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ADVERTISEMENT.

None but those who are just entering upon the study
of Mathematics need to be informed of the high charac-
ter of Euler’s Algebra. It has been allowed to hold the
very first place among elementary works upon this sub-
ject. The author was a man of genius. He did not,
like most writers, compile from others. He wrote from
his own reflections. He simplified and improved what
~ was known, and added much that was new. He is par-
ticularly distinguished for the clearness and comprehen-
siveness of his views. He seems to-have the subject of
which he treats present to his mind in all its relations
and bearings before he begins to write. The parts of it
are arranged in the most admirable order. Each step is
introduced by the preceding, and leads to that which
follows, and the whole taken together constitutes an en-
tire and connected piece, like a highly wrought story.

This author is remarkable also for his illustrations.
He teaches by instances. He presents one example after
another, each evident by itself, and each throwing some
new light upon the subject, till the reader begins to an-
ticipate for himself the truth to be inculcated,

Some opinion may be formed of the adaptation of this .
treatise to learners, from the circumstances under which
it was composed. It was undertaken after the author

became blind, and° was dictated to a young man entirely
b
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without education, who by this means became an expert
algebraist, and was able to render the author important
services as an amanuensis. It was written originally in
German. It has since been translated into Russian,
French, and English, with notes and additions.

The entire work consists of two volumes octavo, and
contains many things intended for the professed mathe-
matician, rather than the general student. Itwas thought
that a selection of such parts as would form an easy

- introduction to the science would be well received, and

tend to promote a taste for analysis among students, and
to raise the character of mathematical learning.
Notwithstanding the high estimation in- which this
work has been held, it is scarcely to be met with in the.
country, and is very little known in England. On the
continent of Europe this author is the constant theme of
eulogy. His writings have the character. of classics.
They are regarded at the same time as the most pro-
found and the most perspicuous, and as affording the
finest models of analysis. They furnish the germs of the
mostapproved elementary works on the different branches
of this science. The constant reply of one of the first
mathematicians* of France to those who consulted him
upon the best method of studying mathematics was,
<t study Euler.”’ ¢ It is needless,”” said he, ¢ to accumu-
late books ; true lovers of mathematics will always read
Euler ; because in bis writings every thing is clear, dis-
tinct, and correct ; because they swarm with excellent
-examples ; and because it is always necessary to have

. recourse to the fountain head.”

The selections here offered are from the first English
edition. A few errors have been corrected and a few

. alterations made in the phraseology. In the originalno

*Lagrange.
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questions were left to be performed by the learner. - A
collection was made by the English translator, and sub-
joined at the end, with references to the sections to
which they relate. These have been mostly retained,
and some new ones have been added.

- Although this work is intended particularly for the
algebraical student, it will be found to contain a clear
and full explanation of the fundamental principles of
arithmetic ; vulgar fractions, the doctrine of roots and
powers, of the different kinds of proportion and pro-
gression, are treated in a manner that can hardly fail to
interest the learner and make him acquainted with the
reason of those rules which he has so frequent occasion
to apply.

JOHN FARRAR,

Professor of Mathematics and Natural Philosophy in the
University at Cambridge.

Cambridge, February, 1818,
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INTRODUCTION
TO THE

ELEMENTS OF ALGEBRA.

-

SECTION I.

OF THE DIFFERENT METHODS OF CALCULATION AFPLIED TO SIMPLE
QUANTITIES. _

CHAPTER 1.
Of Mathematics in general.

ArricLe 1. Whatever is capable of increase or diminution; is
called magnitude or quantity.

.A sum of money, {or instance, is a quantity, since we may in-
crease it or diminish it. The same may be said thh respect to
any given weight, and other things of this nature.

2. From this definition it is evident, that there must he so many
different kinds of magnitude as to render it difficult even to enu-
merate them ; and this is the origin of the different branches of
mathematics, each being employed on a particular kind of magni-
tude. Mathematics, in general, is the science of quantity ; or the
science which investigates the means of measuring quantity.

3. Now we cannot measure or determine any quantity, except
by considering some other quantity of the same kind as known, and
pointing out their mutual relation. If it were proposed, for example,
to determine the quantity of a sum of money, we should take some
known piece of money (as a dollar, a crown, a ducat, or some other
coin), and show how many of these pieces are contained in the

1




2 Algebra. Sect. 1.

given sum. In the same manner, if it were proposed to determine
- the quantity of a weight, we should take a certain known weight ;
for example, a pound, an ounce, &c., and then show how many
times one of these weights is contamed in that which we are en-
deavoring to ascertain. If we wished to measure any length or
extension, we should make use of some known length as a foot for
example.

4. So that the determination, or the measure of magnitude of all
kinds, is reduced to this : fix at pleasure upon any one known mag-
nitude of the same species with that which is to be determined, and
consider it as the measure or unit; then, determine the proportion.
of the proposed magnitude to this known measure. This proportion
is always expressed by numbers; so that a number is nothing but
the proportion of one maggitude to anather arbitrarily assumed as
the unit.

5. From, this it appears, that,all magnitudes may.be expressed by
numbers ; and that the foundation of all the mathematical sciences
must be lald in a complete treatise on the science of numbers ; and
in an accurate examination of the diﬁ'erent possible methods of cal-
culation,

This fundamental part of mathematlcs is called" analym, or
algebra.

6. In algebra then we consnder only numbers which represent
guantities, thhout regarding the different kinds of quantity 'Phese
are the subjects of other branches of -the mathematics, . -

- 7.- Arithmetic treats of nambers in particular, and is-the seience of
nuben properly so called ; but this science extends only to certein
methods of calculation. which ocour in common practice : algebrs,
on the contrary;-comprehends in general all- the cases whmh ean
oxis in the doctrine and cnlcnhtwn of numbats. :
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CHAPTER II. ‘
Explanation of the signs 4~ plus and ~ minus.

8, WaEN we have to add one given number to. anather, this is
indicated by the sign 4 which is placed before the second number,
and is read plus. Thus 5 4 3 signifies that we must add 3 to the
number 5, and every one knows that the result is 8; in the same
manner 12 4- 7 make 19 ; 25 4 16 make 41 ; the sum of 5 4 41
is 66, &c. |

9, We also make use of the same srgn + or plus, to comnect
several members together ; for example, 7 4- 5 < 9 signifies that
to the number 7 we must add 5 and also 9, whioh make 21. The _
reader will therefore understand what is meant by

1 84541341 +1+43+10;

#iz. the sum of all these numbers, which is 51.

10. All this is evident ; and we have only to mention; that, in
algebra, in order to generalize numbers, we represent them by
letters, as a, b, ¢, d, &c. Thus the expression a 4 3 signifies the
sum of two numbers, which we express by a and b, and these nom-
bets may be either very great or very small. In the same manner,
S+ m 4 b 4 x, signifies the sum of the numbers represented by
these four letters.

If we know, therefore, the numbers that are represented by let-
ters, we shall at all times be able to find, by arithmetic, the sum or
valae of sismilar exprosslons

-11. When it is required, on the comrary, to subtract one given
sumber from another, this operation is denoted by the sign —,
which signifies minus, and is placed befere the number to be sub-‘
tracted : thus 8 — & signifies that the number 5 is to be taken from
the number 8 ; which being done, there remains 3. In like manner
18 — 7 is the same s 5 ; and 20 — 14 is the same as 6, &c.

12. Sometimes also we may have several numbers to be sub-
trapted from a single one ; as for instance, '
B0—1—3—5—7—09,

This signifies, first, take 1 from 50, there remains 49 ; take 3 from
that remainder, there will remain 46 ; take away 5, 41 remains;
take away 7, 34 remains; lastly, from that take 9, and there.
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remains 25 ; this last remainder is the value of the expression. Bat
as the numbers 1, 3, 5,7, 9, are all to he subtracted, it is the same
thing if we subtract their sum, which is 25, at once from 50, and
the remainder will be 25 as before.

13. Itis also very easy to determine the value of sxmxlar expres-
sions, in which both the signs 4+ plus and — minus are found : for
example ; 4 :

12 — 3 — 5 + 2 — 1 is the same as 5.

We have only to colléct separately the sum of the numbers that
have the sign + before them, and subtract from it the sum of those
that bave the sign —. The sum of 12 and 2 is 14 ; that of 3,5,
and 1, is 9; now 9 being taken from 14, there remains 5. .

14. It will be perceived from these examples that the order in
which we write the numbers is quite indifferent and arbitrary, pro-
vided the proper sign of each be preserved. We might with equal
propriety have arranged the expression in the preceding -article
thus; 12 4 2—5—3— LiorQ— 1—3 —5 + 12 0r
24 12 — 3 — 1 — 5, or in still different orders. It must be ob-
served, that in the expression proposed, the sign + is supposed
to be placed before the number 12.

15. It will not be attended with any more daﬂiculty, if, in order
to generalize these operations, we make use of letters instead of
real numbers. It is evident, for example, that

a—-b—c—+d—e

signifies that we have numbers expressed by a and d, and that fmm
these numbers, or from their sum, we must subtract the numbers
expressed by the letters b, ¢, e, which have before them the
sign —.

16. Hence it is absolutely necessary to consider what mgn is
preﬁxed to_each number: for n algebra, simple quantities are
numbers considered with regard to the signs which precede, or
affect them. Further, we call those positive quantities, before
which the sign - is found ; and those are celled negative - quanti-
ties, which are affected wnh the sign —.

.17, The manner in which we generally calculate a person’s
property, is a good illustration of what has just been said. We
denote what a man really possesses by positive numbers, using, or
understanding the sign +- ; whereas his debts are represented by
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negative numbers, or by using the sign —. - Thus, when it is said
of any one that he has 100 crowns, but owes 50, this means that
his property really amounts to 100 — 50 ; or, which is the same
thing, 4+ 100 — 50, that is to say 50.

18. As negative numbers may be considered as debts, because
positive numbers represent real possessions, we may say that nega-
tive numbers are less than nothing. Thus, when a man bas nothing
in the world, and even owes 50 crowns, it is certain that. he hag 50
crowns less than nothing ; forif any one were to make him a pres-
ent of 50 crowns to pay his debts, he would still be only at the
point nothing, though really richer than before.

19. In the same manner, therefore, as positive numbers are in-
contestably greater than nothing, negative numbers are less than
nothing.* Now we obtain positive numbers by adding 1 to 0, that
is to say, %o nothing ; and by continuing always to ingrease thus
from unity. * This is the arigia of the series of numbers called
natural numbers ; the following are the leading terms of this series :

0,+1,+2 +3 +4 + 5 46,417, +8, + 9, + 10,
and so on to infinity.
But if instead of continuing this series by successive addmons,
we continued it in.the opposite direction, by perpetually.subtracting
unity, we should have the series of negative numbers:

0—1,—92—3 —4,—5—6,—17,—8,—9,—10,
and so on to infinity.

’

* By being less than nothing is meant simply, that they are of such
a nature as to cancel or destroy an equal number with the sign plus
before it, so that — 4, or — a is as really a positive thing, and is as
easily conceived, as - 4 or + a. The quantity 4 or ¢ may be con-
sidered independently of its slgn The slgn - implies that this quan-
tity is to be added, and the sign — that it is to be subtracted. This
subject may be illustrated by the scale of a thermometer. After ob-
serving the mercury to stand at 50°, for instance, if I am told, that it
has changed 4°, I have a distinct idea of the portion of the scale de-
noted by four of its divisions, without applying them in any particular
direction. But when I am further informed that this change of the
thermometer is — or subtractive with respect to its former state, I
then understand that the mercury stauds at 46°, whereas it would be
at 54° if the change had been - or additive.



6 . Algebra. . Sect. 1.

20. All these numbers, whether positive or.negative, have the
known appellation of whole numbers, or integers, which conse-
quently are either greater or less than nothing. We call them
integers, to distinguish them from fractions, and from several other
kinds of numbers of which we shall hereafter speak. For instance,
50 being greater by an entire unit than 49, it is easy to comprehend
that there may be between 49 and 50 an infinity of intermediate
numbers, all greater than 49, and yet all less than 50. We need
only imagine two lines, one 50 feet, the other 49 feet long, and it
is evident that there may be drawn an infinite number of lines all
longer than 49 feet, and yet shorter than 50. \

21. It is of the utmost importance, through the whole of algebra,
that a precise idea be formed of those negative quantities about
which we have been speakmg I shall content myself thh remark-
ing here that all such expressions, as

+1—1,4+2—2+3—3,+4—4, &c
are equal to O or nothing. And that
+ 2 — 5is equal to — 3.
For if a person has 2 crowns, and owes 5, he has not only nothing,
but still owes 3 crowns: in the same manner,

'7-—12xsequa1to—5 and25—401sequal to — 15.

22. The same observatians hold true, when to make the expres-

sion more general, letters are used instead of numbers: 0 or noth-
. ing will always be the value of 4+ a — a. If we wish to know
the value -+ a — b two cases are to be considered.

The fixst is when a is greater than b; & must then be subtracted
from a, and the remainder (before which is placed or understood
to be placed the sign +-) shows the value sought.

The second case is that in which a is less than & ; here ¢ isto be
subtracted from 4, and the remainder being made negative, by
placing before it the sign —, will be the value sought.
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CHAPTER 1L
Of the Multiplication of Simple Quantities.

23. WHEN there are two or more equal numbers to be added
together, the expression of their sum may be abridged; for ex-

ample,
a + ais the same with 2 X q,
a4+ a+a 3 X a
a+a+4a4a 4 X a, andsoon ; where X is thesign

of multiplication. In this manner wg may form an idea of malti-
plication ; and it is to be observed that,

® X a siguifies 2 times, or twice a

3Xa 3 times, or thrice a

4Xa 4 times a, &c.

. If therefore a number expressed by a letter is to be multi-
plied by any other number, we simply put that number before the
letter ; thus,

a multiplied by R0 is expressed by 20 a, and

b muliiplied by 30 gives 80 b, &e.

It is evident also that ¢ taken once, or 1 ¢, is just e.
R5. Further it is extremely easy to multiply such products agam
by other numbers ; for example :
Q times, or twice 3 a makes 6 a,
3 times, or thrice 4 b makes 12 J,
5 times 7 z makes 35 z,
and these products may be still multiplied by other numbers at

. pleasure.

26. When the number, by which we are to multiply, is also repre-
sented by a letter, we place it immediately before the other letter ;
thus, in mutiplying b by a, the product is written @ b ; and p ¢ will
be the product of the multiplication of the number ¢ by p. If we
multiply this p ¢ again by 4, we shall obtain a p ¢.

