I» b e, and then dividing 
. _be 

by II, .we find II: - -. 
II 

H at - e = d, we begin by giving the equation this fonn 

all: 
T=d+c,_ 

after which we obtai~ the value of a II: = b d + b c, and that of 
- bd+be 1»=----. 

a 
Let us suppose «1»-4= 1,.weshall have ill: = 5, and'2l» = 15; 

wherefore II: = y, or 7-j-. 
-H t x+ i=5, wehaveix=5-j =1; wherefore31t= IS; 

and I» = 6. 
499. Let us now consider the c~, which may frequently occur, 

in which two or more terms contain the letter It, either on one side 
of the equation or on both. 

If those terms are all on the same side, as in the equation 
x + i x + 5 = 11, we have x +! x =6, or 3 x = 12, and 
lastly, I» = 4. 

Let II: + i x + i I.D = 44, anellet the value of II: be required :if 
we first multiply by 3,:we have 4 II: + i II: = 132; then multi­
plying by 2, we have 11 I.D = 264; wherefore II: = 24. We 
might have proceeded more shortly, beginning with the reduction 
of the three terms which contain 11:, to the single term \f I.D; and 
then dividing the equation \f II: = 44 by 11, we should have had 
l x = 4, wherefore II: = 24. 

Let' f a, - f x + _ i II: = 1, we shall have, by reduction, 
-b II: = 1, and {JJ = 21. -
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Let, more generally, tllIJ - b.1IJ + C IIJ= 4; tbis is the same as 

(tI-b + c) IIJ = d,whencewe derive IIJ = tI-: + c· 

500. When there are terms containing IIJ on both sides of tbe 
equation, we begin by making such terms -.anish (rom . the side 
from which it is mOllt easily done; that is to say, in which there are 
fewest of them. . . 

If we have, for example, the equation 3 IIJ + 2 = IIJ + ,10, we 
must first subtract IIJ from both sides, which gives 2 IIJ + 2 = 10 ; 
wbe~fore 2 IIJ = 8, and IIJ = 4. 

Let IIJ + 4 = 20 - IIJ; it is evident that 2 IIJ + 4 = 20 ; aDd 
consequently 2 IIJ = 16, and IIJ = 8. 

Let IIJ. + 8 = 32 :...- 3 IIJ; we shall have 4 IIJ + 8 = 32; then 
4 IIJ = 24, and IIJ = 6. 
~t IS - IIJ = 20 - 2 IIJ, we sball h!lve IS '+ rp = 20, and 

IIJ=S. 
Let 1 + IIJ = 5 --: -j IIJ, we shall have 1 + } I1J =·S;. after 

'that i IIJ = 4; 3 IIJ = 8; lastly, IIJ = 1 = 21. 
If ~ - i I1J = i -:- fllJ, we must add i IIJ, which gives ~=i +' 

, n IIJ; subtracting i, there remains n IIJ = i, and multiplying by 
12, we obtain III = 2. ' 

If I! - i 11) =! + ~ IIJ, we add illJ, which gives l~";"! + IIlJ. 
Subtractingt, we have f IIJ = It, whence we deduce IIJ = 1ft =yl, 
by multiplying by 6, aDd dividing hy 7. , 

501. If we have an equation, in which the unknown' number ~ 
is a denominator, we must make the fraction v,anisb, by multiplying 
the ~hole equation by that denominator. ' . 

. ' 100 
Suppose. tbat we haye founc\ --,-...,. - 8 = 12, we first add-8, and 

IIJ • 

b ,100 nl\tb ul'l" b h" an. ave - = M1; en m tIP ylOg y IIJ, we ave 100 = oat IIJ; 
IIJ 

and dividing by 20, we find IIJ ~ S. 

Le slIJ+a' 7 
t --- =:; • 

IIJ-l 

I, 

If we multiply by IIJ - 1, we have. ~ IIJ + 3 = '7 IIJ·- '7. 
Subtracting S lIJ;there remains 3 = 911J.-"i. 
Adding ,,!,we have 211J ,'10. Wh~fore IIJ = S~ . 
5O~.Some.times, also, radical signs are found in equations of the 

first degree. For example, a nUlilber IIJ below 100 is required,and 
such, that the square root of 100 - IIJ may be 'equal to 8~ or 
:V(lOO -:r) = ~; tbe square of both sides will be l00"';'IIJ:;::: 64" 
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and adding IlJ we' have 100 = 64 + ri';' whenCe we obtain ' ' 
'm == 100 .:- 64 == 36. ' . 

Or, si~ce 100 - IlJ .;;;;. 64, w~' ~ight have 'subtraCted I 00 ~ 
both sides; ami we should' tb~n have'had..2 x = - 36; whence, 
multiplying by - 1, 1lJ' = 36! 

" .. 

CHAPTER In~ , 
, . 

Of the SolutiOfl of QuutlOfll relating to tk. preceding Chapt,,;. 
. .'- . 

503. Question 1. To divide 7 into two'sucb parts, ~ttbe 
greater may e~ed the less, by 3. , 

Lei Che, greater part == 1lJ, 'the less 'will be = 7 ...:.. IlJ '; 80 that 
1lJ=7':'-1lJ -+ 3,0l'1lJ= lO-llJjadding3J,wehavefb='lOj 
and, dividing by '2, the result is IlJ ::::::;: 5. ' .' , 

A1II1I1er. 1'hti greater, part is therefore 6,;and the leSlds,g. , 
QusmoR II. 1t is required tb divide a into' two plirts, SO' lbat the 

grkter may, exceed the less by b. ' " I, , 

Let the greater part = fIJi the other ~n 'be a, -- {/) ; ;10 tb.' 
il =* a ~ IlJ + b:; adding ~" we have ~ IlJ == a -+ /); .aDd' tIiri- ' 

• ".,', a+b ... " 
ding by 2, IlJ = -2-' 

Anot1aer Solution. I.e( the greater part, =. 1lJ; and, as it exceeds' 
the lesS by 11, it is e'Vident that the leSs is li~aller th80 the otberby 
h, aodtberefore must be -:- IlJ - b. Now theSe two parts~ takel1' 
together, ougbt to ~ke a; so lha~ 2 fIJ - b = a; adding 6, we 

ha~e 2 (J) == a '+ bj wherefore 1lJ,= ,"t,b, '~hi~b is' the ~~~ of 

the greater part; tbat of the less will, be 

0+11 'o+b' 2b (I-b" 
~ - b,oOr -2- - -W, or "'T' , 

504. Quuti,on III. A {ather, who hu three SODS, lea"ves thetn 
1600 crowns. The w~lspecifies1 that the eldest sh~n have ,200 

, cro~s 'more than the second, and that the secOnd shall have 100 
crOWn. more 1hm the youngest. Required' the share or each? . " 

1Jul. AW. 21 
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Let the .bare of the third son -= 11:; _,tbatQr tbe. second 

will be = :» + 100, and that of the first = :» + 300. Now these 
three shares make up together 1600 crowns. We. ba~e, there~ore; 

: . 3 (e, + 4QO == 1600 ' " " 
3:» = 1200 

and II: = 400. 

oSwer. The s~ate of tbe youngest is 400 crowns; that oltbe 
second is 500 crowns; and tbat of the eldest is 700 crowns. 
. 505. Quution IV. A father leaves rour sons, and 8600 livres ; 

according to tbe will, the share of the eldest is to be double that of 
the second, minus 100 livres; the second is to receive three iimes 
as much as ~be tbird, minus 2OO'livres; and the third is to receive 
four times as much as tbe fourth, minus 300 livres. Required, 
the respective portions of tbese four sons? ' 

Le~ us call II: tbe pO~ioD of the youngest; that qf tbe .tbird son 
will be ' 4 II: -...:. 300; that of the second = 12 II: - 1100, and 
that of the eldest = .24 II: - 2300. The sum 'of these' four shares 
.nust make 8600 li~s. We have, therefore, tb'e ,equation 

41 II: - 3700 = 8600, Of 41 II: ~ 12300, ~d ~ = 300. 
, ~er. The youngest must have 300 lines, the third son. 900, 
the second 2$00, and the eldest 4900. 

506. Quedien V. A man leues 1100 CIOWDS to be divided be­
&weon his widow, t"o'8OO8, and ttu'ee daughters. ·He inteJids Jhat 
the mather should-receive twice. tbe. share of a son"and each SOD 

to receive twice u much as a daughter •. Required, bow m\lch • 
each or tbem is to receive? 
. Suppol8' the share or a daughter = 11:, that of a 8Qn . is COJlS&o 

~I:¥tndy,:= 2 11:, and tbat of t~ widow = 4 11:; tbe whole inherit ... 
~ce is therefore 3 . .7l + 4 II: + 4 11:; so tbat 11. 11:= llOOQ, and 
a: == 1000. ' . 

A.nIwer. Eacb daugbter receives 
So tbat tbe three fecei'B in all 
Each SOD receives 2000 crowns, 
So that boih ~ sons receive 
And the mother receives 

• 

1000 CroWDS, 
3QOO 

4000 
4000 

. Sum 11000 crowns. 

.' 

( '~. Quution Vi A father int~~ds, by his Will, that bis three 
~ sb~' ~re ~ pro~y ~ the following m~er i the eld~ 
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is to receive 1000 crowns. I ... tho balf dl8·.wlde.bt.uM.; the 
second is to receive 800· Cl'8wns less·thao .the third Q' tbe, .• J,ole 
property; and the third' is to have 600 cro~II·188l· than the fourth 
of tbe property •. Required, the sum of dlew.bole fortune, and 
tbe portion of each son ? 

Let us express tbe fortUDe. by It. 
Tbe sbare of tbe first SOD iii i It - 1000 
Th," of the second . i It - aoo . 'I.' 

Thllt of tbe third· i'{/) - 600. 
So tbat the ih~ SODS receive in all ! 11: + ! 11: +'! ~'-,-~ 

and .this 8um must be equal to 11). .' . 

We have, therefore, the equation H I» - 2400 = 11:. . I 

Subtracting 1», there remains, n /1).- 2400= 0.· 
Adding 2400, we have ..('.1 11: == 2400.. Lasdy, IDIIltiplyi., by 

12, tbe product is 11: equal to ~800. 
A1IIUJer. Tbe fortune consists. of 28800 croWJlS, a,nd 

The eldest of the SOIlS ,receives J 3400 croWDS . 

The seeond 6800· 
. The youugest $)00 

28800 crowns. 
508. QlIe~tio7& VII. A fath~r leaves four sons, who sb~ his 

»>l'Operty in the fbllowibg maDDer: 
Tbe first takes tbe half of the fortune, minus aooo.livres. 
rile secoR,hakes the third, minus 1000 livNI. ' .'. 
Tbe third takes exactly the fourtb of the property. . 
The fourth takes 600 livres, alid tbe fifth part of the ptoperty. 
What was the wbole fortUne, and how much did 'each son re-

ceive? 
Let the whole fortune be = 11:; 

, . . The eldest of the SODS will have i rt - 3000 
Tbe secon~ * 11:- 1000 
Tbe. third 'lit . 
The y,oungest '. 111: + 600. . . 

. 'rhe four.wilfhave received in alii It + il1: + il1: +!1t.-84OO, 
which mu~t be. equal to x. '. .' '.. '. 
~hence results tb~ equatio~ it ~ ~ 3400 = rt; 
Subtracting x, we have it x -. 3400 .:.:... 0 ; 
Adding 8~, we.have it x = 3400:; 
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DmcIing by 11, we aft '" ~ == 100 ; 
Multiplying by 60, we baYe e == liOOO • 
.A.anDer. The btuoe consisted of 12000 Jimll. 

Tho fint SOD received aooo 
The second 3000 
The'tbird 3000 
The IOurtb 3000 

509. QlUltioR VIII. To find a number sucb, tbat if we add to 

it ~ts half, the sum exceeds 60 by as much as th'e number itself is 
Illes 'to 65. . . 
. Let tbe number = ~, then :J# + I e - 60 = 65 - I: I diltis 
to say, I ~- 60= 65 - 2; 

Adding I.e, we have ll: - 60 = 65; 
Adding 60, we have 1 ~ = 125; 
Dividing by 5, we have * I: = 25 ; 
Multiplyi.ng by 2, we have 2 = 50 • 
.Aftltl1er." The number sougbt is 50. 
510. Quution IX. To divide 32 into two such parts,that if the 

less be divided by 6, and the greater by 5, the two quotients -.kea 
together may make 6. 

Let the less of the two parts sought = ~; the greater will be 
I: = 32 - ~; the tint, divided by 6, gives 6; the 1eCOIld, divided 

by 5 · 32-l.e. I.e 32-1.e So &L_& _,..: ~ , 
,gaves -5-; DOW, 6 + 5-= 6. wu Ulunaplylng 

by 5, we have t I.e + 32 - ~ = 30, or - i ~ + 32 = 30. 
Adding ... I.e, we have 32 =30 + I I.e. 

Subtracting 30, there.remains 2 = ... ~. 
Multiplying by 6, we baYe ~ == 12 • 
.,4711t11er. The two parts are; the less = 12, the greater = 20. 
511. Quution X. To find such a number, that if multiplied by 

6, the product shall be as much less than 40, as \he Dumber itself 
. is less than 12- . 

Let us call this number ~. , It is less than 12 by 1~ - ~. 
Taking the number I.e five times, we have 5 ~t wbich is less than 
40 by 40 .:..... 5 ~, and this-quantity must be equal to 12 - I:. 

We have therefore 40 - 5 ~ = 12 -~. 
Adding 5 ~, we have 40 = 12 + 4 ~. 
Subtracting 12, we have 28 = 4 fr. 

Dividing by 4, we have I: = 7, the n~ber sought. 
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512 •. ·Quutio.,. XI. To.divide 25 into two sucb parts, thatthe 
greater may contain the l~ss 49ti~es. . 

Let the less part be .= oX,. then the grealer win be = 2S - oX. 

The latter divided by, the former ought to give the quotient 49; W$ 

.25-oX . 
have therefore -- =49. 

oX 

Multiplying by oX, we bave 25 -:- oX = 49 oX • . 

. Adding.x '. 25 = 50 oX. 

And dividing by 50 oX = i. 
dmwer • . The less of the two numbers sought is t, and the 

,reater is 24t; di"iding therefore the latter by t, or multiplying by 
2, we obtain 49. 

513. Quution XII. To divide 48 into ninepa.rts, so that every 
part Illaybe always -l greater than tbe part which precedes it. 

Let the first and least part = oX. the se~d will be = oX + j., 
tbe third = oX + 1, &.c. ' • . 