27. It may be remarked here, thatthe order in which the letters
are joined together is indifferent; that a bis the same thing asd a;
for b multiplied by @ produces as much as a multiplied by . To
understand this, we have only to subatitate for @ and 4 known num-
bers, as3 and 4 ; and the truth will be self-evident ; for 8 times 4
is the same as 4 times 3.
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.28. 1t will not be difficult to perceive, that when you have to put
numbers in the place of letters joined together, as we have de-
* scribed, they cannot be written in the same manner by putting thefl
“one after the other. For if we were to write 34 for 3 times 4, we

should have 34 and not 12. When, therefore, it is required to mul-
tiply common numbers, we must separate them by the sign X, or
points: thus, 3 X 4, or 3. 4, signifies 3 times 4, that is 12. So,

1 X 2 is equal to2; and1 X 2 X 3 makes 6. In like man-

nerl X 2 X 3 X 4 X 56 makes 1344; and 1 X 2 X 2 X 4

X5 X 6X7TX8X9X 10 is equal to 3628800, &c.

29. In the same manner, gve may discover the value of an ex-
pression of this form, 5.7 .8 a b cd. It shows that 5 must be mul-
tiplied by 7, and that this product is to be again multiplied by 8;
that we are then to multiply this product of the three numbers by a,
pext by b, and then by ¢, and lastly by d. It may be observed
also, that instead of 5 X 7 X 8 we may .write its value, 280 ; for
we obtain this number when we multiply the product of 5 by 7, or
35, by 8.

30. The results which arise from the multiplication of two or
more numbers are called products ; and the numbers, or individual
letters, are called factors. '

31. Hitherto we have considered only positive numbers, and
there can be no doubt, but that the products which we have seen
arise are positive also: viz. 4~ a by -+ & must necessarily give
-+ a b. But we must separately examine what the multiplication -
of 4 a by — b, and of — a by — b, will produce.

32. Let us begin by multiplying — a by 3 or 4 3; now since
— a may be considered as a debt, it is evident that if we take that
debt three times, it must thus become three times greater, and con-
sequently the required product is — 3 a. So if we multiply — a
by 4 &, we shall obtain — & a, or whichis the same thing, — a b.
Hence we conclude, that if a positive quantity be multiplied by a

. pegative quantity, the product will be negative ; and lay it down as
a rule, that 4 by -+ makes 4, or plus, and that on the contrary

+ by —, or — by + gives —, or minus.
~ 83. It remains to resolve the case in which — is multiplied by
—; or, for example, — a by — b. Itis evident, at first sight,
with regard to the letters, that the product will be a b; but itis
doubtful whether the sign -, or the sign —, is to be placed before
the product ; all we know is, that it must be one or the other of
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these signs. Now I say, that it canniot be the sign —: for —a by
+ b gives — a b, and — a by — b cannot produce the same re-
sultas — & by + b; but must produce a contrary result, that isto
say, +.a b ; consequently we have the following rule : — multipli-
ed by — produces -, in the same manner as -+ multiplied by --.*

* It is a subject of great embarrassment and perplexity to learners
to conceive how the product of two negative quantities should be
positive. This arises from the idea they receive of the nature of mul-
tiplication as explained and applied in arithmetic, where positive
quantities only are ‘employed. The term is used in 8 more enlarged
sense when n®gative quantities are concerned, as may be shown with-
out making use of letters. If I wished to multiply, for instance,
9 — 5 (or 9 diminished by 5) by 8, I should first find the product of
9 by 3, or 27. Baut this is evidently taking the multlpllcand too great
by 5, and of course the product too great by 3 times 5 ; I accardingly
write for the product 27 — 15, equivalent to 12, which is the product
that would arise from first performing the subtraction indicated by the
sign —, and using the result as the multiplicand. Thus,

Multlpllcand 9 — 5 which is equal to 4
Multiplier 3 3

Product 27 — 15 whrch is equal to 12
Let us now take for the multiplier the quantity T — 4, which is
equivalent to 3. 'We multiply, in the first place by 7, in the manner
that we have jast done by 3, and the result is 63 — 35. But as the
mutiplier is 7 diminished by 4, multiplying by 7 must give 4 times
too much. Accordingly we take 4 times the multiplicand, ot 98— 20
and sabtract this from 63 — 35, or 7 times the multiplicand. Now
in making this sabtraction it is to be observed that the subtrahend
36— 20 is 36 diminished by 20, and if we subtract 38 we take away
too much by 20, and must therefore add this latter quantity. Conse-
quently the true produet will be 63 — 35 — 36 4 20, equivalent to
12, as before. Thus this mode of proceeding gives the same result as
thét obtaimed by first performing the subtractions indicated in the
latter term of the multiplicand and multiplier. The several steps in
etch case are as follows:
' Multiplicand 9 — 8 which is equal to 4
Multiplier 7 — 4 which is equal t0 8

68—35  Product 12
— 36 420

Product 63 — 85 — 364 20 or 83 — 71, that is, 12.
Eul. Alg. 2
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34. The rules which we have explained are expressed more
briefly as follows :

Like signs multiplied together, give | ; unlike or contrary signs
give —. Thus, when it is required to multiply the following num-

Thus we see that 7 or 4 7 by — 5 gives — 35,and — 4 by 4~ 9
gives — 36, and — 4 by — 5 gives + 20. The same general rea-
soning will apply when letters are used instead of numbers.

Multiplicand a — b
Multiplier c¢—4d

ac—bec

—ad+4-bd

Product ac—bc—ad+bd

We say in this case, that when we multiply a by ¢ we take the multi-
plicand too great by &, and must therefore diminish the result a ¢ by
the product of & by c or b c. So also in multiplying the two terms of
the multiplicand by ¢, we have taken the multiplier too great by d,
and must therefore diminish the result a ¢ — b ¢ by the product of
a—bbyd, orad—bd Butif we subtract the whole of a d, we
subtract too much by b d; b d must accordingly be added.

The rule for negative quantities here illustrated is not necessary
where mere numbers are employed, because the subtraction indicated
may always be performed. But this cannot be done with respect to
letters which stand for no particular values, but are intended as gen-
eral expressions of quantities.

The truth of the rule may be shown also when applied to quantities
taken singly. We say that multiplying one quantity by another is
taking one as many times as there are units in the other, and the
result is the same, whichever of the quantities be taken for the muiti-
plicand. Thus multiplying 9 by 3 is taking 9 three times, or which
is the same thing, taking 3 nine times (Arith. 27). But in arithme-
tic, quuntities are always taken affirmatively, that is additively.
When, therefore, we take 9 or 4 9 three times additively, or 48
nine times additively, the result will evidently be additive or 4 27.
When, on the coutrary, one of the factors is negative, as for instence,
in multiplying — 5 by <~ 3; in this case, — 5 is to be taken three
times additively, and — 5 added to — 5 added to — 5 is clearly
. — 15. 8o also if we consider 4 3 as the multiplicand, then 4 3 is
to be taken five times subtractively ; now 3 taken subtractively once
(or which is the same thing, 3 X — 1) is equivalent to — 3, taken
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bers; + &, — b,— ¢, 4 d; we have first + a multiplied by — b,
which makes — a b ; this by — ¢, gives + @ b ¢; and thisby 4 d,
gives 4 a b c d.

35. The difficulties with respect to the signs being removed, we
have only toshow how to multiply numbers that are themselves pro-
ducts. If we were, for instance, to multiply the number a b by the
number ¢ d, the product wouldbe a b ¢ d, and it is obtained by mul-
tiplying first @ b by ¢, and then the result of that multiplication by d.
Or, if we had to multiply 36 by 12 ; since 12 is equal to 3 times 4,
we should only multiply 36 first by 3, and then the product 108 by
4, in order to have the whole product of the multiplication of 12 by
36, which is consequently 432.

36. But if we wished to multiply 5 a b by 3 ¢ d, we might write
3 cd X 5ab; however, as in the present instance the order of the
numbers to be multiplied is indifferent, it will be better, as is also
the custom, to place the common numbers before the letters, and to
express the product thus: 5 X 3abcd,or15abc d; since 5
times 3 is 15. :

So if we had to multiply 12 p ¢ 7 by 7 = y, we should obtain
12X Tpgqray,or84pgray.

CHAPTER 1V,

OF the Nature of Whole Numbers or Integers, with respect to
their Factors.

37. Wk have observed that a product is generated by the multi-
plication of two or more numbers together, and that these numbers
are called factors. 'Thus the numbers a, b, ¢, d, are the factors of
the product abc d. .

subtractively twice is — 6, three times is — 9, five times is — 15.
Bat, when the multiplicand and multiplier are both negative, as in the
case of multiplying — 5 by — 4: here a subtractive quantity is to be
taken subtractively, that is, we are to take away successively a dimin-
ishing or lessening quantity, which is certainly equivalent to adding
an increasing quantity. Thuy, if we take away — 5 once, we aug-
ment the sum with which it is to be connected by 4 5; if we take
away — 5 twice, we make the augmentation -~ 10; if four times,
+ 20; thatis, — 5 X — 4 is equivalent to 4 20.

1
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38. If, therefore, we consider all whole numbers as products of
two or more numbers multiplied together, we shall soon find that
some cannot result from such a multiplication, and consequently
bave not any factors ; while others may be the products of two or
more multiplied togetber, and may cansequently have two or mere
factors. Thus, 4 is produced by 2 X 2; 6 by 2 X 8; 8 by
2X 2X2; 0r27Tby3 X 3 X 3;and10by 2 X 5, &c.

39. But, on the other hand, the numbers, 2,3, 5, 7, 11, 13,17,
&c., cannot be represented in the same manner by factors, unless
for that purpose we make useof unity, and represent 2, for instance,
by 1 X 2. Now the numbers which are multiplied by 1, remain-
ing the same, it is not proper to reckon unity as a factor.

All numbers, therefore, suchas 2,3, 5,7, 11, 13, 17, &c. which
cannot be represented by factors, are called simple, or prime num-
bers ; whereas others, as 4, 6, 8,9, 10, 12, 14, 15, 16, 18, &c.
which may be represented by factors, are called compound numbers.

40. Simple or prime numbers deserve therefore particular atten-
tion; since tbey do not result from the multiplication of two or more
numbers. It is particularly worthy of observation that if we write
these numbers in succession as they follow each other, thus ;

2,3,5,1,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, &ec.
we can trace no regular order; their increments are sometimes
greater, sometimes less ; and hitherto no one has been able to dis-
cover whether they follow any certain law or not.

41. All compound numbers, which may be represented by factors,
result from the prime numbers above mentioned ; that is to say, all
their factors are prime numbers. For, if we find a factor which is
not a prime number, it may always be decomposed and represented
by two or more prime numbers. 'When we have represented, for
instance, the number 30 by 5 X 6, it is evident that 6 not being a
prime number, but being produced by 2 X 3, we might have repre-
sented 30 by 5 X 2 X 3,0rby 2 X 3 X 5; that is to say, by
factors, which are all prime numbers.

42. If we now consider thase compound numbers which may be
resolved into prime numbers, we shall observe a great difference
among them; we shall find that some have anly two factors, that
others have three, and others a still greater number. We have
already seen, for example, that
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4 is the same as @ X 2, 6 is the same as @ X 3,
8 IX 2 X2 9 3 X 38,
10 2x 5| 12 X 3IXL,
14 2x 1| 15 3 x5,

16 2)(2)(2)(2: and so on.

43. Hence it is easy to find a method for analysing any nuraber,
or resolving it into its simple factors. Let there be proposed, for
instance the number 360 ; we shall represent it first by 2 X 180.
Now 180 is equal to 2 X 90, and ,

90 , 2 X 45,
45% is the same as 33 X 15, and lastly
15 3x 5

So that the number 360 may be represented by these simple factors,
2 X 2 X 92X 3 X3 X 5; since all these numbers multiplied to-
gether produce 360.

44. This shows, that the prime numbers cannot be divided by
other numbers, and on the other hand, that the simple factors of
compound numbers are found, most conveniently, and with the great-
est certainty, by seeking the simple, or prime numbers, by whick
those compound numbers are divisible. But for this, division is ne-
cessary ; we shall therefore explain the rules of-that operatioa in
the following chapter.

CHAPTER V.
Of the Division of Simple Quantities.

465. WHEN a number is to be separated into two, three, or more
.equal parts, it is done by means of division, which enables us to de-
termine the magnitude of one of those parts. When we wish, for
example, to separate the number 12 into three equal parts, we find
by division that each of those parts is equal to 4.

The following terms are made use of in this operation. The
number, which is to be decompounded or divided, is called the divi-
dend ; the number of equal parts sought is called the divisor; the
magnitude of one of those parts, determined by the divisios, is called
the quatient ; thus, in the above example ;

12 is the dividend,
3 is the divisar, and
4 is the quotient.
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46. It follows from this, that if we divide a number by 2, orinto two
equal parts, one of those parts, or the quotient, taken twice, makes
exactly the number proposed ; and, in the same manner, if we have
a number to be divided by 3, the quotient taken thrice must give
the same number again. In general, the multiplication of the
quotient by the divisor must always reproduce the dividend.

47, Itis for this reason that division is called a rule, which
teaches us to find a number or quotient, which, being multiplied by
the divisor, will exactly produce the dividend. For example, if 35
is to be divided by 5, we seek a number which, multiplied by 5, will
produce 35. Now this number is 7, since 5 times 7 is 35. The
mode of expression, employed in this reasoning, is; 5 in 35, 7-
times; and 5 dimes 7 makes 35.

48. The dividend, therefore, may be considered as a product, of
which one of the factors is the divisor, and the other the quotieat.
Thus, supposing we have 63 to divide by 7, we endeavor to find
such a product, that taking 7 for one of its factors, the other factor
multiplied by this may exactly give 63. Now 7 X 9issuch'a pro-
duct, and consequently 9 is the quotient obtained when we divide
63 by 7.

49. In general, if we have to divide anumber a b by a, it is evi-
dent that the quotient will be b ; for a multiplied by & gives the
dividend a b. It is clear also, that if we had to divide a & by b, the
quotient would be 4. And in all examples of division that can be
proposed, if we divide the dividend by the quotient, we shall again
obtain the divisor; for as 24 divided by 4 gives 6, so 24 divided
by 6 will give 4. )

50. As the whole operation consists in representing the dividend
by two factors, of which one shall be equal to the divisor, the other
to the quotient ; the following examples will be easily understood.
I say first, that the dividend a & ¢, divided by a, gives bc; for a,
multiplied by b ¢, produces a b ¢: in the same manner a b cbeing
divided by b, we shall have a c; and ab ¢, divided by ac, gives .
I say also, that 12 m n, divided by 3 m, gives 4 n; for 3 m, multi-
plied by 4 n makes 12 m-n. But if this same number 12 m n had
been divided by 12, we should have obtained the quotient m n.

51. Since every number a may be expressed by 1 a or one a, it
is evident that if we had to divide a or 1 aby 1, the quotient would
be the same number a. But, on the contrary, if the same number
a, or 1 g, is to be divided by a, the quotient will be 1.
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52. It often happens that we cannot represent the dividend gs the
product of two factors, of which one is equal to the divisor ; and
then the division cannot be performed in the manner we have de-
scribed.

When we have, for example, 24 to be divided by 7, it is at first
sight obvious, that the number 7 is not a factor of 24 ; for the pro-
duct of 7 X 3 is only 21, and consequently too small, and 7 X 4
makes 28, which is greater than 24. We discover, however, from
this, that the quotient must be greater than 3, and less than 4. In
order, therefore, to determine 1 it exactly, we employ another species
of numbers, which are called fractions, and which we shall con-
sider in one of the following chapters. -

53. Until the use of fractions is considered, it is usual to rest sat-
isfied with the whole number which approaches nearest to the true
quotient, but at the same time paying attention to the remainder
which is left; thus we say, 7 in 24, 3 times, and the remainder is
3, because 3 times 7 produces only 21, which is 3 less than 24.
We may consider the following examples in the sarme manner :

6)34(5, that is to say, the divisor is 6, the dividend 34,

30 the quotient 5, and the remainder 4.
4
9)41(4 here the divisor is 9, the dividend 41, the quotient
364, and the remainder 5.
5

The following rule is to be observed in examples where there is
a remainder.

54. If we multiply the divisor by the quotient, and to the product
add the remainder, we must obtain the dividend ; this is the method
of proving division, and of discovering whether the calculation is
right ornot. Thus, in the former of the two last examples, if we mul-
tiply 6 by 5, and to the product 30 add the remainder 4, we obtain
34, or the dividend. And in the last example, if we multiply the
divisor 9 by the quotient 4, and to the product 36 add the remainder
5, we obtain the dividend 41.

55. Lastly, it is necessary to remark here, with regard to the
signs 4 plus and — minus, that if we divide 4 a b by 4~ a,the
quotient will be 4 &, which is evident. Butif we divide + a &
by — a the quotient will be — & ; because — a X —b gives + a b-
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If the dividend is — a b, and is to be divided by the divisor 4 a,
the quotient will be — & ; because it is — b, which, multiplied by
+ a, makes — ¢ b. Lastly, if we have to divide the dividend
— a b by the divisor — a, the quotient will be + &; for the divi-
dend —a b is the product of —a by + b.

56. With regard, therefore, to the signs 4 and —, division ad-
mits the same rules that we have seen applied in multiplication, viz.

<+ by + requires 4- ; 4 by — requires —;

— by 4 requires —; — by — requires 4-;
or in a few words, like signs give plus, unlike signs give minus.

57. Thus, when we divide 18 p ¢ by — 3 p, the quotient is

-6 q. Further;

— 30z y, divided by 4 6y, gives — 5z, and

— b4 abe, divided by — 9 b, gives 4 6ac;
for in this last example,— 9 &, multiplied by +- 6 a ¢, makes—6 X
9abc,or —54a b c. Butwe have said enough on the division of”
simple quantities; we shall therefore hasten to the explanation of
fractions, after having added some farther remarks on the nature of
numbers, with respect to their divisors.

CHAPTER VI.
Of the Properties of Integers with respect to their Divisors.

58. As we have seen that some numbers are divisible by certain
divisors, while others are not ; in order that we may obtain a more
particular knowledge of numbers, this difference must be carefully
observed, both by distinguishing the numbers that are divisible by
divisors from those which are not, and by considering the remainder
that is left in the division of the latter. For this purpose let us ex-
amine the divisors ;

2,3,4,5,6,1,8, 9,10, &ec.

59. First, let the divisor be 2 ; the numbers divisible by it are 2,
4,6, 8, 10, 12, 14, 16, 18, 20, &c. which, it appears, increase
always by two. These numbers, as far as they can be continued,
are called even numbers. But there are other numbers, namely,

1,38,5,1,9, 11, 13, 15, 17, 19, &ec.,
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which are uniformly less or greater than the former by unity, and
which cannot be divided by 2, without the remunder 1 these aso .
ealled odd numbers.

The even numbers are all comprehended in the general expres-
sion 2 ¢ ; for they are all obtained by successively substituting for
the integers, 1, 2, 8, 4, 5, 6, 7, &c., aud hence it follows that the
odd numbers are all comprehended in the expression 2 a 4- 1, be-
cause 2 a - 1 is. greater by unity than the even number 2 a.

60. In the second place, let the number 3 be the divisor, the
numbers divisible by it are,

3, 6,9, 12, 15, 18, 21, 24, 27, 30, and so on;

and these numbers may be represented by the expression 3 a; for
3 a divided by 3 gives the quotient a without a remeinder. All
other numbers, which we would divide by 3, will give 1 or 2 for a
remainder, and are consequently of two kinds. ThOSe which, after
the division leave the remainder 1, are;

1, 4,17, 10, 13, 16, 19, &ec.,
and are contained in the expression 3 @ - 1; but the other kind,
where the numbers give the remainder 2, are ;
2,5, 8, 11, 14, 17, 20, &c,,
and they may be generally expressed by 3 @ 4 2; so that all num-
bers may be expressed either by 3a,orby3a 4 1,orby 3 a + 2.
61. Let us now suppose that 4 is the divisor under considera-
tion ; the numbers which it divides are ;
4,8, 12, 16, 20, 24, &c.,
which increase uniformly by 4, and are comprehended in the ex-
pression 4 a. All other numbers, that is, those which are not di~
visible by 4, may leave the remainder 1, or be greater than the
former by 1; as
1, 5,9, 13, 17, 21, 25, &c.,
and consequently may be comprehended in the expression4 4 4 1:
or they may give the remainder 2; as
2, 6, 10, 14, 18, 22, 26, &c.,

aud be expressed by 4 a + 2; or, lastly, they may give the re-
mainder 3 ; as \

Eul. Aly. 3
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3,7, 11,15, 19, 23,21, &,
- aad may be represented by the expression 4 a - 3.

All possible integral numbers are therefore contained in one oy
other of these four expressions ;

4a, 4a+41, 4a+ 2, 4a43.

62. It is nearly the same when the divisor is 5 ; for all numbers
which can be divided by it are comprehended in the expression 5 a,
and those which cannot be divided by 5, are reducible to one of
the following expressions :

5441, 5a+2 5443, 5a+44;
and we may go on in the same manner, and consider the greatest
divisors.

63. It is proper to recollect here what has been already said on

~ the resolution of numbers into their simple factors ; for every num-
ber among the factors of which is found,

" 2,0r3,0r4,or5,or1,
or any other number, will be divisible by those numbers. For ex-
ample ; 60 being equal to 2 X 2 X 3 X 5, it is evident that 60
is divisible by 2, and by 3, and by 5.

64. Further, as the general expression a b ¢ d is not only divisi-
ble by a, and b, and ¢, and d, bat also by

ab, ac, ad, be, bd, cd, and by

abc, abd, acd, bcd, and lastly by

abed, that is to say, its own value;
it follows that 60, or 2 X 2 X 8 X 5, may be divided not only by
these simple numbers, but also by those which are composed of two
of them ; that is to say, by 4, 6, 10, 15; and also by those which
are composed of three of the simple factors, that is to say, by 12,
20, 30, and lastly by 60 itself.

65. When, therefore, we have represented any number, assumed
at pleasure, by its simple factors, it will be very easy to show all
the numbers by whick it is divisible. For we have only, first, to
take the simple factors one by one, and then to multiply them to-
gether two by two, three by three, four by four, &c. till we arrive
at the number proposed.

66. It must here be particularly observed; that every number is
divisible by 1; and also that every number is divisible by itself; so
that every number has at least two factors, or divisors, the number

-
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itself and unity ; but every number, which has no other divisor than
these two, belongs to the class of numbers, which we have before
called simple, or prime numbers.

Al numbers, except these, have, beside unity and themselves,
sther divisors, as may be seen from the followmg table, in which
are placed under each number all its divisors.

TABLE.
1| 2| 3| 4 5| 6| 7| & 910/11{12'13]1415/16/17]18[19]20]
RIBIE R R IE R R BRI R R
o 3| 2| 5| 2| 7| 2| 3 2t1] 213] 2| 3] 217 219| 2
4 {3 {495 13 |[754 |3 {4
6 |8 |10 |4 14158 |6 |5
6 16 |9 [10
, 12 19 |20
‘1$324§4342624452626
elelp] ) Ip. p.| |p. Pl |p.

67. Lastly, it ought to be observed, that O, or nothing, may be
considered as a number which has the preperty of being divisible by
all possible numbers ; because by whatever number a we divide 0,
the quotient is always 0 for it must be remarked that the multi-
plication of any number by nothing produces nothmg, and therefore
0 times a, or 0 a,is'0.

CHAPTER VIL

Of Fractions in general.

68. WrEx a number, as 7 for instance, is said not to be divisible
by another number, let us suppose by 3, this only means, that the
quotient cannot be expressed by an integral number ; and it must
pot be thought by any means that it is impossible to form an ides of
that quotient. Only imagine a line of 7 feet in length, no one caa
doubt the poesibility of dividing this line into 3 equal parts, and o(
ﬁrmugamtxonofthelengthofoneofthmeptm :

i
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69. Since therefore we may form a precise idea of the quotient
obtained in similar cases, though that quotient is not an integral num-
ber, this leads us to consider a particular species of numbers, called
Jractions or broken numbers. The instance adduced- fornishes an
illustration. If we have to divide 7 by 3, we easily conceive the
quotient which should result; and express it by §; placing the divi-
sor under the dividend, and separating the two numbers by a stroke
or line.

70. So, in general, when the number a is to be divided by the

number b, we represent the quotient by aB and call this form of expres-

sion a fraction. We cannot, therefore, give a better idea of a frac-
a

tion 1% than by saying that we thus express the quotient resulting

from the division of the upper number by the lower. We must re-
member also, that in all fractions the lower number is called the
denominator, and that above the line the numerator.
71. In the above fraction, %, which we read seven thirds, 7 is the
_numerator, and 3 the denominator. We must also read §, two
thirds ; 2, three fourths ; g, three eighths ; 14%, twelve hundredths;
and 3, one half. .
72. ‘In order to obtain a more perfect knowledge of the nature of
fractions, we shall begin by considering the case in which the nume-

rator is equal to the denominator, asin g. Now, since this expresses
the quotient obtained by dividing a by a, it is evident that this quo-
tient isexactly unity, and that consequently this fraction g isequal to

1, or one integer; for the same reason, all the following fractions,
bbb b g &e,
are equal to one another, each being equal to 1, or one integer.
73. We have seen that a fraction, whose numerator is equal to
the denominator, is equal to unity. All fractions therefore, whose
sumerators are less than the denominators, have a value less than
unity. For, if I have a number tobe divided by another which is
greater, the result must necessarily be less than 1 ; if we cut a lime,
for example, two feet long, into three parts, one of those parts will
unquestionably he shorter than a foot; it is evident then, that § is
less than 1, for the same remson, that the numerator 2 is less than
the denominator 3.
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74. If the numerator, on the contrary, be greatsr than the de-
nominator, the value of the fraction is greater than unity. Thus §
is- greater than 1, for # is equal to § together with 3. Now % is ex-
actly 1, consequently § is equal to 1 4 4, that is, to anintegerand
a half. In the same manner # is equal to 14, § to 1%,and § to 2%
And in general, it is sufficient in such cases to divide the upper num-
ber by the lower, and to add to the quotient a fraction having the
remainder for the numerator, and the divisor for the denominator.
If the given fraction were, for example, {5, we should have for the
quotient 3, and 7 for the remainder; whence we conclude that $3
is the same as 344 ' ‘
_ 75. Thus we see how fractions, whose numerators are greater
than the denominators, are resolved into two parts; one of which is
an integer, and the other a fractional number, having the numerator
less than the denominator. Such fractions as contain one or more
integers, are called improper fractions, to distinguish them from frac-
" tions properly so called, which, having the numerator less than the
denominator, are less than unity, or than an irteger.

76. The nature of fractions is frequently considered in another -
way, which may throw additional light on the subject. 1f we con-
sider, for example, the fraction , it is evident that it is three times
greater than ;. Now this fraction # means, thatif we divide 1 into
4 equal parts, this will be the value of one of those parts; it is ob-
vious then, that by taking 3 of those parts, we shall have the value
of the fraction 3. '

In the same manner we may consider every other fraction ; for
example, yi ; if we divide unity into 12 equal parts, 7 of those
parts will be equal to this fraction.

77. From this manner of considering fractions, the express:ons
numerator and denominator are derived. For, as in the preceding
fraction &, the number under the line shows, that 12 is the number
of parts into which unity is to be divided ; and as it may be said ta
denote, or name the patrts, it has not unproperly been called the
denominator.

Further, as the upper number, namely 7, shows that, in order to
bave the value of the fraction, we must take, or collect 7 of those
parts, and therefore may be said to reckon, or number them, it has
been thought proper to call the number above the line the numerator,

78. As it is easy to understand what § is, when we know the sig-
nifioation of }, we may consider the fractions, whose numerator is
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unity, as the foundation of all others. Such are the fractions,
Hh b 444 v T 1Y &,

and it is observable that these fractions go on continually diminish-
ing ; for the more you divide an integer, or the greater the number
of parts into which you distribute it, the less does each of those
parts become. Thus # is less than v ; to¥y is less than 145
and tploo is less than 4.

79. As we have seen, that the more we increase the denominator
of such fractions, the less their values become ; it may be asked,
whether it is not possible to make the denominator so great, that the
fraction shall be reduced to nothing? Ianswer, no ; for into what-
ever number of parts unity (the length of a foot for instance) is
divided ; let those parts be ever so small, they will still preserve a
certain magmtude, and therefore can never he absolutely reduced
to nothing.

80. It is true, if we divide the length of a foot into 1000 parts;
those parts will not easily fall under the cognizance of our senses;
but view them through a good microscope, and each of them will
appear large enough to be subdivided into 100 parts and more.

At present, however, we have nothing to do with what depends
on ourselves, or with what we are capable of performing, and what
our eyes can perceive ; the question is rather, what is possible in
itself. And, in this sense of the word, it is certain, that however
great we suppose the denominator, the fraction will never entlrely
vamsh or become equal to 0.

81. We never therefare arrive completely at nothing, however
great the denominator may be ; and these fractions always preserv-
ing a certain value, we may continue the seties of fractions in the
78th article without interruption. This circumstance has introduced
the expression, that the denominator must be infinite, or infinitely -
great, in order that the fraction may be reduced to 0, or tonothing ;
and the word tnfinite in reality signifies here, that we should never
arrive at the end of the series of the above mentioned fractions.

82. To express this idea, which is extremely well founded, we
make use of the sign ®, which consequently indicates a number
infinitely great; and we may therefore say that this fraction % is
really nothing, for the very reason that a fraction cannot be reduced
to nothing, until the denominator has been increased to infinity.
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83. It is the more necessary to pay attention to this idea ef
infinity, as it is derived from the first foundations of our knowledge,
and as it will be of the greatest importance in the following part of
this treatise. .

We may here deduce from it a few consequences, that are ex-
tremely curious and worthy of attention. The fraction & represents
the quotient resulting from the division of the dividend 1 by the
divisor ®. Now we know that if we divide the dividend 1 by the
quotient %, which is equal to 0, we obtain again the divisor e ;
hence we acquire a new idea of infinity; we learn that it arises
from the division of 1 by 0; and we are therefore entitled to say,
that 1 divided by O expresses a number infinitely great, or @ .