Now these parts form an arithmetical progression, whose first . 
term = 3); therefore the ninth and last will be = oX + 4. Adding 
those two terms together, we have 2 oX + 4; multiplying this quan­
tity by the number of terms, or by 9, we have 18 oX + 36; and'di­
viding tbis product by 2, we obtain the sum .of all the nine parts 
= 9 oX + 18; which ought to be equal to 48. We have, ·there-
Core, 9 oX + 18 = 48. . . , 

Subtracting 18, there remains 9 oX = 30. 
And dividing by 9, we have oX = 3i. 
Answer. The first part is 3i, and the nin~ parts succeed in the 

following Order: ' . 

1 234 567 8 9 
~+~+q+q+~+~+~+~+~ 

which together make 48. 
514. Question XIII. To find an arithmetical progression, whose 

first term = 5, fast = 10, and sum = 60.. , 
Here, we know neither .the difference, nor the number of terms; 

but we know that the first' and the last term would enable us to ex- . 
press the sum of the progression, provided only the number of terms 
was given. We shall, th~refore, suppose this number = x, and 
, '. 15 J: ' . 
express the sUIll of the progression ·by T ; DOW we know also 

. ' . . . ' 15 oX . ' . . ' 

that .ms sum 11.60; 10 "-1 T =10' 6O;.i III = 4, ucill == 8. 
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. Now, sinc'e the number' of tertns is 8, if we' sUppose'·the dider­
ence = %, we have onty to seek for the eighth tenn upon this sup. 
position, and to make it = 10. The second term' is'5 + %, the 
th.ird is 5 + 2 %, and the eighth is 5 +7 %; so thut 

5 + 7 %= 10 
7%= 5 

alid % == ., . 
.Amwer. The difference of the progression is t, and the nuniber 

of terms is.8; ~nsequently the progression is . 
123 4 . 6 6 7 8 
Ii + 0++ 6f+ '7++7++ 8t+ 9f+ 10 

the sum of whi~h = 60. 

'! .1 

515-., Quution XIV. To find such a number that if 1 be ,sub­
,tracle4 from its doubl,e, ,and the remain~er be doubled,. tht?n if 2 be 
subtracted, and the remainder divided by 4, the nwnbc:r resul~Dg 
Uom the.se operations shall. b~.1 less than the num.ber sou~t •. 

Suppose this number = :xJ; the double is .2 <r:; !Jubtrac;tinft ~, 
thftre .remai~, 2 /IJ - I,; doubling this, we have 4 rt - 2 j ,sub­
tracting 2, there remains 4, rt ~ 4 ; dividing by 4, we have /IJ -:-1'; 
and this must be ope less than rt; so that, rt ..-:. 1 = rt -:- 1. , 

But this is what is called an identical equation; .a.nd shows t~at 
rt is indeterminate; or that any number whatever may be substit~. 
~b~ ._ 

516. Question XV" I bought some ells of doth,at the rate of 
7 C~WJls for 5 ells, which I sold again at the ~te of 11 crowns for 
7 'ells, and I gained 100 crowns by the traffic. How much doth 
~th~? . . 

Suppose that there were rt eDs of it; we must first see how 
.much the cloth cost. This is found by the following proportion: 

If five ells cost 7 crowns; what do rt ells cost? 
..dwer, t rt crowns. " . • 
This was my expenditure. Let us now see, my receipt; 'we 

must make the following proportion; as '1 ells are . to 11 clowns, 
110 are 1£ ells to y 111 crowns.· , ' . 

ThiS receipt ought to exceed the ·expenditure by If)() croWDS ; 

we nave, therefore, this equation, ' .. 

'y Ir == i t21 + 100; 
Subtracting t rt, there remains -A rt = 100. 
Whel'eiIN 6 rt == aooo, aDd t21 ~ 583t. . .. " 
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' .. "'".r.. There were',oe3l eUs, wbich. m.rebought for S!6j 
crowns, aDd sold. ag~n for 916* CroWDS, by which means the pro-
fit was 100 crowns. . 

5lT. Que.tWn XVI. . A person buyS 12 pieces of cloth for 140 
crowns. Two a", white, three are black, and seven !U'8 ·blue.: A 
piece of the black cloth costs two crowns more. than a piece of the 
white, and a piece of blue cloth costs three crowns more than a. 
'pieee of black. ,Required the ,pric.e of each kind? 

Let a white piece cost!J) crowns; then the two pi~s of this kind .. 
will cost 2!J). Further, a black piece costing!J) + 2, the' three 
pieces of tbis colour will cost 3 !J) + 6. Lastly, a blue piece costs 
!J) + 5 ; wherefore the seven blue pieces cost 7 t£ + 35~· So that 
tbe twelve pieces ameunt in all to 12 !J) + 41. . 

Now, the actual and known price of these twelve pieces is 14Q 
• crowns; we have, therefore, 12!J) + 41 = 140, and 12 fI) == 99; 

wherefore IC = 8i ; 
. So that a piece of white cloth costs 81 crowns ; a piece of black 
cloth Costs lOt crowns, and a piece of blue cloth costs 13l crowns. 

518. Question XVII. A man, having bought some nutmegs, 
'says that three nuts cost as much more than one sous as four cost 
him more than ten liards: Required, the price of ,hose nuts? 

We shall call !J) the excess of the price of three nuts above on~ 
sous, or four liards, and shall say; If tbree nuts cost!J) + 4}iards" 
four win COllt, by the con~ition of the. question, !J) + 10 lia~s. 
Now, the price of three nuts gives that offour nuts in anothenvay 
also, namely, by the rule of three. We make 3 : IC + 4 = 4 : 
Amwer, 4 !J) + 16 

. 3 

So that 4 IC t 16 =!J) + 10; . or, 4-!J) + 16 = 3 IC + 30; 

whe~fore IC + 16 = 30. 
and !J) =.14. 

·Answer. Three nuts cost 18 ~ards, and four cost 6 sous; 
wherefore each cost 6 liards. 

519. Question XVllI. A- certain person has two silver cups, 
'and only one cover for both.' The ~t ~p weighs 12 ounces, 
and if the cover be put on it, it weighs twice as much as tbe other 
cup; but if the other. cup be covered, it· weighs three times all 

much as the first: Required, the weight of the second cup and' 
that of the cover ? . . '. 
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Suppose tbe weigbt of tbe cover = ~ ounces; the first cup being 
covered will weigh 111 + H~ounces. Nowtbis weight beingdou'ble 
that of the second cup,.this cup mus~ weigh i 111 + 6. If.it he cov- ' . 
ered, it will weight 111 + 6 ; and this weight ougbt to be the triple 
of 12, \bat is, three times the weight of the 6rst cup. We sball 
therefore bave the equation f Ie + 6 = 36, or i 111 = 80 ; where­
fore i 111 = 10 and 111 = 20 • 

. Amwer. The cover weighs 20 ounces, and the second cup 
weighs 16 ounces. 

520. Quution XIX. A banker has two kinds of change; there 
must be a pieces..of the first to make a CroWD; and there must be b 
pieces .of the second to make the same sum. A person wisheS to 

have c pieces for a CroWD; how many pieces of each kind must the 
banker give him ? . . . 

Suppose the banker gives 111 pieces of the first kind; it is evident 
that he will gi~e c -:r; pieces of the other kind. Now, the :r; pieces 

. :r; .:r; 
of the first are worth a CroWD, by ~e proportion a : 1 =:r; : a; and 

. c-:r; . 
the c -:r; pieces of the second kind are worth -6 - crown, because 

. C-111 
we bave ~ : 1 = c -:r; : -6-" So that 

:r; c-:r; 6:r; . -
- + -6-= 1; or -+c-:r;=b; or6:r;+ aC-Gm= all; 
G a 
or rather, b :r; - a :r; = a b - a C; whence we have • 

ab-ac a (b-c) 
·:r;=---or:r;=----· . 6-a b-a 

Consequently, 
b c - a 6 6 (c - a) 

c-:r;= b-a =T...=-t.l· 
a (6 - c) . . 

Aww. The banker will give 6 _ (l. pieces of the first 

6 (c-a) . 
kind, and b _ a pieces of the second kind • 

.Reaark. These two numbers are easily. found by the rule of 
. tbree~ when it is required to apply the results which we have ob­
tained. To find the first we say ; 

" _ G :." _ c = 0 : tJ ,,(b ,c).' 
, -0 . 

Digitized by Google 



Cbap~ '3. 0/ Eqtcatioru. 

The secoM Dumber is fotind .. ; 
I. ' " I. b (c-a) 
u - d : C - a = u : ----. , b-a 

'169 ' 

It ought to be obServed also that' CI is less than h, ~d that' c is 
.also le8i tbaa b; bue at tile sam8 time greater thana,.s the DI­
, ture of Ibe thing requires. 

5il. Qufltion XX. A baDker bas two kinds of change; 10 
pieces of one make a crown; and 20 pieces of the ather make a 
VO\'tD. Now, a Jl8I'SOD wishes to change. crown into 17 pieces of 
money t How many of each must he have? 

, We have ,here ... = 10, b == 20, and c = 17; which fUluishes 
the following proportioos ; 

I. 10 : 3~ 10 : 3, 80 tbJt t1tenumber of pieces of the first ~ 
is 3. -
, ll. 10: 7 = 20 : 14, and there are 14 pieces of the second kind. 

5t9. ~tioft XXI. A father leaves at his death several chil­
dren, dO share his property in 1hetbHowing manner :, 
, The first receiTes a hundred crowns aad the tenth part 'of the 
remainder. ' , , 
. The second receives two hundred CroWDS and the tenth part Of 
what remains.. 

The third takes three hundred crowns and the tenth part of 
w_l'fdaidB. ' 

The fourth takes four hundred crowns and the tenth put fI 
what thea MIDBinB, aad _ en. 

Now it is .11 'It dIe.-l dlat the property bu ,been dmded 
equally ariIObg all the clIildDen. ,Recpred, bow moeh it was, how 
many children there were, aad how much each received ? 

This question is ratheroC a singular nature, and therefore deserves 
particaJat elllDdon. In to. to..mw it Dl.GM _Iy, we sbalsup­
pose tlJe w.1wIt .bmae ... cnnt'DS'; and siaee all __ children 
receive the Same sum, let the share of eaeh = ~, by which means 

s . ' 
the number of children i!J expressed by x. This being laid down, we 

m.,- proceed to the-solutioo of ,be question, lV~ will be II:S follows: 

Eul • .Alg. 22 ' 
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Bam, 01'.,... Onler of 
JIM1to be tile 
diVIded. ChiI4ND. 
~ ~I~"~~--__ V __ ------JI~----~T----~ 

z-

'z-2 

'z-4 

z-5 

z-IOO 
·Id. Z= 100 + ---. 10 

%-.21 -~ , ~-IOO· 
24· IX = 200 +' 10 100:--. W-=O 

'z-2a:-800 .21-100 
34· .21= 300 + --~-IOO-. 10 ,-0 

4th. z-3z-400100 a:-~OO 0 
.21=400 + 10 ,- 10 .= 

11111. _~.2I-500100:"'" .21-100 =0 
u a: - 500 + 10 , 10, 

, z-5.21_600and SO on. 
6'h: .2I=MO + 10. 

We have inserted, in the last column, the difFerences ,which we 
obtain by sUbtracting each portion from that which follows; Now 
all the portiqos being equal, each of the di1Ferences must be = O~ 
And as it happens that all these difFerences are expressed exactly 
alike, it will be sufficient to make one of them equal to nothing, and 

.21-100 
we sball bave the equation 100 - -W- =:;: 0. Multiplying by 

10, we bave 1000 - a: - 100 = 0, or 900 "";.21 == 0; cOuse­
quently f# = 900. 

We now know, therefore, that the share of each child wu 900 
. 'CfOWUS ; so tbat taking anyone of the equations of the third coluDlD, 
the'first, for example, it becomes, by subStituting the value of .21, 

z-lOO 
900 = 100 +, -W-, 

w.beace we .immediately obtain the value of z j for we have 

9000 :::::: 1000 + Ie - 100, 01' 9000 == 900 + z j 
, , 

, z 
wherefore z = 8100; and consequently - = 9,. , '. a: 

.Answer. So that the number of children = 9; the fortune left 
by the father == 8100 crowns; anti the share of each child =900 
crowns. 
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CHAPTER IV~ 

01 tAe BuolutioR DI 7\r1o or,.".e ~ oltle Fir.t Degree. 

523. IT 1iequently happens that we are obliged to introduce into 
algebraic calculations two or more unknown quantitieS, represented 
by the· letters 3:, y, s; and if the question is determinate, we are 
brought to the same number of equations; &om which, it is tben 
required to deduce the unknown quantities. As we consider, at 
present, those equations only which contain no powers of an UD­

. known quantity higher than the first, and no products of two, or 
more unknown quantities, it is evident that these equations will aU 
have the form as + b 'V -+ C 3: == d. 

524. Beginning, therefore, with two equations, we shall eodea.our 
to find from them the values of sand y. That we may consider 
this case in a geoeral manoer, let the two equations be, . 

I. a 3: + b y = c, and n. 1 ~ + g y = A, 
in which a, b, c, andf, g, h, are known numbers. It iuequired, 
therefore, to obtain, from these two equationS, the two unknown 
quantities 3: and y. . . . 

525. The most natural methOd of proceeding will readily present 
itself to the mind; which is to determine, from both equations, the 
value of one of the unknown quantities, 3: for example, and to con­
sieler the equality of those two values; for then we sball have all 
equation ia which the unkDO~ quantity y will be found by itse~ 
and may be determined by the rules which we hue already given. 
Knowing y, we bave only to substitute its value in one of the quan-
ties that express 3:.' • 

596. According to this rule, we obtain from the fust equation, 
c by A 'g, , 

:x: = -a ,aod from, the second 3: == j -; stating these 

two values equal to one another, we have this Dew equation ; 

c- b1 ==A-U. 
tJ I' 

multiplying by a, the product is 
aA-a" c-b'=-r-; 

, ' 
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multiplying by J, the product is f c - I b y == a h - tJ 6 Y ; ad­
ding a g y, 'we have I e - I b g + • g y = a ."; subtracting I c 
tbere remains 

-/6 y + ag y'=co la-Ie; or (a8 - in y _0' ..... /0; 

lasdl', dividiDg by a.8 ~ b.r. WEt have 
a A--:.l! 

~= a8-6f 
In order .now &0 IUbstiture this value rX y in. cae ohbetwo vah.s 

whicb we bave found of z, as in tbe first, wJtere ~ = c-."!,we 

sbaUmt haw 

or 

-6y-- a61&j-bcl. 
- flg-i/' 

, . II li h + b·c f 
e-by=c.-- hI' ag-

"C-b _acK~4cl-a.ih+icf _8ltg-al,,/a .. 
y- tJ6-bl . - 'lJg-if' 

and dividing by at 
c-iy -eg-.ii. 

a:,= = .l.r ,. a.g-'fI;, 

S'Z. Quatiora I. fl'o illustate tbis method. by examples ·let it 
·he pr8pOIId to find 'Iwo'num'beN, wbose ,sum' maybe '- lS, and _renee ==1. 