84. It may be necessary also in this place to correct the mistake
of those who assert, that a number infinitely great is not susceptible
of increase. This opinion is inconsistent with the just principles
which we have laid down; for 4 signifying a number infinitely
great, and % beiug incontestably the double of 3, it is evident that
a number, though infinitely great, may still become two or more
times greater.

CHAPTER VIIL

Of the Properties of Fractions.
85. WE have already seen, that each of the fractions,
i’ ‘3‘) *’ %’ %’ ;’ -g" &‘c'

makes an integer, and that consequently they are all equal to one
another. The same equality exists in the following fractions,

L4831 Y ¥ &,

each of them making two integers; for the numerator of each,
" divided by its denominator, gives 2. So all the fractions

%’ g” &J ‘l” ’.55’ 169’ &c')
are equal to one another, since 3 is their common value.

86. We may likewise represent the value of any fraction, in an
infinite variety of ways. For {f we multiply both the numerator and
the denominator of a fraction by the same number, which may be
assumed at pleasure, this fraction will still preserve the same value.
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For this redson all the fractions : ‘
‘;: i‘: i: t‘: T!D's Tﬁfa 171‘: 1863 Ry *'8'! &c
are equal, the value of each being 3. Also
&! G’! '&: 1’2’: IFE’ Iac: ‘211': "}Ts !ah &'8’) &‘c': ..
are equal fractions, the value of each of which is 4. The fractions,
3,4 o 15 4 35 &c,

bave likewise all the same value; and lastly, we may conclude in

general, that the fractionzmay be represented by the following

expressions, each of which is equal o 3 namely,

a 2a {_i_q fl_a 5a¢a 6a Ta
» eF 35 4¥ 55 66 16
87. To be convinced of this we have only to write for the value

of the frection E a certain letter ¢ representing by this letter ¢ the

quotient of the lelSlOl‘l of a by b ; and to recollect that the multipli-
cation of the quotient ¢ by the d1v1sor b must give the dividend.

For since ¢ multiplied by & gives a, it is evident that ¢ multiplied by
2 b will give 2 a, that ¢ multiplied by 3 b will give 3 a,and thatin
general ¢ multiplied by m & mustgive ma. Now changing this into
an example of division, and dividing the product m a, by m & one
of the factors, the quotient must be equal to the other factor ¢ ; but

m a divided by mb gives alsothe fraction — b,whlch is consequently
equal to ¢; and this is what was to be proved : for ¢ having been

. a. . R . R
_assumed as the value of the fraction P it is evident that this fraction
[
is equal to the fractlon — whatever be the value of m.

88. We have seen that every fraction may be represented in an
infinite number of forms, each of which contains the same value ;
and it is evident that of all these forms, that, which shall be com-
posed of the least numbers, will be most easily understood. For
example, we might substitute instead of 4 the following fractions, -

't’v 8’: 182: H" H; &e. »
but of all these expressions £ is that of which it is easiest to form an
.ides. Here, therefore, a problem arises, how a- fraction, such s
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s, which is not expressed by the least possible numbers, may be
reduced to its simplest form, or to its least terms, that is to say, in
our present example, to %.

89. It will be easy toresolve this problem, if we consider that a
fraction still preserves its value, when we multiply both its terms, or
its numerator and denominator, by the same number. For from this
it follows also, that if 1we divide the numerator and denominator of a
Jraction by the same number, the fraction still preservesthe same
value. 'This is made more evident by means of the general expres-

sion :.LZ ; for if we divide both the numerator m a and the denomi-

nator m b by the number m, we obtain the fraction %, which, as was
before proved, is equal to :;Lg.

90. In order, therefore, to reduce a given fraction to its least
terms, it is required to find a number by which botb the numerator
and denominator may be divided. Such a number is called a com-
mon divisor, and so long as we can find a common divisor to the
numerator and the denominator, it is certain that the fraction may
be reduced to & lower form; but, on the contrary, when we see
that except unity no other common divisor can be found, this shows
that the fraction is already in the simplest form that it admits of.

91. To make this more clear, let us consider the fraction Af%.
We see immediately that both the terms are divisible by 2, and that
there results the fraction §5. Then that it may again be divided by
2, and reduced to }§ ; and this also, having 2 for a common divisor,
it is evident, may be reduced to y%. But now we easily perceive,
that the numerator and denominator are still divisible by 3; per-
forming this division, therefore, we obtain the fraction 2, which ig
equal to the fraction proposed, and gives the simplest expression to
which it can be reduced; for 2 and 5 have no common divisor but
1, which cannot diminish these numbers any further.

92. This property of fractions preserving an invariable value,
whether we divide or multiply the numerator and denominator by
the same number, is of the greatest importance, and is the principal
foundation of the doctrine of fractions. For example, we can
scarcely add together two fractions, or subtract them from each

.other, before we have, by means of this property, reduced them to
Eul. Alg. 4
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.other forms, that is to say, to expressions whose demominators are
aqual. Of this we shall treat in the following chapter.

93. We conclude the present by remarking, thatall integera may
2ko be represented by fractions. For example, 6 is the sameas §,
becanee 6 divided by 1 makes 6; and we may, in the same man-
ner, express the number 6 by the fractions ¥?, 1, 3¢, %F, and an
infinite number of others, which have the same value.

CHAPTER IX.

Of the Addition and Subtraction of Fractions.

94. WHEN fractions have equal denominators, there is no diffi-
‘culty in adding and subtracting them ; for # - # is equal to #, and
‘$— #is equal to 4. In this case, either for addition or subtrac-
tion, we alter only the numerators, and place the common denom—
inator under the line ; thus,

thv + 8o — 5 — s + Afrisequalto 135 24 — % —
$2+ #4 isequal to38, or38; 3§ — 5 — 44 + 4 isequal to
3§, or 4; also $ 4 2is equal to 4, or 1, that is to say, an integer; .
and § — ¢ 4 1 is equal to ¢,that is to say, nothing, or O.

95. But when fractions have not equal denominators, we can
always change them into other fractions that have the same denomi-
nator. For example, wheniit is proposed to add together the frac-
‘tions 4 and-}, we must consider that # is the same as £, and that §
is equivalent to §; we have therefore, ingtead of the two fractions
proposed, these § + 4, the sum of which is §. If the two fractions

swere united by the sign minus, as § — 4, we should have § —
‘or §.

'Another example : let the fractions proposed be # + §; since 2
is the same as §, this value may be substituted for i |t, and we may
say § - § makes ¥, or 13.

Suppose further, that the sum of 4 and { were required. I say
that it is % ; for ¥ makes &, and } makes 7.

96. We may have a greater number of fracuom to be reduced to
a common denominator ; for example, 4, %, §, 4, §; in this case
the whole depends on finding a number whick may be divisible by
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all the denomsnators of these fractions. In this instance 60 is the
number which has that property, and which consequently becomes
the common denominator. We shall therefore have $§ instead of
}; 43 instead of §; #§ instead of 3; #§ instead of 4; and §¢ in-
stead of §. If now it be required to add together all these fractions
38, 48, £8, 43, and &3, we have only to add all the numerators, and
wnder the sum place the common denominator 60 ; that is tb say, we
shall have 3}?, or three integers, and &3, or 3334.

97. The whole of this operation consists, as we before stated, in:
changing two fractions, whose denominators are unequal, into two
ethers, whose denominators are equal. In order therefore to per-

form it generally, let - and be the fractions proposed. First mul-

b
bply ihe two térms of the ﬁm fraction by d, we shall have the fac~

uon equa] tog 77 next multiply the two terms of the second frac-
tion by b, and we shall have an equivalent value of it expressed by

: Fi thus the two denommators become equal. Now if the sum of
the two proposed fractions be required, we may immediately answer

adb_it-i bc,‘ and if their difference be asked, we say that itis

. If the fractions § and §, for- example, were proposed,

that it is

ad—bc

bd
we should obtain in their stead 4§ aod $§; of which the sum is
18, and the difference 44..

98. To this part of the subject be]ongs also the question, of two
proposed fractions, which is the greater or the less; for, to resolve
‘this, we have only to reduce the two fractions to the same denomi-
nator.  Let us take, for example, the two fractions % and §: when
reduced to the same denominator, the first becomes 4%, and the
second 3{, and itis evident that the second or £, is the greater, and
exceeds the former by .

Again, let the two fractions £ and § be proposed. We shallhave
to substitute for them 2§ and 2§ ; whence we may conclude that §
exceeds §, but only by 2.

99. Whenit is required to subtract a fraction from an integer, it
is sufficient to change one of the units of that integer into a fractzon
having the same denominator as the fraction to be subtracted; in
the rest of the operation there is no difficulty. If it be required,
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for ‘example, to subtract 3 from 1; we write § instead of 1, and say,
that % taken from § leaves the remdinder §. "So i subtracted from
1, leaves ;. :

If it were required to subtract 2 from 2, we should write 1and 2
instead of 2, and we should immediately see that after the subtrac-
tion there must remain 1}.

100. It happens elso sometimes, that having added two or more

fractions together, we obtain more than an integer ; that is to say,.
a numerator greater than the denominator : this is a case which has
already occurred, and deserves attention.
. We found, for example, article 96, that the sum of the five frac-
tions 4, %, {, 4, and §, was %?, and we remarked that the value of
this sum was 3 integersand #3, or 4}. Likewise # 4 £, or & + +%,
makes 4%, or 14%. We have only to perform the actual division of the
numerator by the denominator, to see how many integers there are for
the quotient, and to set down the remainder. Nearly the same must
be done to add together numbers compounded of integers and frac-
tions ; we first add the fractions, and if their sum produces one or
more integers, these are added to the other integers. Let it be pro-
posed, for example, to add 34 and 2§ ; we first take the sum of ¢
sand 3, orof 3 and 4. Itis g or 1}; then the sum total is 6}.

CHAPTER X.

Of the Multiplication and Division of Fractions.

101. Tuxrule for the multiplication of a fraction by an a'mcgar,
or whole number, is to multiply the numerator only by the . given
number, and not to change the denominator : thus,

~ 2 times, or twice 4 makes 4, or 1 integer ;
2 times, or twice § makes & ;
3 times, or thrice 4 makes %, or 4; and

" 4 timesy%; makes 3 or 1%, or 14.

But, instead of this rule, we may use that of dividing the denowi-
nator by the given integer ;. and this is preferable, when it can be
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used, because it shortens the operation. Let it be required, for ex-
ample, to multiply § by 3 if we multiply the numerator by the
given integer we obtain %*, which product we must reduce to §.
But if we donot change the numerator, and divide the denominator
by the integer, we find mmedlately §, or 23 for the given product
Likewise 33 multiplied by 6 gives 33, or 3}.

102. In general therefore, the product of the multiplication of a

fraction 3 by cis T ; and it may be remarked, when the tnteger is

exactly equal to the denommator, that the product must be equal to
the numerator. _
3 taken twice gives 1;
So that { § taken thrice gives 2;
. § taken 4 times gives 3.

And in general, if we multiply the ﬁ'actiongby thenumber b, the

b

_product must be a, as we have already shown; for ‘sincel Zex-
presses the quohent resulting from the division of the dividend a by
‘the divisor b, and since it has heen demonstrated that the quotient

multiplied by the divisor will give the dividend, it is evident tbat

%multiplied by &must produce a.

- 103. We have shown how = fraction is to be multiplied by anin
teger ; let us now consider also kow a fraction is to be divided by an
s'nteger, this inquiry is necessary before we proceed to the multipli-
cation of fractions by fractions. It is evident, if I have to divide the
fraction # by 2, that the result must be 4; and that the quotient of
$ divided by 3 is . The rule therefore is, to divide the numergtor
by the integer without changing the denominator. Thus,

3% divided by 2 gives o ;
3% divided by 3 gives iy ; and
3% divided by 4 gives % ; &ec.

104. This rule may be easily practised, provided the numerator
be divisible by the number proposed; but very often it is not: it
must therefore be observed that a fraction may be transforined into
an‘infinite number of other expressions, and in that number there
must be some by which the numerator might be divided by the
given integer. - If it were required, for example, to divide § by 2,
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- we should change the fraction into §, and then dividing the nurhera-
tor by 2, we should immediately have § for the quotient sought.

In general, if it be proposed to divide the fraction by ¢, we change

b
o ac v e qe . a

itinto 5e and then dividing the numerator a ¢ by ¢, write be for the
quotient sought.

105. When therefore a fraction %is to be divided by an integerc,

we have only to multiply the denominator by that number, and leave
the numerator as it is. 'Thus § divided by 3 gives %, and § divid-
ed by 5 gives ;.

This operation becomes easier when the numerator itself is divisi-
ble by the integer, as we have supposed in article 103. For exam-
ple, ¥ divided by 3 would give, according to our last rule, % ; but
by the first rule, which is applicable here, we obtain Y%, an expres-
sion equivalent to &, but more simple.

. 306. We shall now be able to understand how one fraction;

may be multiplied by ariother fraction £ We have only to con-

7
sider that‘%means that ¢ is divided by d; and on this pririciple, we

shall first multiply the fraction 2—'

after which we shall divide by d, which gives %

Hence the following rule for multiplying fractions; mulnply
veparately the numerators and the denominators.
Thus 3 by % gives the product 2, or % ;
£ by % makes £ ;
1 by {7 produces 3§, or 4 ; &e.
107. It remains to show how one fruction may be divided by
. anether. We remark first, that if the two fractions have the seme
number for a denominaior, the division takes place only with re-
apect to the numerators; for it is evident, that v is contaimed as
unany times in ¥y as 3 in 9, that is to say, thrice; and in the same
ananner, in order to divide ¢ by +&, we have only to divide 8 by
9, which gives §. We shall also have &y ia 33, 3 times: 1}y in
Yoo, T times; 7% in 5, §; &ec. :

by ¢, which produces the result é—%
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© 108. But when the fractions have not equal denominators, we
must have recourse to tHe method already mentioned for reducing
them to a common denominator. Let there be, for example, the

fraction %to be divided by the fractiong; we first reduce them to

the same denominator ; we have then 3 Ztobe divided by z L it is

now evident that the quotient must be represented simply by the
division of @ d by b ¢; which gives Z—j.

-Henea the following rule : Multiply the numerator of the dividend
by the denominator of the divisor, and the denominator of the divi-
dend by the numerator of the divisor ; the first product will be the
numerator of the quotient, and the second will be 3ts denominator.

109. Applying this rule to the division of § by %, we shall have
- the quotient 43 ; the division of £ by 3 will give § or 4 or 1 and };
and £ by § will give 3£8, or §.

110. This rule for divisior is often represented in a manner more
easily remembered, as follows : Invert the fraction which is the divi-
sor, so that the denominator may be in the place of the numerator,
and the latter be written under the line; then multiply the Sfraction,
which is the dividend by this inverted fracnon, and the product will
be the quotient sought. Thus $ divided by % is the same as § mul--
tiplied by %, which makes &, or 13. Also § divided by % is the
same as § multiplied by 3, which is $#; or 3§ divided by £ gives
the same as 2§ multiplied by £, the product of whichis 8, or §.