'Let·1JS eilI the greRtft·n1HlitJerce, and the lessy; We sball'have,. 

t. a: + y :.- 15, and II. ~ -, = 7.' ' 

The 6rst ""lualion .givet.a::::; 15 -" aDd .... 8IaCJ1Id. ~'=-= 1 .+ y ; 
wbence results ·the new equation 15 - Y = 7 + y~ .& that 
15 til:: '7 + e ,; 2 y = 8, Iltltf ., = 4; 'by-whicb me ... s we Snd 
z= 11. 

A.fUtI1llr. The less number is 4, and the .greater is ll. 
528. Quertitm II. We may allo generalize the preceding ques­

tion, by requiring two numbers, wbose SQID my be ~ ~"_ .• 
dUfereoce = h. 

Let tbe greater of the tWo be .... a:, .. ad·the less = ,. 
We sball have I. 11:' + y = a, aDd II. a: - '1/ =.6; tbe 

fint equatioD gives II) =.IJ - y; and the second.a: = i + y. 
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Wherefore a -I =b + 11; (J -..h + 2 ,:; ~ y .... a - h; 
a-b . . 

lastly, y = -2-' aDd consequently, 

'4-b _+, 
x=a-y=a--2- =-2-' 

. . 4+" , 
.Amwer •. The greater number, or x, Is= -2-' and the less, or 

y, is =-: a -; b; or which comes to the. same, x = i a + I h, a~d 
y = } a - i b; and hence we derive the folJQwmg theonlm. 
When the sum of any two number, is a, find iJuir dVf,rence if b, 
tl&# greqter 0/ the two number I will be etpIXll tD lwl/ tie III. p.­
half the dijference: and tk~ leu of tie two .1&UII&6er. wm b • .f9fUfl 
~ .~lf the 111m minus /&tJlf the dijfere~. .' . 

52.9. We may ,also resolve the !\Rme cp~ jlJ thf foUpwing 
manner! 

Since the two equations are" + y = lip lWei x - y =;:: b i if 
we add one td the other, we have 2 x = a + 6. :Wbtlre~ore 

• +6 . 
It:=: -2-" 

• 

Lastly, Jubuac\iDg the semI' ~t.ioB M tbe.-ber. lVlt .ye 
a-b 

2 y = a - b; wherefore y =--r' 
500. Qpeqion Ill. A JR\e and aa Us -were calt':viog budena 

MQOlIPfo¥tg to I19me bundred weight. The ass OOIDpleilQd __ 
and said to the mule, I need ooly mse .bQdled _gilt of f .... loM, 
to m"e miDe tw~ as hea.,. Q~. The mule ~d, Yes, 
but jf you gave me _ hundred weigJu of YD~,.I should be loaded 
three times as mu~h as you would be. Hpw .~oy hundred weight 
did each carry ? . 

Suppose dae mule'. load .to be ~ buadrethveight, 'and ihat olthe 
ass to be , .h\ladred weight. If the ~ule giVt¥l.QDQ Sundred weight 
to the ass, th~ one will have y + 1, aod tltere will remain filr the 
other x - 1; and sQlce, in lhitJ c." the '" is'loaded twice as 
much as the mule, we have, + 1 = 2 x - 2-

FurtMr, if. 1lSI !ives a bwldred .eight totbemuJe,cbeJatter 
has x + 1, and the ass retains y - 1 ; but the btmlea ~ ... Alt. 
mer being now ~ree tiRles thllt of t~e latter, ,,:e have, 

·.x + 1-3y-3.· 
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Our two eqUatioos w~ coosequent1y be, • 
'I. y+l=24'1-2, n.4'I+l==3y-3. 

The first gives 4'1 = y t 8, and the secoad gives., = 3 y':'" 4 j 
• 

whence we have the Dew equation y t 3 = 3 Y -4, which gives 

y = y, and also determines the value of 4'1, which becomes 2t. 
AtutDef'. The mule carried 2f hundred weight, and the ass car­

ried 2! hundred 'weight. 
531. When there are three unknown numbers, and as manyequa­

tiOlls; as, for example, I. 4'1 + y - % = 8, II. 4'1 + % - y= 9, 
,m. y + % - 4'1 = 10, we begin, as before, by deducing a value of 
4'1 from each, and 'We hate from tbe I·, :I: = 8 + % - y; fioPl : 
the Ud,:I:= 9 + y- %; and from the nId, 4'1 =y + :r-IOO. 

CompariDg the first of these values with tbe second, and after 
that witb the third also, we have, the following equati~: 

L8+%-r=9~y-~~8+%-y=y+%-~ 
• Now, the first gives 2 % - 2 Y = 1, and the'second gives 
2 y = 18, or Y = 9; if therefore we substitute this value of y in 
2 % - 2 Y == 1, we have 2 % - 18 = 1, and 2 :r = 19, so ~t 

. :r == 9t; it 'remains therefore OIIIy to determine :1:, which is eully 
bmd = 8j.. . 

Here it happens that the letter % vanishes in the last equation, 
ud that the value of y is found immediately. If this had not been 
.. case, we should have had two equations between % and y, to 
M resolved by the preceding rule. 

532. Suppose we had found the three following equations. 

I. 8:1: + 5 Y - 4 % = 25, n. 5:1: - 2 Y + 3 II = 46, 
nl. 3 y + 5 %- 4'1 = 62-

If we deduce fiom each lbe value of c, we shall haft : 

1 _25-5y+4:r n _46+2,-3% 
.4'1- 8 ,.~- . 5 ' 

nI. 4'1=3, + 5%-62. 

Comparing these three mue. together, and firIIt the third with 
the fint, we bave 

3y + 5%,-62= ~-5: +4%; 
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multiplying by 3, 9 Y + 15:1 - 186 =,25- - 5" + 4 :I; so 
that 9 Y + 15 :I = 211 -:- 5 11 + 4 %, and 14 y + 11 % == 211 
by the first and the third. COJIlpariog also the third with tbe -
_lIeCODd, we- have 

, 3 +5 6o_46+2y-3% 
Y %- ~- 5 ' 

or 46 + 2 Y - 3 '% = 15 Y + ~ % - 310, which when redu­
ced is 356, = 13 Y + 28 %. 

We shall DOW deduce, &om these two new equatiOlJS, the nlue 
or y; . 

I. 211 = 14 Y + 11 %; wherefore 14 y = 211 - 11 :I) an~ 
211-11 % 

y= 14 

II. 356 = 13 Y + 28 :I j wherefore 13 y = 356 - 28 %, aDd 
856-28% 

y= 13 

-These two YBlues form the new equation 

211 - 11 % 356 - 28 % ---n- = --W---, 
which becomes 2743 - 143 % = 49S4 - 392 %, or 249 % = 2241, 
whence % = 9. 

This value -being substituted in one of the twe equations of y and 
%, we &nd y = 8; and lutly a similar substitution, ,in one of-the 
three values of 'fe, will give II: = 7. 

533. If there were more than three unknown quantities to ~ de­
tennined, and as many equations to be resolved, we should pro­
eeed in the Same manner; but the calculations would often prove 
very tedious. -
. It is proper, therefore, to remuk, that, in each particular ease, 

means may always be discovered of greatly facilitating its resolu­
tion. These means consist in introducing into the calculation, be_ 
side the principal unknown quantities, a new unknown quaatity ar­
bitrarily assumed, such as, for example, the sum of all the rest ; 
and when a pelIOn is a little practised in such calcuJatiODS he easily 
perceives wbat is most proper to do. The following examples 
may serve to facilitate the application ot these artifices. 

534. Quution IV. Three -persons play together; in the first 
game, tbe first loses to ~h of the other two, as much money as 
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nch of th~rn his. In the next, the second petsoD losel to .... 6f 
the ather two; as mtleh money as &hey bave I'lready. Laatly, in the 
third game, th& fbst and tile S800Dd petsoD gain eaeh, tom die 
third, as much money as they had before. They then leave., 
and find that they have all an equal sum, namely 24 louis eacb. 
Required, with how much money each sat doW'll to play? 

Suppoll8 that the stake of the filSt pel'lOD Was x louis. that of the 
second '!I, and that of the third %. Further, let u. make tbe IlIUm ef 
.. 1 &he stakes, or «: + , + • = I. Now, the first per8ClD bing in 
the first game as much money as' the other two have, he los8I 
, -- ~; (for be himself having had «:, the t~ otbtlnt DiU8t have 
had I-{/)); wherefore tll.re wiD remain to him 2 (/) - I; the 
second will have 2 '!I, and the third will bave 2 %. 

So tbU, after the ~ game, e~h will have as JOllows : 

the I. 2 (/) - I, the U. 2 '!I, the III. 2 %. 

In the second game, the second person, who has now 2 '!I, loses 
as much money as the otlaar two have, that is to • ." I - 9 ,.; so 
that he has left 4 '!I - I. With regard to the others, they will each 
have double what they bad; so that after the second game, the 
three persons have; 

the I. 4 (/) - 2 I, the II. 4 '!I - I, tbe III. 4 %. 

In the third pme, the tbird pedOD,' \W;Io bu DOW 4 ~, is 'the 
IosI:lt; he loses totbb fiIst 4 1t1-" 2 I~ IDd to the I8COnd "11 -,; 
consequently after this game the three pursob. will .... ; 

tb~ 1. 8 (/) - 4 I, the n. 8 '!I - 2 I, the m. 8 !t ~ •• 

Now, eaoh having at the end of this game 24 louis, we 'have 
tbree equations, the first of which immediately gives (/), ~ second 
'!I, and the third % ; further, I is ~WD to be = 7,2. since the three 
persons have in all 72 louis at the end of tbe last pille; but it is 
not necessary to attend to this at first. We have 

I. 8 ~ - 4 • tm: 24, 'Or 8 (/) == 94 + 4 I, or 1I:aI 3 + i • ; 
Ii. 8y-fl.==i4.ora,-iM + ~'. o()lI y,-a + t.~ 

W. a I: - • !lis 94~ Ql' 8 II sa: 94 + " or II z= 3 + i'; .. 
Adtlifll dlele thtee values,' we ha'Ve 

(/) + '!I + % = 9 +i I. , 

So that, since,{/) + y'+ % = ", webave I ell: 9 + i "i where­
fore i I = 9, and I = 7~. 
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· If \lIe.OW subafituat tltis value 01 ,.in tha ... pa:et!!liODt·.WcJbwe 
have found for x, y, and z, we shall find that before they ~D' to 

play, the &rat. p.rson had 39 looia; the secOb4l Sn.leuis J .",hhe 
third 12 louis. .' 
· . 'This solution 'Soows, that lay means'of an expreaiob. fOr the aim 

. or the three unknOwn quantities', we may oven:ome the cOOieulliei 
which oOour in the ordinary method. 

586. Although die precetling question appean ciifticaltat firsc~ it 
maybe resolved eYeD' without algebra. We have only. to try to·do 
it inversel)t. -·Siaee tbe players, w.ben they ·left ow, ha41 eeob. 24 
louis, and, m ~ third proe, the first &lid the. seecmd doublod tile 
JlIfHIey, the, QUJa! baye laad beiOre.that las' game; 

The I. '12, the II. 12, and tbe III. 48. • 

10 the second game the firsfand the third. doubled their money; 
so that before that game they had; . 

The I. 6, tbe 11. 42, and the III. 24. 

· Lualy, in die first gaJDe,- tile second aDd ,be third gained ~h. u 
au.cb money as they beaan with; 10 that at first the tbr.ee pll'SOQ8 
J.d; . 

1.89, U. ii, m. 12. 

The same result as we obtaiQed by the former solution. 
536. Ql&ution V. 'two persons owe 29 pistoles; they bate 

both money, but neither of them' enough to enable. him, singly to 

_barge this com.OIl debt; the first d~ _ys there_ to tbe 
second, if you give me f of your money, I siagly will immedia~1 
pay the debt. The seeond . paw .. ,. that he also could' disc~rge 
abe 'CIebt, if theotJum _ld give hila I oJ Ilia fIlOD81. Required. 
bow many pistoles each had? . " 
.. &appoSe tbat tile Grst bas {II piItoIes, aod tbM dl8 aeoond his Y 
')list_ •. 
... shan 6rstbu.,· x + * y :,.d~ i . 
then also, y + i x = 29. 
'Phe Int equatloH gi.e •• = I9r __ " Y, del the .eeo.d, 

. 116:"": 4 ,. . . 116 - .. y -
(II:q: 3 Y; .. tba'~-ig-=-3-' 

From this eq~ation, we ~8t y'= 14 i; wherefore x = 19:. 
EIII. Alg. 23' 
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. A.,.,er. Thein, de~ bad 19i piitoles, ad the IeOMld bad 
14f pistoles. . . 

53'7. QutlIiotJ VI. Three brothers bought a vineyard for a 
hundred louiS. The youngest says, that he. could pay for it alone, 
if the second gave him .half the money' which he had; the sec­
oDd· says, that if the -eldest' would -give him only the third ,of bis 
money, he could pay for the vineyard singly; 1astly, the . eldest asks 
only a fOurth' part of the money of the yo~gest, to pay tor the 
vineyard himself. . How much money had each ? . , 

Suppoee the first hid :B louis; the second, '!J louis; the tliird, z 
louis; we shall then bave the three following equations; , 
I. :B + i y = 100. II. Y + tit = 100. III. It + t :B =r: 100 ; 
tw~ of wbjcb Obly give the' value of z,.namely, 

. I. (fJ = 100 - i y. ill. (fJ ;= 400 - 4 It. 

So that we ~ave the equation, 

100 - i y ..;.. 400 ;..... " It, or 4 It -:- i y == 300, 

which must be combined with the second~ in order to determine '!I 
aDd It. Now the second equation \Val y. +'i It = 100; we there­
fore deduce from it y = 100 - i It; and the equation found last 
being 4 It - ~ Y = 300, we bave y = 8 It - 600. Consequently 

. the final equation is, 100 - tit = 8 It - 600; so that 8 i It = 700, 
or Y It -.: ,700, and i = 84. Wherefore '. 

y = 100 - 28 = 72, andz = 64 • 

. ,A,.,.".,-. ·The youngest had 64 lOllis, the second had 72 louis, 
and the' eldest had 84 louis.· . 

638. As, in this example, each equation cootams only two UR­

bon quantities, we may obtain tbe solution r8CJuired in an easier 
way. 

'l'he first equatioa gives y = 200 - ~ (fJ;1o that Y is determined 
by (fJ; and if we 1mbstitute tbis value in the second equatiotl,we 
bave 200 - 2 (fJ + i ~ == 100; wherefore t % == 2(fJ~ 100, 
and % == 6 (fJ - 300. . 

So that % is ·also de~d.by (1J ; and if we introduce this value 
into the tbini equation, we ohtalu 6 (fJ - 300 + i (I) = 100, in 
which (fJ stands alone, and wl\ieh, when reduced to 25 (fJ-:- 1600 = 0, 
gives (I) = 64. Consequeptly, y = iOO:- 128 -= 72, and . 

It = 384 - 300 = 84. 
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" &89. ,We ... y·fohw tM __ JDethocl, .. _"ha ..... ter • 
DUmberohquations~ Suppose, foieumple, tbat we have ill ... : 

r» '!I ' :a 
I. " + - = fa, n. r» + 'i: = n, m. '!I. + -= tt, ,II' U',' 'f: 

IV. :I +. a ~ ,,; or, reduciag the fr.ac~ 

I. II U + ~ = II fa, II. b r» + '!I = b n" m. c'!l + :e = c fa, 

IV. d:e 4- " = d n. 
Here, the first equation gives immediatelY:J) == II n,- II u, •. 

thiS value being substituted in the second, we bJve 

II b " - CJ b " + '!I = b n; so that '!I = 11 " - II b II + CI b 1&; 
, t~e substitution of this value in the third equation, gives ' 

- bcn-'"bc,,+"bcu+:e=cn; 

whe~fore :e -= c ," - ben + lib c n - II b c U; substitWng 
this in the fourth equation, we bave 

cd" - bed" + II bed" - II II ed'" +" = d n. 

So that d" - cd" + be tl " - II bed" == - II bed" + u, 
or (II b, t d -1) U =,11 bed n-bcd".+cd"-d"i whence 
we have 

, IIbcdtt-hCdn + cdn-dn' (Gbcd-bcd+cd-il). 
,,= GbCd-l ="X a&ii-l 
COQSequendy, we shall bave, 

lIbed" - "cd" + ad" - tm (abc{l-acd + lid - a). 
r»= tlbCd-l =nX t.I6Cd-1 

abed'n - IIbdn + abn - btl (Gbcd - abd + ,,11 - b). 
'!I = abed -I =,. X . CibCd - 1 

abcd,.-abaa + ~-CJI (aIitd-abc + be -c). 
• = -----abcd -I =" X ti6Cd-1 

, Gbcdn - bedn + cdn -:- dn (afx;d - bed + cd - d). 
1&= tzhcd-l =nX- IIbcd-1 

, MO'~" VU. , A captain has three companies, OIle Q{ 
Swiss, another of Swabians, and a third of Saxons. He ,wishes 10, 
storm with part of these troops, and be plWlliaes a ,rewud of 901 
croWDS, OD tile following COIlditiOll: 
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"".eeeb~" 't1i11J~ •• p., "lIIiab ....... """'e 
I-..a,'" cbat tbe _uthe a..,ythaH'be .... 'dilttibbted 
amODg the two other companies. 

Now It is found, that if tbe S1fiss make'tbe U8IUlt, eacb soldier 
of the otber companies receives .j. of a crown ; that, it the Swabiaos 
assault, eacIt of tile Gtben ~eI'" of 11 crowa; IYIy, that it 
the Saxons make tb. assauk, eacb or the o~n receives 1- of a 
ClOWD. Required the number of men in each company? 

Let us suppose tbe Dumber of Swiss = :.r, that of SwabiaDs ~ Yj, 

afttt tIIlt of the Sao. == lI. A..ct let 1188_ ake Ie + r + {I ~ I, 

btause it is eaay to !lee, Ibat by t .. it, 1te a.,... tbe ealeulatka 
cepeiclerablJ. If, therefore, the Swiss make the usault, &heirlMlfll­

ber being :.r, that of the other will be I - !e; new, the former ft­
ceive 1 crown, and the laller half a crown; so tbat we sball ha.e, 

~ + i I - j:ll = 901. 
We find ill tbe same manner, that it the 5Mb"tadll Make the 

usauJt, 'We bave, 

" +1'--11=·1. 
Antl1attJy, that if the SaJ.'GJIS moant tbe aIIslUk, ",e have ' . . 

~ + t • - t II = 901. 
Eacb of tbese tbree equations wilJ enable us to determine one of 

ibe uDk,oowo quao&i&ies :.r,..,,, :r; " 

For tbe fint gives !e = 1802 - I, 

tbe, second gives 2, = 2703 -', 
the third giYes a II = 3604 - I, 

. If we DOW take tbe nlues of 6 ~, 6 't and 6 :., and write thole 
values ooe .hove. the other, .. e sbaU have, '. , 

6 !e,= 1081i - G-It 
6 y.,e 8109 - 3 I. 
6:r = 7208 -.2~ 

)' ~ . 
and adding; 6 1='26129 - 11 i,' or t.,.. = 26129; so 
't1hau' = 1m; dUs is die wide 1JUh1faer ... (so14I ... ,..,.y "ffiIich 
fttetl'J'S'we fJbd, . 

. ~·:=:i802 ..... 1'63'f'!::::_; ... 
2 Y = 2'703 - 153t'':= ll.,-ot Y = .• ; 
3 II = 3604 - ]537 = 2067, or II = 689. _ 
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,Arutl16r. ~ ~pany of S .. ~ of 266 men; that of 
SwabillDS 583 ; .and tbat of &,mas' 6S9. 

CHAPTER. V. 

541~ AN equation u ,aid to bs 'of (I&e ,econd degree, fDhen i' 
CMltai", the 'quare or the .econd pOUl.er of the un1motm tjutmtity. 
fl'irhout any of it. higher pOlDer., An ~quati01'l, contaiain, like­
Wise the third power of the unknQwn quantity, belongs topubio equa­
tions, and its resolution requires particular rules. There are, ther&. 
fore, only three kinds of terms in an equation of the second degree. 

1. The terms in wbieh the uobowo quantity is Dot found at all, 
or which are composed only of knoWn numbers. . 

i. The terms in Which we &nd only the' 6rst po..ter of tbe Ub~ 
blown quantity. 

8; The terms whiob CObtain the square, or the second power of 
tbe unknown quantity. . . 

So that {C signifying an ~known quantity, lad t" letters 6; a, " d, 
ke. representing kn~WD nUlDbe~, tbe terms of the 6rst kind wiD 
bave the fonn a, tbe terms of tbe second kind will have the form 

. b {C~ and the terms of the tbird kind will bave the form c a; .:r. . 
542. We haVtl already seen, bow two or ~or~ termsot tbe $IUIla 

kin!! may be united together, and considered is a single term. . I 

. For example, we ma:y consider the fannula a {C /11- 6 {C {C + c {C {C 
as a single tenn, representing it thus (lJ - b + c) {C {C; since, in 
fact, (lJ -6 + c) isa knowD quantity. 

And also, when such tenns are ~ound on both sides of the sign =; 
h bllve seen how they May be brou~bt tt> one side, and then re­
duced to a single term. Let us take, for example, the equation, 

. 2'1i~-3a:+4=6{C~-8{C+ll;' 
. : We 6rst subtract 2 {C or" ~d thE/re remains . 

- 3 {C + 4 = 3 {C re ~8.{C .+ U,; 
then adding 8 re, we obtain, 
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. ·6 e + 4 == 3 x 111 +ll; 
Lastly, subtracting 11, there remains 3 .~ x = I) II -- 1. 

543. We may also bring all tbe terms to -one side of- tbe sign =, 
10 as to leave only 0 on the otber. It must be remembered, how­
ever, that when terms are transposed &om one side to the other, 
their sigos must be changed. - . 

Thus, the above equation will assume this form, 

. 3xx-~x+7==Or 
and, (or this reason also, tlae/ollowing geReral/ormula repr6lenU 
all equatiofU o/. tAe ,ecmttl degree. . 

a x flJ ± b x ± C = 0, 
in which the sign ± is .:aad pI"" or minwf and jndicat~ ihai such 
terms may be sometimeS positive and sometimes negative. .': 

544. Whatever be the original form of a . quadratic equation, .it 
mal always be reduced to th~ formula of three terms. lfwehave, 
for example, the equation , . " .' . 

aa:+" cx+l 
. c x + d = g x + A' , 

~ must, first, reduce the fractions ~ multiplying, tOr tbis purpose, 
by C flJ + d, we have 

. +i. cu:e+c!3J+etlx+/d 
aflJ. u= gx+la..' 

daeft by'S' ID.+ 1, 'We ·have· . \ , 

G 6 flJ II) + "~t» of:" tJ 1& x + " h = c ext» + c f:i: + e tlll) + Ii, 
which is an equation of the second degree,' and reducible to the 
three folloWing terms, which w~' sbal~ transpose by arranging ,them. 
in the usual manner: 

o = a g t» flJ + b g t» + " h, . 
. - cext» + "Ax-Itl, 
, -'cfx, . 

-'~dt». 
'. '. . I 

We may exhibit this equation also in the foll~wing form, ~hic1J 
is still more cleat :. . 
0, ,. (tJg- C e) t»t»+ (bk +.A-c/~et1) t»+bA-Id. 

. . . 
• That ilf, the. «Jl1aDtity thus transpo.ed' is addeil io -or subtracted 

&om each side 01 tbeequatioD. 
.' ,' • • :' r ; 
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545. Fquatious of ·the eeoond' degree; in w'hich aU the' .three 
kinds of terms are found, are called complete; and the resolution m 
,them is attended with. greater difficulties.; fot which reUOD we 
s~1 first,consider those. in which ODe of the terma is wanting. 

Now, ifthe term rJ) rJ) were not found in tb~eqaatioo,it w.ould DOl 
be a quadratic, but would belong to those of-wbich we bave already 
beated. If tke tem, which CORtai,., only knoton number" tOere : 
'&Danting, the equation would .ha"e thif form, a x x ± b ·x= 0, 
"lAich .being ditMible by x, fl&(Jy be reduced to a ~ ± b = 0, wl&id& 
if like wile a simple equation, and belong, not to tit PrBlefttda ... 

546. But. when the middk tem, which contains tAe first power 01 
x, is'wtmting, the equation lJ8IUmBl thisfom, a.xx ± 0 = O,'Of 
a x x'= =F c; as the sign of c may be either positive oruegaiive. 

We shall -call such aD equation a ptfre equation of the second de-
. gree, since the resolution of it is attended with no difficUltY'; for lilt 

ha~~ ~y to difJide 'by a, whichgi,,~xx = i; a~ taking t~ ,~~ 

root oj both side" we find x = ,~ ; 'by ~eatu of which th~ eq.. 
. ~a 
tion is rBlowed. 

541. But there are tnrea cases to be considered here. . In'tlie 
. c·' . 

first, sOlaen a is a .quare "umber (of w hioh we can therefore really 

assign the root)' we obiain for the "alue of x a rational "umber, 
,which. may be either integer or fractiOnal. For example, the 
equation rJ) rJ) ::;= 144 gives rJ) = 12. And rJ) rJ) = "1\ gives rJ) = f. 

c 
The second variett is when a is taOt a .quare, in which case ~. 

mu" thin'~fore 6e- cont8'(&ted with.,he ,sign v. If, for example, 
rJ).rJ) = 12, we have rJ) = '\112, the value of whic~ Dial be deter· 
mined by 'apprqximation, as w.e have already shown. 

. . ' 

The third 'case i.tAat i" wAicA ~ becomBl a f&68Gt",e number j 
a 

tAen tAe "(11", 01 x is altogether imPolli61e ~ifAagiMry; and 
t~is result. pro"u t~ tAe quut~, w~icA lBath to 8JICh an .pa­
tion, is in it.elf impollible. 

548. We shal~ also observe befo.-e proCeeding J~nher, .that when­
eyer, it is nJquired to extrabt the square J'OQt ~ a num~r, that root, 
as we have ~~YlElmarlted, has always t~ values, th~ GDe posi.­
bve and the other negative. &pp0H-tcle luwe'the equation xx = 49, ' 
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lAt •• f1j' x fIIill be'fIt)# only + 7, bpi_ -7, vMch U 611: .. 

Ftged by :I. '= ±. 7. So tbat, all . thole ques~D&' admit .of 'a 
tiouWe answer; but it will be easily pelCeivedtbat iD several cases, 
in ,those, for e::umple, which, relate to a certain lI~r of maD, 
the oeg'ati"e ,,..., OUIDot'exist. , 
, 649. In' sUcb equatiOJlS also, as ,tJ· II: II: = b 11:. where the knowa 

qUantity c i. wanting, there may be two value. of 11:, ~gb we fiad 
only OIle ifws divide by 11:. In the equation 11:,/1 = 311:, for.exam­
ple, in which it is required to -asSign such a value of 11:, that II: II: may 
become equal to 3 11:, this is done by supposing tIJ = 3, a vall1. 
which is band by _dividing tbe equation by II: ;. but beside thisva1ue~ 
there is also yother, whicb is equally satisfactory, namely, at = .~ j 
101 tbe"':D II: = 0.. and 3 1£ = 0., ~ th~refore, 01 the: 
HeoM degree, ... gener.l, admit of two IOlUHtnu,.wMlat .ple 
tplBon. tJMt~ of 0fIta. ' 

We shall now illustrate~ by some examples"what we have said 
'With regard to pure 'equations of tbe second degree. 

550. Question i. Required a number, tbe half of which lDulti-
plied by the third may p~ce. 24. \ 

Let this number = :r; i 11:, multiplied by i t£, must gi~ 24 j ~ 
sbaJl therefore have the e,quation i rt II: = "24. . ' 

Multiplying by 6, we have ~ II: = '144 ; and the extractioD of the 
_ giTeS «: == ± lSLWe put ± j fi>r ifa,.= + 12, we ha • 
... II: = 6, and' ill: ,=,4 j now the product of these ,two numbers is 
24. j and if II: = ~ 12, we have ... II: = - 6, and * = - 4, the 
product of which is likewise 24. . 
. 551. Question II. Required a nUDlber such, that by adding 5 
to it, and subtraCting'S ero.D it, the product of the SWQ by dle dif-
ference would be 96. -

Let this number be 11:, then II: + 5, multiplied by #I -- 5, must 
'give 96; whence results the equation, m r.c - 2S = 96 •. 

Adding 25; we have II: II: =-121; and extracting tbe- root, we 
have rz = 11. Thus II: + 5 ~ 16, also a: - 5 = 6 ; 1Ul~ l_tlr, 
6 X 16 = 96 ... 