We see then, in general, that to divide by the fraction 5 ts the
same as to multiply by %, or 2 ; that division by % amount: to mul-
tiplication by 1, or by 3, &c.
~ 111. The number 100 divided by 4 will give 200 ; and 1000
divided by % will give 3000. Further, if it were required to divide
1 by oo, the quotient would be 1000 ; and dividing 1 by 5ok,
the quotientis 100000. This enables us to conceive that, when
any number is divided by 0, the result must be a number infinitely
* great; for eventhe division of 1 by the small fraction ryyraoros
gives for the quotient the very great number 1000000000,

112. Every number when divided by itself producing unity, it is
evident that a fraction divided by itself must give 1 for the quo-
tient. The same follows from our rule: for, in order to divide
{ by §, we must multiply § by 4, and we obtain 43, or 1; and if it
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be required to dmdezby 3 we multlplyzby o; Dow the product

ab,
pre equal to 1.

113. We have still to explain an expression which is frequently
used. It may be asked, for example, what is the half of £ ; this
means that we must multiply £ by #. - So likewise, if the value of
% of §were required, we should multiply § by 4, which produces
3%; and ¥ of & is the same as y% multiplied by 4, which produces
. ‘

114. Lastly, we must here observe the same rules with respect
to the signs 4 and —, that we before laid down for integers.
Thus + 4 multiplied by — 3 makes — % ; and — % multiplied by
— 4 gives + 4. Farther, — ¢ dmded by + % makes — 45
and — § divided by — § makes 4+ {3 or 4 1.

CHAPTER XI.
Of Square Numbers.

115. Tae product of a number, when multiplied by itself, s
called a square ; and for this reason, the number, considered in
relation to such a product, is called a square root.

For example, when we multiply 12 by 12, the product 144 isa
square, of which the root is 12.

This term is derived from geometry, which teaches us that the
contents of a square are found by multiplying its side by itself.

116. Square numbers are found therefore by multiplication ; that
is to say, by multiplying the root by itself. Thus 1 is thesquare of
1, since 1 multiplied by 1 makes 1 ; likewise, 4 is the square of 2;
and 9 the square of 3 ; 2 also is the root of 4, and 3 is the root of 9.

We shall begin by considering the squares of natural numbers,
and shall first give the following small table, on the first line of‘
which several numbers, or roots are placed, and on the second their
squares.

42

Numbers | 1] 2| 3 4] 5] 6| 7| & 9| 10| 11 12,13'
16(25/36]49/64/81|100] 121 144I169,

©

Squares | 1{ 4




Chap. 11. Of Simple Quamtities. "

117. |t will be readily perceived, that the series of squaré nam-
bers thus arranged has a singular property ; namely, that if eaeh of
them be subtracted from that which immediately follows, the re-
mainders always increase by @, and form this series :

‘ 3,5,7,9,11, 13, 15, 17, 19, 21, &e.

118. The squares of Jractions are found in the same manner,
by multzplymg any given fraction by itself. For example, the
syuare of $is {, ,

% 4
%

il
2‘ g' » &e

‘We have only, therefore, to divide the square of the numerator
b} the square of the derominator, and the fraction, which expresses
that division must be the square of the given fraction. Thus, #¥iy
the square of §; and reciprocally, § is the root of #f.

119. When the square of a mixed number, or a ' number com-~
posed of an integer and 2 fraction, is required, we have only to
reduce. it to a single fraction, and then to take the square of that
fraction. Let it be required, for example, to find the square of 24 ;
we first express this number by $, and taking the square of that
fraction, we have %, or 61, for the value of the square of 2. So~
to obtain the square of 3}, we say 3} is equal to {? ; therefore its
square is equal to Y%, or to 10 and . The squares of the num-
bers between 3 and 4, supposmg them to increase by one fourth
are as follows :

Numbers | 3| 3} | 34 \ 3| 4

Squares | 9 |10 12}114,1,, 16

From this small table we may infer, that if a root contain a  frac-
fion, its square also contains one. Let the root, for example, be
14 ; its square xs 185, or 21—1;-, that is to say, a little greater than
the integer 2.

120. Let us proceed to general expressions.  When the root is
a, the square must be a a; if the root be 2 a, thesquare is4 a a;
which shows that by doubling the root, the square becomes 4 times

greater.  So if the root be 3 4, the square is 9 a a; and if the root
Eul. Alg. 5
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be 4 g, the square is 16 & a. But if the root be a b, the square is
@ abb; and if the root be a b ¢, the square is aa b b e c.

121. Thus when the root is composed of two or mere factors,
we multiply their squares together ; and reciprocally, if asquare be
composed of two or more faciors, of which each is a square, we have
only to multiply together the roots of those squares, to obtain the
complete root of the square proposed. Thus, as 2304 is equal to
4 X 16 x 36, the square root of it is 2 X 4 X 6,0r 48; and 48
is found to be the true square root of 2304, because 48 X 48 gives
2304.

122. Let us now consider what rule is to'be observed with regard
to the signs 4 and —. First, it is evident thatif the root has the
siga +, that is tosay, is a positive number, its square must necessa-
rily be a positive number also, because | by -+ makes 4 : the
square of 4 a willbe 4 aa. But if the root be 2 negative num~
ber, as — a, the square is still positive, for itis 4 a a; we may
therefore conclude, that 4 a a is the square botk of + a, and of
—a, and that conseguently every sguare has two rowis, one positive
and the ather negative. 'The square root of 25, for example, B
both 4 56 and — 5, because — 5 multiplied by — 5 gives 25, =3
well as + 5 by 4 6.

CHAPTER XII.

Of Sguare Roots, and of Irrational Numbers resulting from them.

124. WaaT we have said in the preceding chapter is chiefly this:
that the square root of a given number is nothing but 2 number
whose square is equal to the given number ; and that we may put
before these roots either the positive or,the negative sign.

124. So that when a square number is given, provided we retain
in our memory a sufficient number of square numbers, it is easy to
find its root. If 196, for example, be the given number, we know
that its square root is 14,

Fractions likewise are easily managed ; it is evident, for example,
that 4 is the square root of 2§. . To be convinced of this we have
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only to take the squate raot of the numerator, and that of the de-
nominator.

i the number pmposed be a mixed number, as 1%, we reduce
it.to a single fraction, which here is 42, and: we.immediately per-
ceive that %, or 33, must be the square root of 12%.

.195. But when the given number is not a square, as 12, for

-exhwiple, it is pot possible to extract its square root; or to find a
wumber, which, maltiplied by itself, will give the product 12. We
know, however, that the square root of 12 must be greater than 8.
because 8 X 3 produces only 9: and less than 4, because 4 X 4
produces 16, which is more than 12. We know also, that this root
§8 less than 33 ; for we have seen that the square of 33, or Tis 124,
Hastly, we may approach still nearer to this root, by comparing it
with 34 ; for the square of 3%, or of ¢2 is 4.8, or 12 4;, so
that this fraction is still greater than the root required ; but very
Inttle greater, as the difference of the two squares is only z4:
- 126. We may suppose that as 3} and 35 are numbers greater
than the root of 12, it might be possible to add to 3 a fraction a
fittle less than i, and precisely such that the square of the sum
would be equal to 12,

Let us therefore try with 3%, since 4 isa little less than 5. Now
* 3% isequal to %*, the square of which is %%, and consequently less
by 1% than 12, which may be expressed by %&%. It is therefore
proved that 3% is less, and that 374 is greater than the root required.
Let us then try a number a little greater than 3%, but yet less than
815, for example, 3. This number, which is equal to £§, has
for its square Y%, ‘Now, by reducing 12 to this denominator, we
* obtain ¥4 ; whlch shows that 3% is stxll less than the root of 12,
viz. by (3. Let us therefore substitute for + the fraction .
which is a little greater, and see what will be the result of the com-
parison of the square of 3+ with the proposed number 12. The
square of 3 is 3%4° ; now 12 reduced to the same denominator
is 383 ; so that 3.5 is still too small, though only by 13y, whilst
315 has been found too great.

127. It is evident, therefore, that whatever fraction be Joined to
3, the square of that sum must always contain a fraction, and can
never be exactly equal to the integer 12. Thus, although we know
that the square root of 12 is greater than 3y and less than 3%,
yet we are unable to assign an intermediate fraction between these
two, which, at the same time, if added to 8, would express exactly
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the square root of 12. Notwithstanding this, we are not to assert
that the square root of 12 is absolutely and in itself indeterminate;
it only fallows from what has been said, that this root, though it
necesgarily bas a determinate magnituds, eansot be expressed by
fractions.

128. There 13, thercfore, a sort of au-ben which cannot be as-
signed by fractions, and which are nevertheless determinats quantss
ties ; the square root of 12 furnishes an example. We esll this
new species of numbers, frrational numbers ; they ocour whenever
we endeavor to find the square root of a number which is not a
square. Thus, 2 not being a perfect square, the square root of 2,
or the number which, multiphed by itself, would: produce 2, is an
jrrational quantity. ‘These nurabers are also called surd quantitics,
or sncommensurables.

129. These irrational quantities, though they cannot be expressed
by fractions, are pevertheless magnitudes, of which we may form an
* accurate idea. For however concealed the square root of 12, for
example, may appear, we are not ignorant, that it must be a number
which, when multiplied by itself, would exacily produce 12; and
this property is sufficient to give us an idea of the number, since it
is in our power to approximate its value continually,

130. As we are therefore sufficiently acquainted with the pature
of the irrational numbers, under our preseat consideration, a particu-
lar sign has been agreed on, to express the square roots of all num-
bers that are not perfect squares. This sign is written thus 4/, and
is read square root. Thus, V12 represents the square root of 12,
or the number which, multiplied by itself, produces 12. So, /2
represents the square root of 2; /3 that of 3; /3 that of 4, and
in general, ./g represents the square root of the number a. When-
ever, therefore, we would express the square root of a number
which is not a square, we need only make use of the mark 4/ by
placing it before the number.

131. The explanation which we have given of irrational numbers
will readily enable us to apply to them the known methods of calcu-
lation, For knowing that the square root of 2, multiplied by itself,
must preduce 2; we know also, that the multiplication ,/3 by /2
must necessarily produce 2; that, in the same manner, the multipli-
cation of _/3 by ./3 must nge 3; that /5by ./5 makes 5; that
v3by % makes 3 %; and, in general, that/x multiplied by Jg
produces .
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132. But when it is required to multiply . /a by /b the product
will be found to be ./3b ; because we have shown before, that if a
square has two or more factors, its root must be composed of the
roots of those faetors. Wherefore we find the square root of the
product a b, which is /43, by muktiplying the square root of a or
Ja, by the square root of b or /5. It is evident from this, thatif
b were equal to a, we should have ./za for the product of /g by
5. Now saqis evidently a, since a a is the square of a. .

133. In division, if it were requlred to divide ./a, for example,

by /5, we obtam Jb—’ and in thisinatance theirrationality may van-

ish in the quotient. Thus, having to divide /18 by ./, the quotient
is ¢, which is reduced to /2, and consequently to #, because £
is the square of §

134. When the number, before which we have placed the radical
sign 4/, is itself a square, its root is expressed in the usual way.
Thus /3 is the same as 2; ,/9 the same as 3 ; /36 thesame as6;
and /i3} the same as %, or 3. In these instances the frration-
ality is only apparent, and vanishes of course.

135. It is easy also to multiply irrational numbers by ordinary
numbers. For example, 2 multiplied by /5 makes 2 /35, and 3
times ,/2 make 3 /3. In the second example, however, as 3 is
equal to /3, we may also express 3 times /2 by /0 times /3, or
by /i8. So® ./a is thesame as /T 4, and 3 /g the same as /9 4.
And, in general, 3, /a has the same value as the square root of bba,
of /aab; whence we'infer reciprocally, that when the number
which is preceded by the radical sign contains a square, we may
take the root of that square and put it before the sign, as we should
do in writing b ./ instead of ,/ab5. After this, the following re-
ductions will be easily understood : '

J@ or /24 ' 2@ H
/12, or /34 /3
V18, or V29 (o equal to 3‘@5
V31 or V64 2/
VB or /216 ‘ 4/5;
75 or /335 5./-';

sad %0 on.
- 136. Dmsmn is founded on the same pnnc:p}es. Ja dwtdad by

Jbs gwe: ,or J b In the same manner,
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/8 3 _
VA ] J§’3 or /ior 2;
Jig |, 18 ‘
;3 r\ls equal to J% or /9,or3;
/3 B
75 , g OF /4, or 2,
2y 7 ’
Further 75 - :,‘/—2, or 4, ar /2;
3 1{. 9 :
:/—::3 >1s equal to %, or /%, or /3;
:1,% ) ~ z;“ or 144, or 3,

or /6.4, or lastly 2 /6.

137. There is nothing in particular to be observed with respect
to the addition and subtraction of sueh quantities, because we only
connect them hy the signs 4 and —. For example, ./2 added
to /3 is written /3 + /3; and /3 subtracted from /5 is writ-
ten /5 — /3.

138. We may observe lastly, that in order to distinguish isra-
tional numbers, we call all other numbers, both integral and frac-
tional, rational numbers.

. So that, whenever we speak of rational numbers, we undemund

mtegers or fractions.

CHAPTER XIIL.

of Impomblc or Imagmary Quantinea, which arise fram the same
source.’

139. WE have already seen that the squares of numbers, negative
as well as positive, are always positive, or affected with the sign 4 ;
having shown that — & multiplied by — a gives 4 a a, the same
as the product of 4~ a by +4- a. Wherefore, in the preceding chap-
ter, we supposed that all the numbers, of which it was requﬂed to
extract the Squaze roats, were. positive. 4

140. When it is required, therefore, to extract the root of a nega-
tive number, a very great difficulty arises ; sinee thers is no assign-
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able number, the square of which would be a negative quantity.
Suppose, for example, that we wished to extract the root of — 4 ;
we require such a number, as when multiplied by itself, would pro-
duce — 4; now this number is neither 4 2 nor — 2, because the
square, both of + 2 and of — 2, is 4 4, and not — 4.

-141. We must therefore conclude, that the square root of a nega-
tive number cannot be either a positive number, or a m:gatwe num-
ber, since the squares of negative numbers also take the sign plus.
Consequently the root in question must belong to an entirely dis-
tinct species of numbers ; since it'cannot be ranked either among
positive or among negative numbers.

142. Now, we before remarked, that positive numbers are e all

. "greater than nothing, or 0, and that negatwe numbers are all less

 than notbing, or 0 ; so that whatever exceeds 0, is expressed hy
positive numbers, and whatewer is less than 0, is expressed by nega-
tive numbers. The square roots of negative numbers, therefore, ave
neither greater nor less than nothing. We cannot say, however,
that they are O; for O multiplied by O praduces 0, and conse-
quently does nat give a negative number.

143. Now, since all numbers, which it is possxble to conceive,
are either greater or less than 0, or are 0 itself, it is evident that we
cannot rank the square root of a negative number amongst possible
numbers, and we must therefore say that it is an impossible quantity.
In this manner we are led to the idea of pumbers, which from their
nature are impossible. These numbers gre usually called imaginary
quantities, because they exist merely in the imagination.
~ 144. All such expressions, as ./ —T1, /=3, /—3, ~—4, &c.,
are consequently impossible, or imaginary numbers, since they re-
present roots of negative quantities ; and of such numbers we may
teuly assert, that they are neither nothing, nor greater than nothing,
nor less than nothing ; which necessarily constitutes them imaginary,
aor impossible.

145. But noththstandmg all this, these numbers present them~
selves to the mind ; they exist in our imaginatien, and we still have
a sufficient idea of them; since we know that by /-4 is meanta
number, which multiplied by itself, produces — 4. For this rea-
son alsq, nothing prevents us from making use of these imaginary
numbers, and employing them in caleulation.

146. The fisrst idea that ocours on the mmaan,th&tbo
square of /3, fer example, oe.the product of /=3 by /=8,
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must be — 3; that the product of ./ —Tby ,/—Tis —1; and,
in general, that by multiplying ./~a by ./—a, or by taking the
square of ./ —gq, we obtain — a.

147. Now,'as — a isequal to + & multiplied by — 1, and as:
the square oot of a product is found by multiplying together the
roots of its factors, it follows that the root of ¢ mmltiplied by — 1,
of ./—a, is equal to /g, multiplied by ./—1. Now /g is a possi-
ble or real number, consequently the whole impossibility of an imag-
fnary qmmtity may be always reduced to .,/ —7. For thisreason,
~/—1 s equal to /4 multiplied by ,/—"1, and equal to 2 /=71,
on account of /7 being equal to2. For the same reason, ./~ 9 isre-
duced to ./ X ./—1,0r3,/—1;and s/ —16isequal to 4 ,—1.,

148. Moreover, as ,/a multiplied by ./ makes ./ab, we shalk
have /6 for the value of /2 multiplied by ./ —3; and /4, or 2,
for the value of the product of .,/—7 by ./—4. We see, there-
fore, that two smaginary numbers, multapl:ed together, produce a
real, or possible one.

Baut, on the contrary, a pomble number, multiplied by an im-
pomble number, gwes always an imaginary product thus, /3
by /¥ 5 gives ./ —15.

149. Itis the same with regard to dIVlSlOl] for ./a divided by

/b making J B it is evident that _/—4 divided by..,/—1 will make
J+ 14, or2; that /173 divided by /3 will give ,/—1 ; and that
1 divided ,/:-i gives E—:, or J:_l ; because 1 is equal to
JEI
150. We have before observed, that the square root of any num-
ber has always two values, one positive and the other negative ; that
/14, for exambple, is both 4+ 2 and — 2, and that in general, we
must take — _/a as well as /5 for the square root of . This
remark applies also to imaginary numbers ; the square root of — a
fs both 4 /g and — /"4 ; but we must not confound the :igns
4 and —, which are before the rachcal sign o/, with the ng-n
which comes aﬁer it. ‘
161. It remains for us to remove any doubt which may be enter-
tained conceming the utility of the numbers of which we have been
peakmg for those numbers being impossible, it would not be sur-
prising if any ane should think them entirely useless, and the subject
oaly of idle speculation. This, however, is not the ease. The'eal-
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culation of imaginary quantities is of the greatest importance :
questions frequently arise, of which we cannot immediately say,
whether they include any thing real and possible, or not. Now,
when the solution of such a question leads to imaginary numbers,
we are certain that what is required is impossible.*

—

CHAPTER XIV.

Of Cubic Numbers.

152. WHEN a number has been multiplied twice by itself, or,
which is the same thing, when the square of a number has been
multiplied once more by that number, we obtain a product which is
called a cube, or a cubic number. Thus, the cube of g is a a g,
since it is the product obtained by multiplying a by itself, or by a,
and that square @ a again by a. ,

The cubes of the natural numbers therefore succeed each other
in the following order.

)

Numbers | 1

Cubes | 1

3]45 6{17]|8 9‘,10

@®

27‘64 125216(343 512729|1000

153. If we consider the differences of these cubes, as we did
those of the squares, by subtracting each cube from that which
comes after it, we shall obtain the following series of numbers :

7, 19, 37, 61, 91, 127, 169, 217, 271.
At first we do not observe any regularity in them; but if we take

the respective differences of these numbers, we find the following
series :

* This is followed in the original by an example intended to illus-
trate what is here said. It is omitted by the editor, as it implies a
degree of acquaintance with the subject which the learner cannot be
supposed to possess at this stage of his progress.

Eul. 4lg. 6
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12, 18, 4, 30, 36, 42, 48, 54, 60;

in which the terms, it is evident, increase always by 6.

154. After the definition we have given of a cube, it will not be
difficult to find the cube of fractional numbers ; # is the cube of 33
o, 1s the cube of %; and o is the cube of . In the same man-
ner, we have only to take the cube of the numerator, and that of
the denominator separately, and we shall have as the cube of £, for
ins'ance, #f.

155. If it be required to find the cube of a mixed number, we
must first reduce it to a single fraction, and then proceed in the
manner that has been described. 'To find, for example, the cube
of 14, we must take that of 4, whichis 47, or 3 and §. So the
cube of 1}, or of the single fraction §,is %%, or 1§4; and the
cube of 3%, or of P is*147, or 34%1.

“156. Since a aa is the cube of g, that of b will beaaabbb;
whence we see, that if a number has two or more factors, we may
find its cube by multiplying together the cubes of those factors. For
example, as 12 is equal to 3 X 4, we multiply the cube of 3, which
is 27, by the cube of 4, which is 64, and we obtain 1723, for the
cube of 12. Further, the cube of 2 a is 8 a a g, and consequently
8 times greater than the cube of a: and likewise, the cube of 3 @
is 27 a @ a, that is to say, 27 times greater than the cube of a.

157. Let us attend here also to the signs + and —. It isevi-
dent that the cube of a positive number 4 a must also be positive,
that is 4 aaa. But if it be required to cube a negative number
— a, it is found by first taking the square, which is 4 a @, and
then multiplying, according to the rule, this square by — a, which
gives for the cube required — a a a. In this respect, therefore,
it s not the same with cubic numbers as with squares, since the lat-
ter are always positive : whereas the cube of — 14is — 1, that of
— 2ts — 8, that of — 3 45 — 27, and s0 on.

.
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CHAPTER XV.

Of Cube Roots, and of Irrational Numbers resulting from them.

158. As we can, in the manner already explained, find the cube
of a given number, so, when a number is proposed, we may also
reciprocally find a number, which, multiplied twice by itself, will
produce that number. The number here sought is called, with re-
lation to the other, the cube root.  So that the cube root of a given
number i3 the number whose cube is equal to that given number.

159, It is easy therefore to determine the cube root, when the

number proposed is a real cube, such as the examples in the last
chapter. For we easily perceive that the cube root of 1 is 1; that
of 8is'2; that of 27 is 3 ; that of 64 is 4, and soon. And in the
same manner, the cube root of — 27 is~—3; and that of — 125
is — 5.
. Further, if the proposed number be a fraction, as f, the cube
root of it must be %; angd that of f#;is 4. Lastly, the cube root
of a mixed number 24§ must be 4, or 1}: because 2% is equal
to §4. '

160. But if the proposed number be not a cube, its cube root
cannot be expressed either in integers or in fractional numbers;
For example, 43 is not a cubic number ; I say therefore, that it is
impossible to assign any number, either integer or fractional, whose
cube shall be exactly 43. We may however affirm, that the cube
root of that number is greater than 3, since the cube of 3 is only 27,
and less than 4, because the cube of 4 is 64. We know, therefore,
that the cube root required is necessarily contained between the
numbers 3 and 4. ‘

161. Since the cube root of 43 is greater than 3, if we add a
fraction to 3, it is certain that we may approximate still nearer and
nearer to the true value of this root; but we can never assign the
number which expresses that value exactly ; because the cube of a
mixed number can pever be perfectly equal to an integer, such as
43. If we were to suppose, for example, 3} or % to be the cube
root required, the error would be 4 ; for the cube of % isonly 343,
or 42§. . .

162. This therefore shows, that the cube root of 43 cannot be
expressed in any way, either by integers or by fractions. However,
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we have a distinet idea of the magnitude of thisroot ; which induces

us to use, in order to represent it, the szgn :/ , which we place be-
fore the proposed number, and which is read cube root, to distin-
guish it from the square root, which is often called simply the root

Thus V43 means the cube root of 43, that is to say, the number
whose cube is 43, or which, multiplied twice by itself, produces 43

163. It is evident also, that such expressions cannot belong to
rational quantities, and that they rather form a particular species of
irrational quantities. ‘They have nothing in common with square
roots, and it is not possible to express such a cube root by a square
root ; as, for example, by 4/12; for the square of 4/12 being 12,
its cube will be 12 4/12, consequently still irrational, and such can-
not be equal to 43.

164. If the proposed number be a real cube, our expressionsbe-

come rational ; V 1.8 egual tol: Va is equal to 2; V27 is equal

to 3; and, generally, Vaa& 18 cqual to a.
165. If it were _propoaed to multiply one cube root V aby another,

V b, the product must be V a b ; for we know thatthe cube root of a
product a b is found by multlplymg together the cube roots of the

factors (156). Hence, also, if we divide o/a by o/E, the quotient

s -
. a
will beJE.

' 166. We further perceive that 2 :/E is equal to :/EI., because 2
is equivalent to JE ; that3 :/E is equal to :/ % e, and b :/E isequal
svm. So, reciprocally, if the number under the radical sign has a
factor which is a cube, we may make it disappear by placing its cube

root before the sign For example, instead of ;’/ 64a we may write

4 Va ;and 5 Va instead ofV125 a. Hence Vlﬁ isequalto 2 Vz
because 16 is equal to 8 X 2.

167. When a number proposed is negative, its cube root is not
subject ‘to the same difficulties that occurred in treating of square
roots. For, since the cubes of negative numbers are negative, it
follows that the cube roots of negative numbers are only negative.

© 8
Thus 4/ =8 is equal to — 2, and :/:W to—3. Itfollows also,
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3 .
that o/ "T2 is the same as — :/1_2, and that J:‘.‘; may be ex-

pressed by — :/&. Whence we see that the sign —, when it is
found after the sign of the cube root, might also have been placed
before it. We are not, therefore, here led to impossible, or imagin-
ary numbers, as we were in considering the square roots of nega-
tive numbsrs.

CHAPTER XVIL

Of Powers in general.

168. Tae product which we obtain by multiplying a number sev-
eral times by stself, s called a power. "Thus, a square which arises
from the multiplication of a number by itself, and a cube which we

obtain by multiplying a number twice by itself, are powers, e
say also inthe former case, that the number is raised to the second
degree, or to the second power ; and in the latter, that the number
is raised to the third degree, or to the third power.

169. We distinguish these powers from oneanother by the num-
ber of times that the given number has been used as a factor. For
example, a square is called the second power, because & certain
given number bas been used twice as a factor ; and if a number has
been used thrice as a factor, we call the product the third power,
which therefore means the same as the cube. Multiply a number
by itself till you have used it four times as a factor, and you will
have it fourth power, or what is commonly called the bi-quadrate.
From what has been said it will be easy to understand what is meant
by the fifth, sixth, seventh, &c. power of a number. 1 only add,
that the names of these powers, after the fourth degree, cease to
have any other but these numeral distinctions.

170. To illustrate this still further, we may observe, in the first
place, that the powers of 1 remainalways the same ; because what-
ever number of times we multiply 1 by itself, the product is found
to be always 1. We shall, therefore, begin by representing the
powers of 2 and of 3. They succeed in the following order :

‘
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N Powers. Of the number 2. | Of the number 3.
r - A ) r A N 4 A Al
L . 2 3

II. . 4 9

II1. ' 8 1

1v. 16 - 81

V. 32 243 -

VI 64 729
VIIL 128 2187

VIIL 256 6561

IX. 512 19683

X. 1024 59049

XI. 2048 177147

XIL 4096 531441

XIII. 8192 1594323

XIV. 16384 4782969

XV. 32763 14348907

XVIL 65536 43046721

XVIL 131072 129140163

XVIII 262144 387420489

But the powers of the number 10 are the most remarkable ; for
on'these powers the system of our arithmetic is founded. A few
of them arranged in order, and begmmng with the first power, are
as follows:

‘L I LIV, V. VL.
10, 100, 1000, 10000, 100000, 1000000, &c.

171. In order to illustrate this subject, and to consider it in a
more general manoer, we may observe, that the powers of ady
number, a, succeed each ather in the following order.

I II. IIL. Iv. \ VI

4, aa, aaa caad, aaaad, aaacaaa, &c.

But we soon feel the inconvenience attending this manner of
writing powers, which consists in the necessity of repeating the
same letter very often, to express high powers ; and the readeralso
would have no less trouble, if he were obliged to count all the let-
ters to know what power isintended to be represented. The hun-
dredth power, for example, could not be conveniently written in
this manner; and it would be still more difficult to read it.

172. To avoid this inconvenience, a much more commodious
methad of expressing such powers has been devised, which from its
extensive use deserves to be carefully explamed viz. To express;
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for example, the hundredth power, we simply write the number 100
above the number whose hundredth power we would express, and a
little towards the right hand ; thus a'°° means ¢ raised to 100, and
represents the hundredth power of a. It.must be observed, that
the name exponent is given to the number written above that whose
power or degree n representa, and which in the prc:cnt tnstance i3
100,

173. In‘the same manner, a® signifies a raised to 2, or the sec-
ond power of a, which we represent sometimes also by a a, because
both these expressions are written and understood with equal fa-
cility. But to express the cube, or the third power aaa, we write
a® according to the rule, that we may occupy less room. So a
signifies the fourth, a® the fifth, and a° the sixth power of a.

174. In a word, all the powers of a will be represented by a, o?,
@, at, d*, a, ad'; o o, a"’, &c. Whence we see that in this
manner we mwht very properly have written a' instead of a for the
first term, to show the order of the series more clearly In fact o
13 no more than a, as this unit shows that the letter ais to be writien
only once. Such a series of powers is called also a geometrical pro-
gression, because each term is greater by one than the preceding.