. 5S2. Que8tion m. Required a number such, that byadding'jt 
toto, and subtracting it from 10, the sum, multiplied by the re­
mainder, or di1ference, will give 51. 
, Let.:' be this number; 10 + a:, m~tiplied by 10 ...... -.:, must 
make '-SI, so that 100 ~ II: a: = 51. Adding II: 11:, and lubtraetiDg 
S_l~ we,hav~ Ie ~ --:49, the square I'GIOt ~wfiicb gin. (1' .... '7. . 
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553. Q~tio~ IV. Three persODS, who had been playmg, leave 
9tr; the first, with as many times 7 croWDS, as the, second has 
3 crowns; and the second, with as mlmy t~ 17 et'Owns, II 
the third has 6 crowns. FQl1her, ,if we. multiply the UIOoey pf 
the first by the money of the ~d, and tbe, money of the sec-:­
on.d by the mODey of the third, and lastly, Ute mmey of the third 
by that of the first, the sum of these three products win be :883Of~ 
How much, money has each? 

SuppoSe tbat the'first player bas {C crowns; and since he has as 
many times 7 crowns, as the second has 3 crowns, we know that 
his ~Obeyis to that of the Second, in tbe ratio of '7 : 3. 
:. We shall the~ore make 7 : 3 = ,{C to the money of the second 
player. which is therefore f- {C. ." 

Further, as the money of the second play~r is to that of the' 
third in the ratio,of-l7;6,we shall say, 17:5=frl1 to. the 
money of the third player, or to T¥V {C. 

Multiplying {C, or the money olthe first player~ by f{C, the'money 
of the secOnd, we have the product 8 {C It. Then ~ {C, the mOlter of 
the second,.' multiplied by tbe money of the third, or by M {C, gives 
w4b {C {C. Lastly, the 'money of the \hird, or i'J.\ {C multiplied by 4') 

or the money of the first, gives rtv {C ft. :The sum of these three 
products is f {C /I) + Nrr {C {C + M {C re; and, reducing these fioao..' 
tions to the same denominator, we find their sUm Hi 1111, Which 
must.be equal to· ihe n~mber 38301. 
. 'We bave, therefbre, ffi {C t» = 38301. 

So that YN {Ct» = 11492, and 1521 {Ct» being equal to 957~, 
dividing by 1521, we have {C {C = 8 qNf 8; and ~kiDg its rooa,-· 
we find ~= 34-1-'. This fraction is reducible tOl~ terms if we 
diviae by 13; so that {C = 'SiB == 79k; and hence we conclude, 
that'f {C ::;: 34, and rh {C = 10. " 

.tlmwer. The first player has 7f» croWDS, the second bas 34 
crowns, and the third 1 0 crowns. ' '. . :' 

Remark. This calculation may be performed in ~ easiei- ma~ 
J*.; Damely, by taking the factors of the Dumbe~ which present 
themselves, and attending chiefly'to the squares of those factors. 

It is evident, that 507 = 3 X 169, and that 169 is the squareof 
13; then, that 833 = 7 X 119, and 119 = ,7 X 17. Now we 

have :7Xxl:: t»!11 = 3830J, and if we multiply by 3, we have 

Digitized by Google 



186 .&g.bra. Sect. 4. 

9 X 169 
11. X 49 x x . 11492. Let us resolve this n~mber also . into 

jts factors ~ w~ readily perceive, that the first is 4, thal is to say, that 
114~ =- 4 X 2873; further, 2873 is divisible by 17; so that 
2813 = 17 X 169. Consequently our equation will assume the 

. ·9·X169 . . . 
followmg fo~; n;( 49 x x = 4 X 17 X 169, which, diVld~d by 

9 ' 
169, is reduced to. 11 X 49 xx = 4 X 17; multiplying also by 

ddi '..J!_ b 9 . h 4X289X49. h' 17 X 49,an· Vluwg y ,we avexa:= 9· ~,mw leb. 

all the factors are ~quares; whence we have, without any further 
~culation, the root . 

x . ~17 X 7 == 238 =19j., 
3 3 

as before. 
554., Question V. A company of merchants appoint a factor at 

AJchangel. Each of the.m contributes fo~ the trade, which they 
have in view, ten times as many crowns as there are partners. The 
profit of the factor ~ fi~ed at twice as many crowns per cent., as 
there are partners. Further, if we multiply the rn· part of his 
total gain by 21-, the number of parmers will be found.. Required, 
what that number is. . 

Let it be =' x; and since each Partner has contributed 10 x, the 
whole capital is = 10 x x. Now, for every hundred croWDS, the 
factor gains 2 x, so that with the capital of 10 x x his profit will be 
i Xl. The rtv part of this gain is 'Sa". Xl; multiplying by 2f, or 
by V, we have dh Xl, or m ,tl, and this must be equal to the 
number of partners, or x. . 

We have, therefore, the equation d-r Xl = x, or x' = 225:i1i 
which appears, at first, to be of the third degree; but as we may 
divid, by x, it is reduced to the quadratic x x = 225, whence 
a: === 15. . 

Amwer. There are fifteen ·parlners, and each, ~tribilted 150 
crowns. 
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CHAPTER VI. 

Of t1&e Buolution oJ Mi:J:t Equation. of tAe ~econd Degret. 
, 

555. AN equation of tlae .econd degree u .aid to be mixt, or 
complete! when tAree kina.. of term. are found in it, flamel'l, 
that which cOfttaiu tAe .quare of the tmknoWfi quantity, a. a x x; 
tAat, in whic1 tAe un1mowu qutJfltity u found only of tAe first pow­
er, a. ,b x; lanly, tAe kind of terml wAicA i. com poled Oftly of lmown 
quantitie.. And since we may unite two· or more terms of the same 
kind into one, and bring all the terms to one side of the sign =, 
the general form of a mixt equation ot the eecood degree will be 

tJXX=FbXTC==O. 

In this chapter, we shan show how the value of z is derived 
from such equations. It will be seen that ihere are two methods 
ot obtaining it. 

556. An equation of the kind that we are now considering_y 
be reduced, by division, to such a form, that &be first term may c0n­

tain only the square x a: of the unknown quantity It. We shall leave 
the second term on t1)e saine side with tIJ, and transpose the known 
term to the other side of "the sign =. By these means our equa-­
tion will assume the form a::r: ± p a: = ± q, in which P and q 
represent any known numbers, positive or negative; and the whole 
is at present reduced to determining the true value of a:, We shall 
begin with remarlQng, that if a: a: + p x were a real square, the 
resolution would be attended with no difficulty, because it would 
only be required to take the square root of both sides, • 

557, But it is evident tbat "a: a: + p a: cannot be a square; sipce 
we have already seen, that if tI root COfIIiIt. of two terms,for exam­
ple, x + n, iu.quare alway. contaim t!ree terms, namely, twice the 
product of the two part., buide. tAe 'quare of each part ; tAat u to 
.ay. the'.quare o/x + nux x + 2 n x + n n, Now we have 
already on one side It x + p x; we may, therefOre, cOfIIider x x tU 

the 'quare of the fir,t part oftAe root, and in tAu ClUe p x tmut 
f'epruetU twice the product of x, the first part of tAe root by tAe 

• Sometimes called also affected. 
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lecond part; comequently, this 'eeoncl part fAwt be) i 'p, and in 
fact the 'quare of x + * p, is found to be x x + p x + f P P .. 

558. Now x x + p x + t p p being a real 'quare, 'lDhich Aas 
for it, root, x + l p, if we resume our equation x x + p x = '1, 
!be AtlfI6 only to add i p p to both ',ide" tD4ich pel "" 

.x X + P x + i p p = q + -1- p p, 
tAe fint ,ide being actually CI . 'quare, mad tT&e other containing 
only knoton tjUantitie,. 1J, therefore, 'IDe take tlae 'quare root of 
~both .idu, 'IDe fiiIiJ . . " 

, X + j p :;;:: V(i p p +, q); 

- ntDtrtlct;.,.g I p, 'IDe obtain 
x =- j. p + .v(ipp+ q); 

mtd, at etJery tq'I'Ch'e f'Oot • ., be t41ken atlta· a~el, or JItIa-
titlely~ 'IDe mall hatle lor x two "Glues IJt1Wwed tlaw j . 

x=-~ P ±. 4ipp+ q. 
559. This Connula eontains the rule by which all quadmtic equa­

tion. may·be resolved, and it will be proper to commit it to memory, 
thh it may DOt be necessary toJ"8peM, eTery time; the whole .oper. 
.tien .hich WI9 havegcme th~h. We may alway. arrange' the 
equatiOD, ia such & mBltnet, that the pui:e square II> tom.y be fOund 
OD ooe aide, and the above equation hue the rona /I ~ +p~ == f, 
wt.re we see imm.ediately that . 

.2l =r;: - .... P d:: J ~ p p + q. 

. 560. The general rule, therefure, which we deduce from this, in 
. Order to resolve the equation .2l .2l = - P .2l + i, is founded on 

tl,Ji!J CODsideration : 
. , That the unknown quandty·.2l is equal to half the coefficient, or 
multiplier of.2l on. the othe~ side of the eqUatiop,21w or minw the 
~re root Qf the square of this num~(lr, and the known quantitr 
w~ch Conns the third term of the equation. . 
. Thus if we had ~e equation .2l ~ = 6 .2l + 7;1 we. should imme­
diately say, tbat.2l == 3 ± ,\,,9 -+ 7 = 3 :i;: 4, whence we have 
these twQ values of .2l, I. (f) = 7; 11. :e = - 1. In ~e same 
_ef, the eq~atioll·.2l ~..:.. lD.2l - 9, would give . 
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• =0. 5 ± .v,.-9.:;= 5 ± 4. 

tbat is to say, the two values of ~ are 9 and 1 •. 

189 

561-. This rule will be still beuer· understood, by distiDguishing 
. the following cases. I. when p is aD even number; II. when 11 is 
an odd number; and III. when p is a fractional nUOlher. 

I. Let p be an even nu~ber, and the equation 8Ucb, that 

.:ln~ = 2 P .v + q; 
we shall, in this case, have", = P ±·IitIP-P-+'--'1. 

II~ Let p be an odd number, and the equation "'''' = p :r+q; 
we shall here have . -------

"'=iP±J~PP+q; 
and since 

.~pp+~=P1l!4q, 
we may extract the square root of the denominator, ad .write 

~= ip::l::: ';P1'2+ 4'1 =,,::l::: VPl +4 '1. 

lli. Lastly, if p be a (mction, the equation may be reSolVed in 
the following man~er; let the equation be 

• ·6", C . 

a '" '" = 6 tD + c, or tD tD = - + -, a a 
and we shall hue by the rule, 

Now, 

aI = !.. ± 16 b + ~. 
2a "'4aa a 

bb c 6b+4tIC 
4aa.-t. 81 , ~n-' 

the denominator of which iJ a square; so tbat 

b ± ~1i"i'"+ 4 ac 
tD- . 2a--~ 

, ' . 
562~ The other method of resolving mixt 'qlladratic equations, is 

to transform them into pure equations. This is done by substitution; 
for example, in the equation '" x = p x + q, instead of the UD­

known quantity"', we may write uother unknown .quantity y" such 

• 
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that tI)' = Y + l P ; by which means,. when we. have d~termined '!I, 
we may immediately find the vallie ef c. , 

If we make this substitution of.g + i 1! 1DStead of tI), we have 
(»tI)=YY + py +ipPt andptl)=py + iP Pi coDSequentlyour 
equation Will become y y + P Y + t P p == p y + i P P + q, 
whicb is first reduced, by mbtracling P '11, to' , 

yy +tpP-:-iPP + q; 
and then, by subtracting -1- 'P P, to Y y = t P P + q • . This is a 
pu~ quadratic equation, whicb immediately gives 

Y=::i::J~pp+q. 
Now, since tI) = Y + i P, we ba\>'e 

:c . *~::i:: J~pp +q, 

as we found it before. We have only, therefore, to illustrate this 
rule by some eump1es. 

563. Quution I. There are two numbers; one exceeds the 
other by 6, and their product is 91. What are those numbers? 

If the less is tt, tbe other is tI) + 6, and tbeir product. 
tI) tI) + 6 tI) ".JI91. 

Subtracting 6 tI), there remains tI) tI) = 91 - 6 tI), and tbe rule gives 
:r1 =-3::i:: .v9+'U =-3::i:: 10; 8Otbat'tI) =7,andtl)=-13. 

Ar&flDe,.. The question admits of two solutions, 
By one, the less nu~ber tI) is = 7; and the greater tI) + 6 = 13. 
By the. otber, .the less number :If = - 13, 8Ild tbe greater 

«1+6=-7. 
564. Qu6lM II. To find a number sucb, tbat if 9 be taken 

&om its square, the remainder may be a number, as many units 
greater tban 100, as \De number sought is less than 23. 

Let the number sought = ID.; we know, that tI) c ....... 9 exceeds 
100 by tl) tl) -109. And since tI) is less than 23 by 23 - :I), we 
have this equation; :c tI) ...... 109 = 23 --: :c. 

Wberefore tI) tI) = - (I + 132, and, by the rule, , . 

, '. J1 ' 1 1529, 1 23 
tl)'=--i ±: .;.. + 132 ='-2:±: ~-=- 2±~· , . . 4. 4 

So that tI) = 11, rmd aI-= ~ 12. 

• , 
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~e,.. When only a positive number it required, that number 
will be 11, the square,of which'mintu 9 is 112, and consequently 
greater than 100 by 12, in the same manner as 11 is less than 23 
by 12. 

665. Quutitm m. To find a number such, that if we multiply 
its half by its third, and to the product add half the number re-
quired, the result will be 30. , 

Suppose that number = 1», its half, multiplied by its third, will 
make * I» 1»; so that * I» I» + i I» = 30. Multiplying hI 6, we 
have I» rc + 3 I» = 180, or I» I» = - 3 ~ + 1~, whie~ gives 

3 Ir-- ,3 fl7, 
1»,= -'2'± "-'4 + 180 = -2 ±"j: 

Consequently I» is either = 12, or - 1:5. 
566. Quution IV. To find two DUmbers in a double ntio to 

each other, and sucb that if we, add their sum to their p~ct, 'tVe 
obtain 90. ' 

Let one of the numbers = 1», then the other will be = 2 I» ; 

their prpcil,lCt also = 2 I» 1», lind if we add to this 3 1», or their 
~ the Dew sum ought to make 90. So that 

21»1» +31»=90; 21»1»=90-3.t; 1»1r=-i~+45, 
whence we obtain , 

19' 3 fl7 
~,= - t ,± "-'16 + 45 .= - 4 ± 4' 

Consequently I» = 6, or -7i. 
567. Queltion V. A horse-dealer, who bought a horse for a 

certain nwnber of crowns, sells it again' for 119 CroWDS, and his 
profit is as ,much per cent. as the horse cost him.' Required, what 
he gave for it? . 

Suppoee the horse Cost ~ crowns; then as the borse-dealer gains 
1»' per cent., we shall say, if 100 give the profit 1», what does I» give? 

1»1» '$$, , 

4tutHr, 100' Since, the.re{ore, he bas gain~ 100,!lDd the ~~e 
, $:tJ 

origiDaUy cost him $ croWDS, he must hue, so1d it for $ + 100; 

wh~rore 
$$ 

x- 100 = 119. 

Subtracting z, we have 
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U)().= - $ + 119? 

aDd multiplying by 100, we have $ ~ = -100 $ + 11900. Ap­
plying the rule we find 
$=-50 ± V2500+l1§OO=-50± vI446b =-60± 120 . 

.8.mwer. The horse cost 70 crowns, and since the horse-dealer 
gained 70 per cent. when he sold it again, . the ptofit must have 
been 49 crowns. The horse must have been, thetefore, sold again 
for 70 -t- 19, that is to say, for 119 crowns. 
. 568. Que.tio>r& VI. A person buys a certain number of pieces 
of cloth; he pays, fOr the first, 2 croWDS; for the second, 4 crowns; 
for the third, (; crowllS, and in the satu mllDller always 2 crowns 
more for each following piece. Now, ~ t&8 pieces together ClQSt 

him 119. How many pleces had he ? . 
Let the. aumber soucht . ~. . By. the question. the purchaser 

paid for the ddferent pieceS of cloth in the fonowing manlJ'If : 
mr·the ·1,2,3, 4, 0.· .... :& 

be pays 2, 4,: 6, 8,.10 ..... ~ z erowns. . 
h is therefore reqund-to find tbe sam of 'the aritbmetiaal pl9-

greesion 2 + 4: + 6 + 8 + 10-+ •••••• ,2 z,. which.COBSists o( 
$ terms, tbat we may deduce from it the price of all the pieces of 
cloth taken together. The rule which we have already given for 
this operation, requires us to add tbe last term and the first; the 
6Jlm oj which i. 2 $ + 2; if we multiply this sum by the number 
of terms $, the product will be 2 a/$ + $; if we lastly div~ by 
die di1ference 2, the quotient wil) be $X + $, which IS the StIm 
of the progression; so that we have $ $ + $, = 110; whe~fore 
3JZ ="-:11 + '110; and . 

. 'z=_! + J!+1l0=_! +!! = lO~ .. 
. . 2 4: " 2, 2 ,:. 

A.mwer. The Dumber of pieces of cloth is 10. , 
669. 'Q,ue.ti(JAJ VII. A person bought several pi""!Jf cloth; 

for 180 ClOWDS. If he had received for the same sum 3 piece~ 
rflon. he l\'01l1d baVe ptrid 3 crowns leSs fbr each piece'; How 
many pieces did he buy? 

Let us make tbe number sought == :&; tben each piece will have 
• 180 . 

cost hiin -X-crowns. Now, ifthe pu'rcbaser had had Z +.3 pieces 
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r. " " • 180 
JO~ 180 ,crowDS, each pJece would have cost tIJ X 3 crowns;, and, 

since this price is less than the real price by three crowns, we bave 
this equation, ' ' 

180 _ 180 ....:. 3 
$+3"- tIJ • 

MultiplyiiJg by tIJ, we have tlJl: ~ = 180 - 3 x; dividing by 3, 

60 x I' I" b . h we have :& + 3 = 60 - tIJ; mu tip ymg y tIJ+'3, 'We ave 

6OtIJ= 180'+ 57 tIJ-tlJtIJ; 

adding tIJ tIJ, we sball have tIJ:& + 60:& , 10 + 57 X, subtracting 
60 x, we sball have, x :& = - 3 :& + 180. 
-The rule, consequently, gives 

3 ,19 3 2'7' 
x ,-:- i + ~4 + 180, or 071=- 2 +"2 = 12 • 

ArutDer. He bought for 180 ClOwns 12 pieces of cloth at 15 
crowns the piece, and if he had got 3 pieces more, namely, 15 
pieces for 180' ci'owni, ~cb piece would ba ve cost on'ly 12 croWns, 
that is to say, 3 crowns less., , 

, 570. Quemon VIII. Two merchants' enter into ,partnership 
'with a stock of l00'crowns; one leaves his money in tbe partner­
ship for three months, tbe other leaves' bis fOr two Dionths, and 
each takes out 99 crowns of capital ,and profit. What proportion 
of, the stock did each furnish? . 

Suppose tbe first partner contributed:& crowns, the other will 
have contributed 100 - x. Now, the former receiving 99crowns, 
his profit is 99 - x, which he has gained in three montbs with tbe 
priDcipal x; and since the second receives also 99 crowns, his profit 
is x-I, which be has· gained in two months with'the principal 
100 - rc ;. it is. evident also, that ~e profi,t of this second plI;rtner 

, 3071-3 
would have been -2----' 'if be bad remained tbree months in the, 

partnership., Now, as the profits gained in the same time are in 
proportion to the principals, we bave the following proportion, 

,3:& -3 
x: 99-071= 100-'071: 2 

Eul. ~. 
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The equality of-the 'product of ~e extremes tQ thai of the 
means, gives the equation 

8ZM-8M ' ., 
, 2 = 9900 - 199 ~ + ~ z. 

Multiplying by 2, we ha1e 
8 ~ z - 8 ~ = 19800 .:.... 898 M + 2 ~ ~ ; 

subtracting 2 M ~, we bave M re - 8 ~ = 19800 -398 It ; 
adding 3 ~, we bave ~ M = 19800 - 395 ~. 

Wherefore by, the ruJe, 
395 '156025:=--"'7=9200~' 895 485 90 

,z=-2+~-4 -+--r =-T +T=2' =45 • 

.AnitDer~ Toe first partner contributed 45 C1'Qwns, and the other 
55 crowns. The first t having gained 54 crowns in tbree' month\ 
would have-gained in onemontb 18 CrowDS ; and the second having 
gained 44 CroWDs in two months, would have gained 22 crowDs in 
one month: -DOW tbese profits agree; '{or, if· with 45 croWns 18 
CrowDS are gained in one monthl 22 crowns will he gained in· the 
.. me: time with 55 CroWDS. 

571. Quution IX. Two girls Carr! 100 eggs to m~ket; one 
bad more tban the otbet, and yet the sum which each J'eCelved 
~ them was the 181D8. ,The ' first says to tile second, if I bad h,.d 
your eggs, I should have received 15 soos. The other 8IlIwers, ' 
if I ~ad bad yoUrs, I should bave receiveti 64 sops. ' How many 
-as did each carry to market? . 

Suppose tbe first had z eggs; dien the second, muSt have bad 
100 -~. 
, Since therefore the former would have sold 100 - z eggs tOr 

16 sous, we have the following proportion; : 
15~ 

100 - ~ : 1,5 = z •••• to 100 --;i sous. 

, Also, since tbe second would 'bive sold ~ egp fOr 6i sous; we 
6ad bow much ,she got (or 100 - ;J:~eggs, by saying 

20 2000- 20~ 
~ : '3 = 100 - ~ ~ ••• to -3 z • 

Now each of Ibe girls receivel! the same sum; we ba'V8 conse-
quently the equation, '. ' 
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which becomes this, 
25 tt: tt: = 200000 - 4000z; 

and lastly tbis, 
tt: tt: = - 160 tt: + 8000 ; 

whence we obtain 

tt: = - 80 + .v6400 + 8000 = - 80 + 120 = 40. 
. Aruwer. The first girl had 40 eggs, the second had 60, and 

each received 10 sous. 
572. QuutioR X. Two merchants sell each a certain quantity 

of stuft'; tbe second sells 3 ells more tban tbe first, and they receiv­
ed together 35 crowns. The first says to the second, I should have 
got 24 crowns for your stuft'; the other answers, and I should have 
got for yours 12 crowns and a half. How maoy ells bad each·? 

Suppose the filst. bad tt: ells; then the second must have had 
tt: + 3 ells. Now, since the fint would have sold tt: + 3 ells for 

. 24tt: . 
24.crowns, he must h~ve received tt: + 8 croWDS for his tt: ellf!. 

~d with regard to the second, since he would have Sold tt: ells 
" 25 tt:- 75 m 12j. crowns, he must have sold his tt:, + a ells for 2-tt:- j 

s.o that the whole sum they received was 

24 z + 25 ~ + 75 '!K - - = au crowns. 
tt:+ 3 2:z; • 

This ..,quation becomes tt: tt: = 20 tt: - 75, w~ence we bave 

tt: =I'i= 10 :±: .v 100 '- 75 = 10 :±:, 5 • 

.Aruwer. The question admits of two soIutioRS; accordiug to the 
first, the first mereharit had 15 ells, and the second had 18 ~ aDd 
since the former would have sold 18 ells fOr 24 crowns, he must 
have sold his 15 ells lOr 20 crowns; the second, who woUld bave 
sold If ells for 12 croWDS and a half, must haveseld bis 18 ells 
(or 16 erowns; so that they actually received 36 crowns.for their­
commociity. . 

According to the 'second solution, the first merchant ~ad 6 ells, 
and tb. otber 8 ells 'j so tbaty'since the first would have sold 8 ells 
for i4 crowns; be must bave l'J'C8iV'ed 15 croWDS' for Ilis 5 ells; a.Dd 
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since the second woold lIa,e sold 5 ells for 12 crowns and a half, 
his 8 ells must. bave produced hi!n 2O.crowns. The sum is, as 
before, 35 crowns. . 

'CHAPTER VU. 

OJ the Nature of 1Jquarioru of the Suorul Degree. 

573. WBA'l' we have already said sufficiently sbows, that equa­
tions of 'he second degree admit of two solutions; and this pro­
perty ought to be examined in every pOint ofview, because the na­
ture of equations of a higber degree will be very much illustrated 
by sueb an examination. We shall. therefore retrJce, with more 
attention, the reasons which render an equation of the second de­
gree capable of a double solution ;' since they undoubtedly will ex:" 
~ibjt an essential property of those equations. . 

·574. We have already seen, it is true, that this double solution 
arises from the circumstance that the square ro.ot of any number 
may be taken either positively, or negatively; however. as thisprin-

. ciple will not easily apply to equations of bigher degrees, it may be 
proper to illustrate it by a distinct analysis. Taking, for an example, 
tbe quadratic equatiOn, It r» = 12 :c - 35, we sball giVQ a new rea­
son (or this eq~atioD being resolvable in two ways, by adniitting for 6: 

the values 5 and 7, both of whicb satisfy the terms of the equation. 
. 575. For tbis' purpose it is most cqnvenieot to begin with trans­

posing tbe terms of tbe equation, so that one. of the.si.des may.be­
come 0; this equation consequently takes the form 

. r» r» - 12 r» + 35 == 0; 
and it- is now required to· find a number such, that if we substitute 
it for r», the quantity r» ~ - 12 (t + 35 may be really equal to 
nothing; after this, we shall have to show how this may be done . 
~ two ways • 
. '576. Now, the wbole of this consists iB showing clearly,. that 
a quantity of the JOf'fAX x --- 12:1t + 35. may be COfIIidered _ tAe 
product of two factorl ; thus, in fact, tbe quantity of which we Speak 
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is composed of the two Caetols'(1D - 5) X (ID - 7). For; since 
this quantity must become 0, ·we must·also have· the .product 

.. (1D:""'5) X (.1:-'7)=0; . 

1)ut a prl>duct, oj whatever nu~er of facto", it u compo,ed, be­
come. = 0, only wheta one of thol8 factorl U reduced to 0; tbis 
is a fundanientalprineiple to which we must pay particular atten­
tioo, especially when equations of several degrees are treated of. 

577. It is. therefore easily understood, 'that the product' . 

. (i - 5) X (x - 7) '. 

may become 0 .iR two.~ ; one, when the firlt factor x - 5 =0; 
tAe f)ther, wAen ~he ,econd factor, x - 7 = O. 11& the firat. eMe 
x == 5, in the other,x=7. Tbereasonis,tberefore, very evident, 
why such an equation ID ID .... 12 ID + 35. == 0, admits of two solu­
tiohs, that is to.say, why we can assign two values of ~"both pf 
wbich equally satisfy tbe terms of the equation. This fundllDlen­
tal principle consists in this, that the. quantity ,ID ID - 1~ ID, + .35 
may he represented, by the product of two factors. . 

578. The same circumstances are found in all 'equations of the 
~C)nd degree. F~r, after baving brought all th~ tenps to' one side, . 
we always find an equation of the follo~ing form ID j; - a tr + b = 0, 
and t~is formula may be always conside:red as tbe pro~uct of two 
factOrs, wbich we shall r~present by (x --:- p) ~ (ID - q), without 
concerning ourselves what numbers tbe letters 'P and q reprElsent • 
. Now, as tbis product must be = 0, from th.e nature of our equation 
it is evident ~bat tbis may happen in two ways; in the first place, 

. when ID = p; and in the second place, when x ..:... q ; an~ tb~se 
are 'the two yalues of ID w~ieb satisfy the terms of the equation •. 

579.' Let us now consider the nature of these two factors, in 
order tb.at the multiplication of .the one by the other may exactly 
produce ID ID - a .1: + b. By actually multiplying th~m, we get 
ID x - (p + q) x + p q; now this quantity must b~ the same ~ 
S.ID - a ID + b, whe~fore we have evidently p + q = a, and 
p q= h. So that we have deduced this very,remarka~le propeJ1y, 
that ,i" e"ery equation of the form, x x - a ]I; + b = 0, the two 
tlal~' of ~ are .ach, that their BUm U equal to a, and their pro­
duct equal to b; whence it follow. that, if 1De know one of the 
"aluu~ the otAer auo v eanl!J.!ouneJ " , ~ . 

. '. 
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680. We have CODsidered the,a. in whie ... two va1uea of s 
are positive, and which tequirea the HeQlld WIn·of the equation to 

, bave the sign, -, and the third tel'Ql to have the sign +. Let us 
also consider- the cases in which either ODe or both Values of il be­
~e negativ8,., The first takes place when, the two f~to.rs oCtile 
equation give a product of this fonn ($ -1) X (~+ g); tor theD 
the two values of II) are II) = p, and II) == ~ 9 ; the equation itself 
becomes Z (I), + (9 - p) II) - 'P g = 0; the ,8~od term has the 
sign +, when 9 is greater than p, and the sign -, when 9 is less 
than p; lastly, the third term is aI_ys nega6ve. 

The second case, in which both \'allles of (I) are negative, occurs, 
when the tWo A.ctors are «(I) + p) X ($ + '1); tor we shall then 
have (I) =' - p and i.: = - 9; die equation itself becmnes 

, (I) (I) + (p + '1) (I) + 'P 9 = 0, . 
in which both the second and tbird termS are affected by the $ign + . 