175. As in this series of powers each term is found by multiply-
ing the preceding term by a, which increases the exponent by 1 ; so
when any term is given, we may also find the precediog one, if we
divide by a, because this diminishes the exponent by 1. This shows
that the term which precedes the first term o' must necessarily be

a . . .
—, or1; now, if we proceed according to the exponents, we imme-
o

diately conclude, that the term which precedes the first must be a°,
Hence we deduce this remarkable property ; that a° s constantly
equal to 1, however great or small the value of the number a may
be, and even when a is nothing ; that'isto say, a° is equal to 1.
176. We may continue our series of powers in a retrograde
order, and that in two different ways ; first, by dividing always by a,
and secondly by diminishing the exponent by unity. And it is evi-
dent, that whether we follow the one or the other, the terms are
still perfectly equal. 'This decreasing series is represented, in both

forms, in the following table, which must be read backwa.rds, or
from right to left. -




—ilila
17aadaadolasaaataadalaaslaal a
1 1 1 1 1 111
: a® a' a' @ |& |d

Q. a— a=* a atla?|a dd

177. We are thus brought to understand the nature of powers,
whose exponents are negative, and are enabledto assign the precise
velue of these powers. From what has been said, it appears that,

a ) (1; then
- 1

a,

1
s 1 oo 2.
@ >is equal to] ad’ o @
a a—],;
o | 2 &

178. It will be easy, from the foregoing notation, to find the potw-
ers of a product, ab.  They must evidently bea b, ora’ b', a’b?,
a’b?, a* b, 2" b°, &c. And the powers of fractions will be found

. a
in the same manner ; for example, those of g ores

bl’ b!’ ba’ b" bl’ bﬂ’ b7’
179. Lastly, we have to consider the powers of negative num-

bers. Suppose the given number to be — a; its powers will form
the following series :

—a, +6a, —a', +a), —a, + d, &e.

We may observe that those powers only become negative, whose
exponents are odd numbers, and that, on the contrary, all the pow-
ers, which have an even number for the exponent, are positive. So
that, the third, fifth, seventh, ninth, &c. powers have each the
sign — ; and the second, fourth, sixth, eighth, &c. powers are af-
~ fected with the sign +-.
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CHAPTER XVIL

Of -the Calcwiation of Powers, -

180. WE have nothing in particular to observe with regard to the
addition and subtraction of powers ; for we only represent these
operations by means of the signs 4 and —, when the powers are
different. For example, 8° 4 'a' is the sum of the second and
third powers of a; and 2 — a* is what remains when we subtract
the fourth power of a from the fifth; and neither of these results
can be abridged When we have powers of the same kind, ar
degree, it is evndently unnecessary to connget them by signs ; o*
<4 a® makes 2 o°, &c.

181. Bat in the multiplication of powers, several things require
attention,

First, when it is required to multiply any power of a by a, we
obtain the succeeding power, that is to say, the power whose expo-
nent is greater by one unit. Thus 4%, multiplied by a, produces a*;
and o® muluplled by a, produces a*. And, in the same manner,
when it is required to multiply by a the powers of that number

“which have negative exponents, we must add 1 to the exponent.
Thus, a™* multiplied by a produces a° or 1; which is made more

evident by considering that a™ is equal to ;, and that the prodtﬁt
of -} by @ being g, it is consequently equal to 1. Likewise =

multiplied by a produces ™, or l, and a™*°, multiplied by a, gives

a*, and so on. ' ‘
182. Next, if it be required to multiply a power of a by a g, 0r -
the second power, I say that the exponent becomes greater by 2.
Thus, the product of & by a* is a*; that of a® by a*is a*; that
of &' by a'is a®; and, more generally, a* multiplied by a* makes
a*+*,  With regard to negative ezponents, we 3haﬂ have &, o0r a,

" Jor the product of 3™ by &*; for &~ heingequalto ,msthe same

. a3 if we had divided @ a by a; consequently the product required
is i:;g, ara. So a, ﬁultij;lied by é’, produces8® or 1; and a™*,
multiplied by a*, produces a~. R

Eul. Alg. 1
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183. It is no less evident that to multiply any power of a by a’,
we must increase its exponent by three units ; and that consequently
the product of a" by a® is a*+*. And whesever it s required to
multiply together two powers of a, the product will be also o power
of 1, and a power whose exponent will be the sum of the exponents .
of the two given powers. For example, a*, multiplied by o*, will
make &’, and a'*, multiplied by &’, will produce’a'®, &ec.

184, From these considerations we may easily determine the
highest powers. 'To find, for instance, the twenty-fourth power of
2, I multiply the twelfth power by the twelfth power, because 2** i
equalto 2'* X 2'". Now we have already seen that '* is 4096 ;
I say, therefore, that the number 16777216, or the product of
4096 by 4096, expresses the power required, 2°*,

185. Let us proceed to division. We shall remark in the first
place, that to divide a power of a by a we must subtract 1 fromthe
exponent, or diminish it by unity. Thus o*, divided by a, gwes a;

a’orl, dmdedbya,:sequaltoa—‘or—,a , divided by a, gives

—.
a

186. If we have to divide a given power of a by a*, we must
diminish the exponent by 2; and if by a*, we must subtract three
units from the exponent of the power proposed. So, in general,
whatever power of a it is required to divide by another power of v,
the rule is always to subtract the exponent of the second from the
e.rpo'ne'nt of the first of these powera. Thus a'*, divided by o',
will give a°, a°, divided by o', will glve a”'; and a", divided by
a*, will gwe .

187. From what has been said above, it is easy to understand
the method of finding the powers of powers, this being done by mul-
tiplication. When we seek, for example, the square, or the second
power of @', we find a°; and in the same manner we find o' * for
the third power of the cube of a'. To obtain the square ¢f a
power, we have only to double its exponent ; for its cube, toe must
triple the exponent; and so on. 'The square of a* is ¢™; the
cube of a*is a’*; the seventh power of o* is a’*, &c.

188. The square of @', or the square of the square of a, being
a', we see why the fourth power is called the bi-quadrate. The
square of @' is o*; the sixth power has therefore received the
pame of the square-cubed.
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Lastly, the cube of a* being a* we call the ninth power the
cubo-cube. No other denominations of this kind have been intro-
duced for powers, and indeed the two last are very little used.

CHAPTER XVIIL

Of Roots with relation to Powers in general.

189. Since the square root of a given number is a number,
whose square is equal to that given number; and since the cube
root of a given number is a number whose cube is equal to that
given number ; it follows that any number whatever being given, we
may always indicate such roots of it, that their fourth, or their fifth,
or any other power, may be equal to the given number. To distin-
guish these different kinds of roots better, we shall call the square root
the second root ; and the cubs root the third root ; because, accords
ing to this denomination, we may call the fourth root, that whose
biguadrate is equal to a given number; and the fifth reof, that
whose fifth power is equal to d given number, &c.

190. As the square, or second root, is marked by the sign 4/, and
the-cublc or third root by. the sign o/, 50 -the fourth root is repre-
sented by the sign :/ ; the fifth root by the sign :/ ; and so oo ;'it
is evident that according to this mode of expression, the sign of the
square root; ought to be :/ . But as of all roots this oecurs most
frequently, it has been agreed, for the sake of brevity, to omit the
number 2 in the sign of this root. So that when a radical sign has
no number prefixed, this always shows that the square root is to be
understood.

191. To explain this matter still further, we shall here exhibit
the different roots of the number a, with their respective values:
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. ‘4/a u a,
‘ :/ a "|3d | -~ la,
& Sisthed 4th broot of{ a,
:/ a 5th | a,
:/ a 6th . a, and so on.
So that conversely ;
The 2 (Wa a,
The 3d Vi %
The 4th. > power of. s:/ a ~is equal to< a,
The 5th ‘ ! \s/ a | a,
The 6th Ve a, and so on.

192. Whether the number a therefore be great or small, we
know what value to affix to al] these roots of different degrees.

It must be remarked' also, that if we substitute unity for a, all
those roots remain constantly 1 ; because all the powers.of 1 have
unity for their value. If the numbeér & be greater than 1, aH its
roots will also exceed unity. Lastly, if that number be les thll
1, all its roots will also be less than unity.

193. When the number a is positive, we know from whnt was
before said of the square and gube roots, that sll the ather roots
may also be determined, and will be real and possible numbers.

But if the number a is negative, its second, fourth, sixth, and al}
the even roots, become impossible, or imaginary numbers ; because
all the even powers, whether of positive or of negative numbers, are
aﬁected with the sign . Whereas the third, fifth, seventh, and
all odd roots, become megative, but rational ; because the odd pow-
ers of negative numbers, are also negative.

194. We have here also an inexhgustible sourca of new kinds of
surd, or irrational quantities ; for whenever the number a is not ac-
tually such a power, as some one of the foregoing indices represents,
or seems to require, it is impossible to express that root either in
whole numbers or in fractions ; and consequently it must be classed
among the numbers which are called irrational.
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CHAPTER XIX.

Of the Method Qf repreaemmg Irratumdl Numbers by Fractmnal
Ezponents. :

195. WE have shown in the preceding chapter, that the square
of any power is found by doubling the exponent of that pow’er, and
that in general the square, or the second power of ", is a'" The .
converse follows, namely, that the square root of the power a'®
. @, and that it is found by taking half the exponent of that power,
or dividing it by 2.

196. Thus the square root of a*is a' ; that of 4 is a*; that of
a'is ¢’; and so on. And asthrsxsgeneral the sqlmrerootofa

must necessarily be ot , and that of @’, 5, ot Consequently we shall
bave in the Salne manner ai for the square root of a'; whence we

see that a? s equal to 4/5; and this new method of repreaent'mg
the square root demands particular attention.

197. We have also shown that to find the cube of a power as a",
we must multiply its exponent by 3, and that consequently the cube
ls aa-

* So conversely, when it is required to find the third or cube root
of the power a**, we have only to divide the exponent by 3, and
may with certainty conclude, that the root required is a®, Conse-
quently @', or g, is the cube root of @’ ; a* is that of a°; @’ is that
of &*; and s0 on. , ,

198. There is nothing to prevent us from applying the same rea-
soning to those cases in which the exponent is oot divisible by 3,

and concluding that the cube root of ¢* is ag, and that the cube
&

root of a‘ isa”, or aw Consequently the third, or cube root of a

also, or o', must be a® Whencei it appears that ot is equal to f
199. It is the same with roots of a higher degree. The fourth

root of a will be a* which expression has the same value as VG
The 6fth o0t of  will be a, which is consequently. eguivalent to

Va, lndthesuneobservanonmay beextendedtoallrootsoft
hlshcdnm , A oo
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200. We might, therefore, entirely reject the radical signs at pre-
sent made use of, and employ in their stead the fractional exponents
which we have explained ; however, as we have been long accus-
tomed to those signs, and meet with them in all books of algebra, it
would be wrong to banish them entirely. Butthere is sufficient rea-
son alsg to employ, as is now frequeatly done, the other method of
" notation, because it manifestly corresponds with what is to be repre-

sented. In fact, we see immediately that 4 is the square root of

@, because we koow that the square of a"}, that is to say, aé mul-

tiplied by a'}, is equal to &' or a.

201. What has now been said is sufficient to show how we are
to understand all other fractional exponents that may occur. If we
have, for example, a é, this means that we ‘must fiest take the fourth
power of a, and then extract meube or third root ; so thata u the

same as the common expression, Va' To find the value of a , we
must first take the cube, or the third power of 4, which i is ', and

then extract the fourthroot of that power ; so that ot is the sare as
V1 Also o is equal to Va' &e.

202. When the fraction which represents the exponent exceeds
unity, we may express the value of the given quantity in another
way. Suppose it to be a” ; this quanmy is equivalent to a%
which is the product of a* by . Now a bemgequal toa/a itis
,endent that aﬁls equal to a* 4/a. Soal“o, or a%, is equal to

a Va, and al‘ that is asi', expresses &’ V? These examples
- are sufficient to lllustrate the great utility of fractional exponents.,
203. Their use extends also to fractional numbers: let there be

1 1
given 7 we know that this quagtity is equal to —;-; now we have
1
seen already that a ﬁ-acuon of the form Z; may be expressed by

a~; o instead ofj_ we mmay use the expmssxonr‘“ In the
same manner, 3— L equal toa™}. Aglm let the quuntity “"‘ be
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proposed ; let it be transformed iato this, li: , which is the product of
a
3 12

a' by a~i; now this product is equivalent toa*, or toa" *,orlastly

toa ;/E. Practice will render similar reductions easy.
204. We shall observe, in the last place, that each root may be

represented in a variety of ways. For 4/ being the same as a*,
and # being transformable.into all these fractions, £ ;, H4L %%
&ec., it is evident that 4/a 15 equalto Va’ and to Va’ and to :/F,
and so on. In the same manner :/E, which is equal to a*, will be

equal to :/Ef , and to :/?, and to 3?. And we see also, that the
number a, or a', might be represented by the following radical ex-
pressions :
2 _ 8 __ 4__ 5
V@ A @5 N dh N e
205. This property is of great use in mulnphcatlon and division :
fonfwe have, for example, to multiply Vﬂ by ﬁ, we write ~/_’

for Va and vaﬂ instead of V a; in this manner we obtain the same
radical sign for both, and the multiplication being now performed,

gives the product :/?. The same result is deduced from ot T ’},
the product of a? multiplied by o for 3 + 4is §, and conse-
quently the product required is a‘?, or :/23.

If it were required to divide JE, or a‘-lf, by i/{{ or a‘l’, we should
have for the quotient ad *, orat = 3, that is to say, a*, or :/E.

CHAPTER XX.

Of the different Methods of Calculation, and of their mutual

Connexion.

206. Hitherto we have cnly explained the diﬁliarem methods
of cajculation: addition, subtraction, multiplication, and division ;
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the involution of powers, and the extraction of roots. It will not
be improper, therefore, in this place, to trace back ‘the origin of
these different methods, and to explain the connexion which sub-
sists among them ; in order that we may satisfy ourselves whether
it be possible or not for other aperations of* the same kind to exist:
This inquiry will throw new light on the subjects which we have
considered.

" In prosecuting this design, we shall make use of a new charac-
ter, which may be employed instead of the expression that has
been s0 often repeated, is equal to ; this sign is =, and is read s
equal to. Thus, when I write a = &, this means that a is equal
to b ; so, for example 3 + 5=15.

207. The first mode of calculation, which presents itself to the
mind, is undoubtedly addition, by which we add two numbers to~ -
gether and find their sum. Let a and b then be the two given
numbers, and let their sum be expressed by the letter ¢, we shall
have a 4 b=c¢. So that when we know the two numbers a and
b, eddition teaches us to find the number ¢. -

. 208. Preserving this comparison a 4 b=, let us reverse the
question by asking, how we are to find the number 4, when we
know the numbers a and ¢.

1t is required therefore to know what number must be added to
@, in order that the sum may be the numberc. Suppose, for ex-
ample, a = 3 and ¢ =28 so that we must have 3 - b=8; b
will evidently be found by subtracting 3 from 8. So, in general,
to find 3, we roust -subtract o from ¢, whence afises b=c—a;
for by adding a to both sides again, we have b 4 a =c—a 4 a,
that is to say = ¢, as we supposed.
 Such then is the origin of subtraction.

209. Subtraction therefore takes place, when we invert the
question which gives rise to addition. Now the number which it
is required to subtract may happen to be greater than that from
which it is to be subtracted ; as, for example, if it were required
to subtract 9 from 5 : this instance therefore furnishes us with the
idea of a new kind of numbers, which we call negative numberé,
because 5 —~9=—4.

210. When several numbers are to be added together which are
all equal, their sum is found by multiplication, and is called a pro-
duct. Thus ad means the product arising from the multiplication
of'a by b, or from the uddition of a number a to itself b numsber of
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times. If we represent this product by the letter ¢, we shall have
& b== c; and multiplication teaches us how to determine the num-
ber ¢, when the numbers a and.b are known.