581. The signs of the second and the third term consequentl.r 
show us the nature of tbe roots 'of any equation of the second degree. 
~t the equation be (I) (I) • • •• a (I) : • • • b = 0, if the second and 
third terms have the sign +, the two values of (I) are both negative; 
if the second tenn has tbe sign -, and the third term has +; both 
values' are positive; lastly, if the third term also has the sign-, one 
of the values in question is positive •.. But in all cases, whatever,' 
tbe second term contains the sum of the two, valt,1es; and the third 
term contains their product. . 

582. After what has been said, it will be very easy to (onn eqUB;­
tions of the second degree containing anr two given values. Let 
there be requ~red, for example, an equati~n such, t~at ~ne of the 
valu~s of (I) may be 7, and the other - 3. We first form the sim­
ple equations Z ~ 7 arid !t = -:- 3'; thence these 111-7 = 0 and 
(I) + 3 =:= 0, whi,ch give~ us, in this manner, ~he factors of the equa­
tion required, which consequently becomes 111 111 ....:. 4 111- 21 = O. 
Applying here, also, ~e above rule, we ~d the two given values 
of (1); fo~ if ~ :c = 4 111 + ~1, we bave $ = 2 ± .v25 = 2 ± 5, 
that is to say, $ = 7, or (I) = - 3. 

583. The values of 111 roay also happen to be equal. Let there 
be sought, for e~ample, an equation, in wbichbOtb values may ~ 
..: 5. The two factors will be (111- 6) X (.2):""" 5), and the equa­
tion. sought will be (I) (I) - 10 II) + 25 ='0. ~D this equatioD, if: 
appears to have only one value; but it is because $ is twice found 
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= 5, as the comDKnl ~od of l'8lIOlution shows; for we bave 
(I) (I) = 10 (I) ~. 25; wherefore ':c = 5 ± '\1'0' = 5 ± 0, that is 
to .say, (I) is in tWo ways = 5. 

ps4. A very remarkable cue, in which bQth values of aJ bt,come 
imaginary, or impassible, sometimes oocurs; ad it is then whQIly 
impossible to assign any value for (I), that WOUld SII.~sCy the te~s of 
tlle equation .• Let· it be proposed, for example, to divide tbenum­
ber 10 ioto. two parts, such, that their product may be 30., If we 
call on~ of tbose parts iIJ, the other will be = 10 - (I), and their 

. product will be 10 x - iIJ:C == 30; wherefOre (I) (I) = 10iIJ-ao~ 
~d .fC = 5 ± ~ - 5, whi~~ being an imaginary _tmber, AMWB 

tlaat the quution is impo.,ible. . 
5.85. It is very ,important, therefore, to discover. some sign, by 

means of which he may immediately knoW, wb~tber an equation of 
the second degree. is possible' or Dot. . .' 
. Let us resume the general equation a (I) - x (I) + b = 0 •. W ~ 
shall have 

.' 'b d 1 Jl x (I) = a (I) - ,an iIJ = 2 a ± 4 a /J -b. 

This·shows, tbat if b'is greater than 1 a 8, or 4 'b greatertbana a, 
the two -vlaues of iIJ are always imaginary, sinee it'would be requiTed 
to ~tract tbe square root of a Oi:lgative quantity; on the contrary, it 
b is less than i- 8 a, or eve~ 'less' tban 0, that is to say, is 'a negative 
Dumber, both values will be possible or real. But whether tbey'be 
real or imagiiiary, it is no less true, that tbey are still expreSsible, 
and always ·bave this property, th~t tbeir sum is == a, and their'pro­
duot = b. In the equation x :J: -- 6 (I) + 10 = 0, for example, tbe 
sum of the two values of iIJ must be = 6, and tbe product of these 
two values must be == 10; DOW we find, I. (I) = 3 + V -1, aDd 
II. fC'= 3 - tV - ], quantit~s whose Bum = 6, and the p'rodllct 
==10 •. 

:586. The expression, wbicb· we ha-ve jUst' found, oiay be repre­
sented i~ a manner·mote general, 'and so as to,be applied to equa­

, tioDS of,tbis form,/ (J) (I) ± g fC + h = 0; (or this equation gives 
, 'g:c." 

~fC·== ±: 7 -r ' 
aDd. 
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. .± g ± Vgg-:- 4lf..· 
3J=. fIIf . ;. 

whence we conclude that the two values are imaginary, and con. 
quently the equation impossible, when 41 Ais greater than g g; that 
is to say, when, in the equation f:& X - g g) - A == OJ four times 
the product of the first and the last term exceeds the square of the 
second term: for the product of the first and the last tefin, taken 
four times, is 4fAx x,and tbesquare oftbe middle tenn isggx a:j' 

now, jf 4fAx x is greater th~g g rz x, 4fA is also greater thang g, 
and in that case, the equation is evidently impossible. In all other 
cases the. equation is' possible, and two real values of g) may be u­
signed. It is true they are often irrational; but we have already 
seen,. that, in such cases, we may always 004 them by approxima­
tion; whereas no approxi!D~tioD8 -can take place With regard to 

imaginary expressions, luch as It/ - 5; for 100 is is far from being 
. the value of that root, as 1, or any other number. 

587. We have further to observe, that. any quantity of tlae ,econd 
degree, x.x ± a x ± b, mult ri!wGy' be ruolt1able into two/actor" 
such as (x ±p) X (x ± q). For, awe tookthree factors,sueh 
as these, we should come to a quantity of ~e third degree, and 
taking only one such factor, we should not exceed the first degree. 

It is therefore certain tbat every .equation of the ,eeoud degree 
Recu8arily contaiRl two "alues. of x, and that it can mither AafJe 
more nor .le88. . 

.588. We have alrea~y seeJ.l, that when the two factors are found, 
the two values of.;x: ,are also known, since each factor gives one of 
those values, when it is supposed to be = O. Th~'Converse.alSQ is 
true, "iz. that wheD we have found one value of x, we know alSQ 
one of the factors of the equation; for if x =.p represents one of 
the values of x, in any equation of the second degree, x - p is'one 
of the factors olthat equation; that is to say, all the terms h.aving 
been brpughtto one side, the. equation is divisible by x.- Pj· and 
further, the quotient expresses ,the other factor. . 

48~. In order to illustl'ate yvhat we have now said, let there be 
given the equation x :I) + 4:1) - 21 = 0, in which we know that 
x=3 is one of the values of x, because 3+31 +4 +31- 21 =0; 
this shows, that :I) - 3 is one of the factors of tbe equation, or 
tbat:IJ x + 4. x - 21 is di~ble by :& - 3, which the actual di­
vision proves. 
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Chap. 7. Of Eq.tumoRl. 

:Ii - 3) :D Z + 4 .:r: - 21 ({1J + 7 
{1J~-3:D 

. . 

7:D - 21 
7:D - 21 

o. 

201 

So that the other factor is x + 7, and our equation is represent-
ed by tbe product (:D - 3) X (:c + 7) = 0; whence the two ' 
values of :D immediately follow, the first factor giving :D = 3, and ' 
the other :D = - '7 • 

• • 

»d . .Alg. 
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Q,UESTIONS FOR PRACTICE. 

Fractionl. 

SECTION L-CIIAPTEB 9. -
2111 6 . , 

1. Reduce - and - to a common denomlDator. a . 

2 CIII d ~6 
A7I6. a C an a c· 

" a a+6 , 
2. Reduce -6 and -- to a common denomlDator. 

C . 

a C. a 6 + 61 

Ani. 6 C and -6-c-' 

3111 26 • 
3. Reduce 2 a' 3C' and d to tractions hal71ng a common de-

~ __ 9 C III 4 a 6 6 a C d 
nominator. ~. 6 a c' 6 a c' and 6ac . 

3 2111 2111 • 
4. Redu~ 4' 3' and a + Ii: to a common denomlDator. 

9a 8alll 12a l +24111 
~. 12 a' 12a' and 12 a • 

. 1 a' z· + a· , 
5. Reduce 2' -3' and III + a to a common d'Bnommator. 

3111 + 3 a 2 a· z + 2 a' d 6 Zl + 6/1' 
.A.m. 6 III + 6 a' 6X + 6 a ,an 6 III + {fa' 

be· d . 
6. Reduce 2--;' 2-' and - to a common denominator. . a a a 

2 a' 6 2 a3 c 4 a I d 
A",. 4 a4 , 4ii"" and 4 a 4 • 
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Quutiou for Practice. 

,,:CTION I.-CHAPTER 10. 

X 2x 
7. Required the product of 6 and 1f' 

I) 4 x 10 x 
S. Required the product of 2' 5" ~ and 21' 

x x+a 
9. Required the product of a aDd a + c' 

3x 3 a 
10. Required the product of"'2 and T' 

Xl + ax 
.An •• a l + ac' 

9a41 
.Am. ~. 

2 x 3 Xl 3 Xl 
11. Required the product of 5" and 2 a • Am. 5 a • 

2 x 3 a 6 3ac 
12. Required the product of a' c ' and 2 h • .Am.9ax. . , 

, 6 x a a6 +'6 x 
13. Required the product of 6 + - and -. AnI. ---. a ~ , x 

Xl- 61 x' + hi 
14. Required the product of -h c and 6 + c • 

x'- h' 
.A.m. 6 I C + h cit 

, x+1 x-I 
15. Required the product of x, -a- • and a + 6' 

,Xl...-X 

.11.",,' I + b' , a a 

16. Required the quotient ofi divided by 291:. .A.n.. II. 

2a 4c ad 
17. RequiredthequotientofT divided by (f' .A.m. 2 b c· 

, . . x+a.. x+h 
-lS. Required the quobent of 2 x- 2 6 dlVldC'd by 5 x + a' 

.. 5 Xl + 6 a x + a' 
.nu., 2 Xl _ 2 b' • 

2 %1 , x 
19. Required the quotient of a I + X I divided by x + a' 

, 2x 
.A.M. xl-ax +(ii' 

. . '7 x . . 12 91 x 
20. Requited the quotient ofT dIVIded by 13' .An •• 60 • 
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• • 4 z· . 4 ~ 
21. Required the quobeDt atT divided by 5~. .AN. 35. 

He • db' of ~ + 1 ~:....:~_~ b 2 ~ ~ __ ~ + 1 
22. quue t e quotient -5- WYIINU 1a· .4JU. 4'"i"". 

~-" 8c% z-b 
23. Require ... the quotient of 8c d diYided by 4 d· ~·6 t! ~. 

~4_b4 

24. Required the quotient ol z. _ 2 b z + b' dirided by 

z' + b z 6' 
~T. ~. !Ie +-;. 

Infinite &rie •• 

• aCTIO .. U.-CBAPftla 5. 

az 
~. Resolve -- into aD infinite series. a-z 

:r! ~ Z4 

~,...~ + a +t} + a" &c. 

b 
~. Resolve II + z into an infinite series. 

b bit ,,~ bzl • 
AlII. --- +---- +&C'. 

II ". a' 04 

Or ruolfled into factor., 

" Z Zl ~. 
- X (1 - - + - - - + &e.) a II It a' 

o· 
:27. Resolve z + b iDto an infinite series. 

~ b ~ ~ 
.AN. ~ X (1 - i + ii - ii + &c.) 

.og R I I+z, 'fin' • 
~. etO va r=; Joto an ID Ite senese 

.Am. 1 + 2 z + 2 r + 2 z' + 2 Z4, &c. 
". 

'29. Resolve (II + z)' into-an in6nite series. 

2z 3:r' 4~ 
.An,. 1- - + -::;-- -. ,&e. 

II a. a 
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, Qucltionl 1M': Practice. 

, , 
Burdi or Irrational lVumbers. 

~ECTION I.-OHAP.TERS 12, 19; AND ~ECTION II.-CHAPTERS, &c. 

30. Reduce 6 to the form of "'5. An •. "'00. 
3t. Reduce a + btotheformof",bC. An,. VIJII + ~b6. 
32. Reduce b ~ c to the form ~f Vii. An,.J 6a bO c' 

,f 1 
33. Reduce tI and 6 'to the common exponent 3: 

.A",. all, and bfll. 
34. Reduce It/ 48 to its simplest form. Au. " .y3. 
35. Reduce II/I;a z - a' ;. to its simplest form. 

Am. avi.i"Z="i'i. 
• 3 

36 ' R d ' 127 0 4 6r " ; I l" • e uce ~ S 6 _ S 0 to Its simp est 10M. 
',., ' 3 

.. 3 a bJ-:-:a-J1n.s. - --. 
2 b-a 

37. Addvsto2V6;andVitolt/50. ~.3V6; and'It/98. . , '.' , ' 

38. Add.y'4G and Vii'together. An •• (0 + 2) It/ii. 
, ~' C) 

39. Ad~ c I alld iii together. 
4-

40. Subtract v4a from II/(}. 
, 'C\t 611 

41. '~btraet 1,1 from cl .-

. 12ab 19ad 
42. Multiply ~ 3 e by ~ 2' 6 .. 

b b +ee 
4n~. b.y' be' 

4fts. (a.....,. 2) Vii. 

An.s:b b -~J 1 . 
, 6 ' be 

..4Jts. 130a ti. 
~, e 

3 8 
43. )Iultiply Vii by :Va b. Am. Va' b' ,po 

44. Multiply v4ii="3x by ~ a. An •• ''''16 aa ~ 12al-;. 

45. Multiply n Va=; by (c- rl) VGZ~ 
, at-ad 
A'll" -2~ '" at z -:ti7. 
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46. Multiply ",ii - ",b - ",a by vii + Vb - "'S. 
Am. ",;;=. + .va. 

I -I- 1- i /2 m-" 
47. Divide a by a; and a by a. ' .An •• a and CI-,;;-;& • 

ae-ad a 
48. Divide ~b VtTZ ~ by ib "';=z . 

.Am. (e - d) .viiX~ 
49. Divide at - a d - b + d Vb by a - Vb . 

.Am. a + ",b - d. 
50. What is the cube of ",2"? .Am. -va. 

3 a 
51. What is the square of 3 Vb c' ? .Am. 9 e ",b' c. 

52 •. What is the fourth power of 2ab ~ c 2 a b ? 

a' 
.Am. 4 b' (c' - 2 be + b')' 

53. What is the square of3 + <\Is? .An •• 14 + 6"'5. 

54. What is the square root of a l ? . Am. ,) i or ",iii. 

55. What'is the cube root of a 6' ? .AM. a 6 bi ; or ~ a6 b. 
. 8 

56. What is the cube root of '" tJ'-zl? Ana. VG* rs. 
57. What is the cube root of a' - ",a;-::zI? • 

II' 

.Ani. '" a' - ../ a. z -:r'. 
5S. Wbat multiplier will render a + '" 3' rational ? 

.Am. a - -\13. 
59. What multiplier will render Vii - <\I b rational? 

Am. ",ii +.vb-. 
60. What multiplier will render the denominator of the fraction 

'\I'i 
--. -~ rational? .An ... V7 - ",3. 
Ai/7 + '\1'3 

SECTIOlf n.-C!l.APTJ:R 12. 

61~ ResolvE" Va'. + ? into an in6Dite series. , 
3! x' r.c' 5 Xl 

Ani. (I + 2a - 8 QI + 16,,' - 828a" &c • 
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62. Resol,e V 1 + l' ioto an" infinite series. 
1 1 1 I 

AN. 1 + 2 - 8 + 16 - 32' &0. 

63. Resolve V~" into an infinite series. 
'" X4 3! 

AnI. a -2 a - 8al- 16a~' &c. 

64. Resolve.v i :r;I into an infinite" series. 
, x· x' 5x' 

Ana. 1 - 3" - "9 - 81 '" &0. 

65. Resolve \lr'-z'"into an infinite series. 
'" X4 x' 5 x· 

.AN. r -2r - 8 r'-161" - 128r" &c. 
1 

66. Resolve I - into an infinite series. va - ze "" 
1 Xl 3 ;X4 15 1118 

Am. a + 2ti' + 8 (JI + 487' &0. 

67. Resol~e (r _zl)"l- into an infinite series. . 
t" I r 21114 6111' 

A.m. (J X (1- 50.1- 25 04 - 125 ("i ~ &te;. 

68. Resolye ra:-+~ into an iniinite series. 
~a -x 

, 111' 1114 3:' 
ARI. 1 + -. + 04 + 2-" &c. a ",0 a 

1 ___ _ 

69. Resolve I (al
• + ~ into ~ infinite series. 

~ (J + zI)1 " 

" 1 2 '" 5 ;X4 40 af 
,A.RI. ---a:::- X (1 - ail + 9 a4 - 81 (J' + &c. 

a va " 
Summation of AritAmetical Progru.iOfl •• 

SECTION' IIf.-CHA.PTER 4. 

70. REQ,t1J1\ED the sum ofaD increasing arithmetical progression, 
baving 3 for its first term, 2 for the common difference, and th., 
number of terms 20. " ".AN. 440. 

71. Required tbe SUm of a decreasing arithmetical progression, 
having 10 for its first term, J fOr the common dift8rence, and the 
number of terms 21. AM. 140. 
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'72. Required the number of all tbe strokes of a clock in twelve 
hours, that is, a complete revolution of the index. .Am. 78. 

73. The clocks of Italy go on to 24 hours; how many strokes 
do they strike in a complete revolution of the index? .An,. 300. 

74. One hundred stones being placed on the ground, in a straight 
line, at the distance of a· yard from each other, how far will a per­
son travel who sha~1 bring them one by one to a basket, which is 
placed one yard from the first stone • 

.A7u. 6 mile. and 1300 yardl. 

n, greaud COMmtm DifJuor • 

•• OTION Ill. CHAPTER 6.-SJ:CTION I. CHAPTER 8. 

cx+xl .• x 
76. Reduce cat + aax to 1ts lowest terms. .an,. a" 

.1;1 _ 6' x . x' - b x 
76. Reduce x' + 2 b x + 63 to its lowest terms • .A",. x + b . 

x'-b' . 'x l +b2 
77. Reduce :t! _ h3 x, to Its lowest terms. .AN. ---;;;-. 

x' _y' 1 
78. Reduce x' _ y' to its lowest terms. .AN. x' + ya. 

a' - x' 
79. Reduce -1--'-+--, -3 to its lowest terms. a -a x a oX -x 

a+x 
.Am. -1-' 

6 al + 10 a' x + 5 al X' 
SO. Reduce al x + 2 at X' + 2 a x~ + x~ to its lowest tet:JDS. 

5a'+5a' x 
.A",. a2 t» + a rc' + 'i}' 

Summation·of Geometrical Progrtlliom. 

SJlCTION IlI.-C::HAPTI::a 10~ 

81. A SERVANT agreed with a master to serve hio,. eleven years 
without any other reward for. his service than the produce of Qne 
wheat com for the first year; and that product to he sown thesec­
ODd year, aDd so OD from year to year .tillthe elld of the time, aUow­
ing the increue to be only in a tenfold p~poriion. What was the 
slim oftbe whole produce? .Am. 111111111110 tD~atco,.,.,. 
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Quutiom Irw Practice. 

N. B. It is further required to reduce this number of coms to 
the proper measures of capacity, and ~hen by supposing an average 
price of wheat, to compute the value of the corns in rnoney. 

82. A servant agreed with a gentleman to serve him twelve 
months, provided he would give him a farthing for his first month's 
~ervice, a penny for the second, and 4d. for the third, &c. What 
did his wag~s amount to? ,.Ana. 58251. 81. 5td. 

83. Sessa, an Indian, having invented the game of chess, showed 
it to his prince, who was so delighted with it, tbat he promised him 
any reward he should ask; upon which Sessa requested that he 
might be allowed one grain of wheat for the first square on the chess­
board, two for the second, and so on, doubling continually, to 64, 
the whole number of squares; now supposing a pint to contain 
7680 of those grains, and one quarter to be worth 11.7 •• 6d., it is 
required to compute the value of the whole sum of grains • 

.A.m. £64481488296. 

Simple Equatiom. 

SECTION IV .-CHAPTER 2. 

84. If tJJ - 4 + 6 =8, then will tJJ = 6. 
85. If 4 tJJ - 8 = 3 :c + 20, then will tJJ = 28. 
86. If tJ tJJ = tJ b ~ tJ, then will tJJ = b - 1. 
87. If 2 tJJ + 4 = 16, then will :c = 6. 

3 c· 
88. If tJ /1) + 2 b tJ = 3 c·, thet;t wiD tJJ = a - 2 b, 

89. If ~ = 5 + 3, then will /1) = 16. 

2tJJ ' , 

90. If a - 2 = 6 + 4, then will /1) = 18. 
, b ' b 

91. If tJ ~ - = c, then will tJJ = --. 
tJJ fI-C 

92. If 5 tJJ -15 =~", +,6, then will /1) = 7. 
98. If 40 - 6 /1) - 16 = 120 - 14 tJJ, then will tJJ == 12. 

tJJ /1) tJJ 
94. If 2 - 3 + 4, = 10, then will (& = 24. 

x-3 tJJ tJJ-19 • 
95. If -2 - + i = 20 - 2 ' then will tJJ = 23t. 

96. If '~:c' +- 5 = 7, then will tJJ = 6. ~3 . 
Eul. .A1g. 27 
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2 ti'· , 
97.'1f z + .vIIi .... Zl = ... , . -=, then will:e = tI "'i. , . ,. II" + Zl ,. 

·tI 6-3a 
98. If 3 a z + 2 - 8 = b:e - tI, then Will :e = 6 -a _ 2 b' 

99. If ,\,,12 + z = 2 + Vi, then will:e = 4. 
2 a ' . 

100. ICy + .vIII +yl= (a'+ Y')f' then willy= t a.va. 
y+1 y+2 y+3 . 

101. If -r + -a = 16 - -4-' then will y = 13. 

. 2 a' a 
102. If vi, + .va:t='"'i = .0.)-=, then will:e = -3' 

. ,.II+Z 

103. If .vIII +zl'=Vb. +z',thenwill:e= Ib'-;:". 
, '. ~ 2a 

b' \ 
104. If:e ~ .v a l + :e ./b l + Zl,- a, then will:e == 4a - a. 

128 '216 ~ 
105. If 3 z -4 ::::. 5:e _ 6' then will:e == 12. 

42 a: 35:e 1 • 

106. If --n == --3' then Will /1) == 8. 
/1)-~ (1-

45 : 57 
107. If 2:r +'3 == 4Z=5' the~ will :e == 6. 

z' - 12 :e l --.: 4 . 
lOS. If 3' == -4--' then will :e == 6. 

109. If 615 /1) - 7 Zl == 48 z, then will:e == 9. 

SECTION IV.-CU'&pTEB. 3. 

110. To find a numbe~, to which, if there be added a half, a 
third, and a fourth of itself, the sum will be 50. ,An •• 24. 

111. A person b~ng asked what his age was, replied, tbat i of 
his age multiplied by 1\ ofbis age gives a product equal to bis age. 
What was his age? ., .. ' 'Aris. 16. 

112. The sum of 660/. was raised, for a pllrticular purpose by 
four persons, A, B, C, and D; B advanced twi~e as much as A; 
C as much as A and B together; and D as much as Band C. 
What did' each contribute? Ana. 601., 1201., 180?~ 'and 3001. 

113. To find tbat number wbose", part exceeds its t part by 12. 
t i . 

',' , ,/J.~.144. 
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114. What sum of mon~y is that, whose t part, t ,part" and t 

part added together, amount to94 pounds? .An •• 1201. 
115. III a mixture of copper, tin, and lead, one half of the whole 

- 161b. was copper; i of the whole - ]316. tin; and t pf the 
whole + 4lb. lead. What quantity of each was there in the com­
position? .An,. 12816. of copper, 84l6. of tin, and 761b. of lead. 

116. What number is that, wbose i 'part exceeds its ! by 72? 
.Atll. 540. 

117. To find two numbers in the proportion of 2 to 1, so that if 
4 be added to each, tbe two sums shall be in the proportion of 3 to 2 • 

.An •• 8 and 4. 
118. There are two numbers such that j-of the greater added to 

i of tbe less is 13, and if j of the less be taken from t of the 
greater, the remainder is nothing. What are the numbers?, 

.Ans. 18 and 12. 
119. In the composition of a CEirtain quantity of gunpowder i of , 

the whole plus 10 was nitre; i of the whole minus 41 was .ulphur, 
and the marcoal was t of the nitre - 2. How many pounds of 
gunpowder were there? .Ans. 69. 

120. A person has a lease for 99 years; and being asked how 
much of it was already expired. answered, that two thirds of the 
time past was equal to four fifths of the time to come. Required 
tye time past. Ans. 54 years. 

121. It is required to divide the number 48 into two such parts, 
. that the one part may be three times as much above 20 as the other 
wants of 20. .An •• 32 and 16. ' 

122. A person rents 25 acres of land at 7 pounds 12 shillings 
per annu'm; this land consisting of two sOrts, he rents the better 
sort at 8 shillings per acrEi, and ~he worse at 5. Required the 
number of acres of the better sort. .11m. 9. 

123. A certain cistern, which would be filled in 12 minutes by 
two pipes running into it, would be filled in 00 minutes by one ' 
alone. Required, in what time it would be filled by the otber 
alone. .Am. 30 minutes. 

124. Required two numbers, whose sum may be "and their 
aB 6, 

proportioq as a to b. .I1ns. a+ hand a+b' 

125. A privateer running at the rate of 10 miles' an hour, dis­
covers a ship 18 miles off making way at the rate of 8 miles an 
hour; it is demanded how many miles the ship can run before she 
will be 0 vertaken ? .AnI. 72. 
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126. A gentleman distributing money amougsome poor people, 
found he wanted ] 0,. to be able to give 6,. to each; therefore he 
gives 4,. only, and finds tbat he has 5,. left. Required tbe J!umber 
of shillings and of poor people • 

..1nl. 15 poor people, and 65 sbillings. 
127. There are two numbers whose sum is the sixtb part of 

their product, and tbe greater is to the less as 3 to 2. Required 
tbose numbers. .An,. 15 and 10. 

N. B. This question'may be solved likewise by means of one 
unknown letter. 

128. To find three numbers, such that the first, with half the 
other two, the second with one tbird of the other ",,0, and the third 
with one fourth of the other tWo, may be equal to 34 • 

.AnI. 26, 22, and 10. 
. 129. To find a number consisting of three places, whose digits 
are in arithmetical progression; if this number be divided by tbe 
sum of its digits, the quotient will be 48; and iffrom tbe number 
be subtracted 198, the digits will be inverted. A1U.432. 

130. To find three numbers such, that 6- the first, ! of the sec­
ond, and i of the tbird, shall be equal to 62; ! of the first, i of 
the second, and t of the third, equal to 47 ; and t of the first, !- of 
the second, and -l of the third, equal to 38. .Am. 24, 60, 120. 

131. To find three numbers such that the first with 1- of the sum 
of the second and third shall be 120, the SAcond with t of the dif­
ference of the third and first shall be 70, and d- of the sum of the . 
three numbers shall be 95. ..1n.. 50, 63, 75. 

132. Wbat is that fraction which will become equal to i, if an 
unit be added to the numerator; but on the contrary, if an unit be 
added to the denominator, it will be equal to -l-? Am. -h. 

1'33. The dimensions of a certain rectangular floor are sucb, that 
if it had been 2 feet broader, and 3 feet longer, it would have been 
64 square feet larger; but if it had been 3 feet· broader and 2 feet 
longer, it would then have beeD 68 square feet larger. ,Required 
the length and breadth of the floor. 

Am. Length 14 feet, and breadth 10 fe~t. 
134. A person found that upon beginning the study of his pro­

fession t of his life hitherto had passed before he commenced his 
education, ,}~nder a private teacher, and the same time at a public 
school, and four years at the university. What was his age? 

.a.,.,. 21 yelll. 
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Quutioftl lor Practice. 213 

135. To find a Dumber such that whether it be divided into two' 
or three equal parts the continued product of the parts shall be 
equal to th,e same quantity.' Am. 61. 

136~ There is a certain number consisting of two digits. The 
sum of these digits is 5, and if 9 be added to the Dumber itself the 
digits will be inverted. What is the number? An •. 23. 

137. What number is that, to which if I add 20 and from i of 
this sum I subtract 12, the remainder shall be 10? .Am. 13. 

Quadratic Eguotiom.' 

SECTION IV .-CHAPTER 5. 

138. To find tbat number to which 20 being added, and from 
which 10 being subtracted, the square of the sum, added to twice 
the square of the remainder, shall be 17475. .Am. 75. 

139. What two numbers are those which are to one another in 
tlie ratio of 3 to 5, and whose squares, added together~ make 1666 ? 

4nl. 21 and 35. 
140. The sum 2 a, and the sum of the squares 2 b, of two num­

bers being given; to find the numbers. 
An,. a - Vb -0' and a + Vb _Q,s •. 

141. To divide the number 100 into two sucb parts, tbat the 
sum of their square roots may be 14. 4m. 64 and 36. 

142. To find three such numbers, that the sum of the first ,and 
second multiplied into the third, may be 'equal to 6a ; and tbe sum 
of the second and third, multiplied into the first equal to 28; also, 
that the sum of the first and third, multiplied into the second, may 
be equal to, 55. 4m. 2, 5, 9. 

143. What two numbers are those, whose sum is to the greater 
as 11 to 7; the difference of their squares being 132? 

An •. 14 and 8. 
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