211. Let us now propose the following question : the numbers a
and ¢ being known, to find the number 5. Suppose, for example,
a = 3 and ¢ = 15, so that 3 b = 15, we ask by what number 3
must be multiplied, in order that the product may be 15: for the
question proposed is reduced to this. Now this is division: the-
pumber required is found by dmdmg 15 by 3; and therefore, in
general, the number b is found by dividing ¢ by a; from which re-

sults the equation b=

212. Now,as it frequeutly happens that the number ¢ cannot be
really divided by the.nomber o, while the letter & must however
_have g determinate value, another new kind of numbers presents
itself; these are fractions. For example, supposing 6 = 4, ¢ = §,
so that 4 5= 3, it is evident that b cannat be an integer, but a
fraction, and that we shall have b = §. :

213. We have seen that multiplication arises from addition, that
is to say, from the addition of several equal quantities. If we now
proceed further, we shall perceive that from the multiplication of
several equal quantities together powers are derived. Those powers
are represented in a general manner by the expression a’, which
- signifies that the number & must be multiplied as many times by
itself, as is denoted by the number 4. And we know from what has
been already said, that in the present instance a is called the root,
b the exponent,and ¢’ the power.

214. Further, if we represent this power also by the letter ¢, we
have &* = ¢, an equanon in which three letters, g, b, ¢, are found.
Now we have shown in treating of powers, how to find the power
itself, that is, the letter ¢, when a root @ and its exponent b are
given Suppose, for example, 4 = 5, and' b = 3,s0 that ¢ = 5° .
it is evident that we must take the third power of 5, whichis 125,
and that thus ¢ == 125,

R15. We have seen how to determine the power c, by means of
the root a and the exponent b ; but if we wish to reverse the ques-
tion, we shall find that this may be done in two ways, and that there
are two different cases to be considered: for if two of these three
numbers a, b, ¢, were given, and it were required to find the third,

we should immediately perceive that this question admits of three
Eul. Alg.
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differen® suppositions, and consequently three solutions. We have
considered the case in which @ and b were the numbers given, we
may therefore suppose further that ¢ and 4, or ¢ and & are known,
and that it is required to determine the third letter. Let us point
out, therefore, before we proceed any further, a very essential dis-
tinction between involution and the two operations which lead toit.
When in addition we reversed the question, it could be doneonly
in one way ; it was a matter of indifference whether we took ¢ and
a, or ¢ and b for the given numbers, because we might indifferently
write @ 4 b, or b 4+ a. It was the same with multiplication ; we
could at pleasure take the letters a and b for each other, the equa-
tion a b = ¢ being exactly the same as b a = ¢.

In the calculation of powers, on the contrary, the same thing-
does not take place, and we can by no means write §* instead of a®.
A single example will be sufficient to illustrate this: let a = 5,
and b == 3; we have o' = 5% == 125. But 0" = 3° = 243:
two very different results.




SECTION 1I.

OF THE DIFFERENT METHODS OF CALCULATION APPLIED TO
COMPOUND QUANTITIES.

CHAPTER 1.

Of the Addition of Compound Quantities.

AnrricLe 216. When two or more éxpressions, consisting of sev-
eral terms, are to be added together, the operation is frequently
represented merely by signs, placing each expression between two
parentheses, and conunecting it with the rest by means of the sign .
If it be required, for example, to add the expressionsa + & + ¢ -
and d 4+ e 4+ f, we represent the sum thus:

@+b+e) + @4+
R17. Tt is evident that this is not to perform addition, but only to
represent it. We see at the same time, however, that in order to
perform it actually, we have only to leave out the parentheses; for
as the number d 4- ¢ 4 fis to be added to the other, we know

that this is done by j Jommg toit first + d, then 4 e, and then
. 4 f; which therefore gives the sum

a+btctdtedtf.

The same method is to be observed, if any of the terms are
affected with the sign — ; they must be joined in the same way,
by means of their proper sign.

218. To make this more evident, we shall consider an example
in pure numbers. It is proposed to add the expression 15— 6 to
12 — 8. If we begin by adding 15, we shall have 12 —8 4 15;
now this was adding-too much, since we had only to add 15 — 6,
and it is evident that § is the number which we have added too
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much. Let us, therefore, take this 6 away by writing it with the
negative sign, and we shall bave the true sum,
12—8 4+ 16 —6,
which shows that the sums are found by writing all the terms, each
with its proper sign.
219. If it were required therefore to add the expression d —e—f
to a — b + ¢, we should express the surm thus:

— b4 c+d—e—f
remarking, however, that it is of no consequence in what order we
write these terms. Their place may be changed at plegsure, pro-
vided their signs be preserved. This sum might, for example, be
written thus :

c—e+a—f+d-—b.

220. It frequently happens that the sums represented in this man-
ner may be considerably abridged, as when two or more terms de-
stroy each other ; for example, if we find in the sarue sum the terms
+a6-—a, or3a—4 a4 a: or when two or more terms may
be reduced to one. Examples of this second reduction :

3a+2a=05a; Tb—3b=+H4b;

—6c+ 10c=+44c¢;
5a-—-8a-—--—-3a, —Tb4+b=—65b;
—3c—4c=—"Tc;
24a—5a+a=—2a; —3b—5b+2b=—6%.
Whenever two or more terms, therefore, are entirely the same with
regard to letters, their sum may be abridged ; but those cases must
not be confounded with such as these, 24 a 4+ 3 a,0r 2 6* — ¥,

which admit of no abridgment.

221. Let us consider some more examples of reduction ; the fal-
lowing will lead us immediately to an important truth. Suppose it
were required to add together the expressions a + 6 and ¢ — 6;
ourtule givesa + b 4 a— b;nowa + a = 2a and b— b=0;
the sam then is 2 a : consequently if we add together the sum of
two numbers (a + b) and their difference (a— b,) we obtain the
double of the greater of those two nambers.

Further examples:

83a—2b—c|a®—Raab+ 2abdd
5b—6c+aj—aab4abb—>

4a43b—"7c¢ ai—aaab+4abb—b'.
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CHAPTER II

Of the Subtraction of Compound Quantities.

222. Ir we wish merely to represent subtraction, we inclose each
expression within two parentheses, connecting, by the sign —, the
expression to be subtracted with that from which it is to be taken.

Whea we subtract, for example, the expression d —e + f from
the expression @ — b 4~ ¢, we write the remainder thus:

(@a—b+c) — (@d—e+f);

and this method of representing it sufficiently shows, which of the
two expressions is to be subtracted from the other. ‘

223. But if we wish to perform the subtraction, we must observe,
first, that when' we subtract a positive quantity + b from another
quantity @, we obtain @ — b; and secondly, when we subtract a
. negative quantity — b from ¢, we obtain a 4 b ; because to fiee a
person from a debt is the same as to give him something.

224. Suppose, now, it were required to subtract the expression
b — d from the expression @ — c, we first take away &; which
gives a — ¢ — b. Now this is taking too much away by the quan-
tity d, since we had to subtract only & — d; we must therefore
restore the value of d, and we shall then have

a—c—b+4 d;

whence it is evident, that the ferms of the expression to be sub-
tracted must have their signs changed, and be joined, with the
contrary signs, to the terms of the other expression.

225. It is easy, therefore, by means of this rule, to perform sub-
traction, since we have only to write the expression from which we
are to subtract, such as it is, and join the other to it without any
change beside that of the signs. Thus, in the first example, where
it was required to subtract the expression d — ¢ 4 f from @ — b
+ ¢, weobtaina—b 4 c—d+ e—f.

‘An example in numbers will render this still more clear. If we
subtract 8 — 2 4 4 from 9 — 3 4 2, we evidently obtain

9—34+2—6+2—4;
for9 —3 +2=8; als0,6—~2 4+ 4=28; now8— 8 =0.
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226. Subtraction being therefore subject to no difficulty, we have
only to remark, that, if there are found in the remainder two or
more terms which are entirely similar with regard to the letters,
that remainder may be reduced to an abridged form, by the same
rules which we have given in addition.

227. Suppose we have to subtract from @ 4 b, orfrom the sum
of two quantities, thelr difference a — b, we shall then have

¢+ b—a+b;
nowa —a=10,and b 4 b= 2 b; the remainder sought is
therefore 2 b, that is to say, the double of the less of the two
quantities.

228. The following examples will supply the place of further
illustrations.

aa + ab + bbj3a — 4b 4+ 5c(a® + 3aab + 3abb + Bly/a + 2/F
b + ab— aa2b 4 4c—6a|2® — Baad + 3abb — b’y a— 3w/'b
a. 92— 6b + c.‘ 6aab 4+ 20°. l + 54/,

CHAPTER I1I.

Of the Multiplication of Compound Quantities.

229. WHeN it is only required to represent multiplication, we put
each of the expressions, that are to be multiplied together, within
two parentheses, and join them to each other, sometimes without any
sign, and sometimes placing the sign X between them. For exam-
ple, to represent the product of the two expressnons a— b + c
and d — e + f, when multiplied together, we write

(a—b+c) X (d—e+f)

This method of expressing products is much used, because it
immediately shows the factors of which they are composed.

230. But to show how multiplication is to be actually performed,
we may remark, in the first place, that in order to muliiply, for ex-
ample, a quantity such as a — b + ¢, by 2, each term of it is sep-
arately multiplied by that number; so that the product is

Qa—Rb 4 2c.
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e+b

aa+4+ab
—ab—0bbd.

Product aa — b b.

235. Now we may substitute, for a and b, any determinate num-
bers; so that the above example will furaish the following theorem ;
viz. The product of the sum of two numbers, multiplied by their
difference, is equal to the difference of the squarcs of those num-
bers. 'This theorem may be expressed thus :

(a+b) X (a—b)=aa—0bb.

And from this another theorem may be derived ; namely, The
difference of two square numbers is always a product, and divisible
both by the sumand by the difference of the roots of those two squares.

226. Let us now perform some other examples:

" 1)24—3
a4 2

244 —3a
+4a—6

2aa+4 a—6.

IIY4aa—6a+9
2a 43

8a°—12aa 4+ 18a
+12aa—18a + 27 -

8a 4+ A7

IL)3aa—2ab—bb
Qa—45b

6a®— 4aab—2abbd :
—12aab+8abb+ 4% .

6a—16aab4+6abdb 448
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IV)aa+42ab 4255
aa—2qb 4255

a +2a4'b4+2aabd
' —2db—4aabb—4ab
+2aabb44abd® +4%
at 4 4.

V)2aa—3ab—45bb
8aa—4ab4bd

6a —9a*b—12aabdbd
—4adb46aabdb48al’
_+2aabb——3ab'—4_b"

6a*—13a’b—4aabdb+5ab>—4%

Vi)aa4+bb+cc—ab—ac—bec
a4 b 4¢

a4+abbtacc—aab—aac—abdbec
aab4-b Sbcc—agbb—abc—bbe
aac4+bbdc4c¢ —abc—acc—bece

& —3abct+ b 42
237. When we have more than two quantities to multiply to-
gether, it will eastly be understood that after having multiplied
two of them together, we must then mulliply that product by one
of those which remain, and so on. It is indifferent what order is
observed in these multiplications. ‘
Let it be proposed, for example, to find the value, or product,
of the four following factors, viz.
L I1. I1I. IV,
(a+40b) (saat+ab+bbd) (a—b) (aa—ab+ bb).
We will first multiply the factors 1. and II.
II.aa4ab 450
I. a4 &

‘@ +aadb+abd
+aab+4abd 8

LIl.=a +2aab+2abb+b’
Eul. Alg. 9
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Next let us multiply the factors H]. agd IV.
IV.aa—ab+ 55
M. a—29%

a——aab+abd
—aab+abbd—p

ILIV. =a’ —Qaab + 2abb—b.

It remains now to multiply the first product L. II. by this second
product IIL IV, : '

@ +2aab+2abd 484 LIL

@ —2aab+2abb—b ILIV.

& +2at b +2a'bb4 a¥
—2db~4da'bb—4a®—2a0d
28 bbt4a° b 4+4aad +2al’
— @b —Raagh' —Ralb —¥

a® — %

And this is the product required.
_ 288. Let us resume the same example, but change the order of
it, first multiplying the factors L. and III. and then IL and IV. to-
gether. '

La+d
IM.a—2

aa+4ab
—ab—10b

: LI ==aa—5b.

. ILaadab40b
IV.ag—ab 400

;-i-a’b-i-aabb
—a'b—asabdbb—al’
aabb4ab® b

ILIV. =a* faabb+ b
Then multiplying the-two products 1. HI. and IL IV.,
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CHAPTER 1IV.

Of the Division of Compound Quantities.

241. WHeN we wish simply to represent division, we make use
of the usual mark of fractions, which is, to write the -denominator
under the numerator, separating them by a line ; or to inclose each
quantity between parentheses, placing two points between the divi-
sor and dividend. If it were required, for example, to divide a - b

by ¢ + d, we should represent the quotient thus 2 1‘ Z, according
c

to the former method ; and thus, (a 4 &) : (¢ 4 d) according to
the latter. Each expression is read a 4 & divided by ¢ 4 d.
242. When it is required to divide a compound quantity by a
simple one, we divide each term separately. For example:
6a—8b4 4c, divided by 2, gives3a—4b 4 2¢;
and (aa—2abd):(a)=a—20b.

In the same manner
(a*—Raab+3aad):(a)—aa—2ab+3ab;
(4daab—6aac+8abc): (2a)=2ab—3ac+4bc;
(9aabec—12abbc+ 15abec): (Babc)=3a—4b+ B¢, &e.

243. If it should happen that a term of the dividend is not divisi-
ble by the divisor, the quotient is represented by a fraction, as in

the division of a + b by a, which gives 1 4+ . Likewise,
. ! a

’ b bb
(aa—ab+bd):(as)=1—-+_—
For the same reason, if we divide 2 a + & by 2, we obtain

b :
@ + 5; and here it may be remarked, that we may write b, in-
b : : b
stead of 5 because § times b is equal to 5+ In the same manner

' b
3 is the same as } b, and%the same as % b, &c.

244. But when the divisor is itself a compound quantity, division
becomes more difficult. Sometimes it occurs where we least expect
it ; but when it cannot be performed, we must content ourselves
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with representing the quotient by a fraction, in the manner that we
have already described. Let us begin by conmdermg some cases,
in which actual division succeeds.

245. Suppose it were required to divide the dividend a ¢ — -be
by the. divisor  — b, the quotient must then be such as, when multi-
plied by the divisor a —Db, will produce the dividend ac— b c.
Now it is evident, that this quotient must include ¢, since without it
we could not obtain a¢. Io order, therefore, to try whether ¢ is the
whole quotient, we have only to multiply it by the divisor, and see if
that multiplication produces the whole dividend, or only part of it.
In the present case, if we multiply a — b by ¢, we have ac —be,
which is exactly the dividend; so that ¢ is the whole quotient. It
is no less evident, that ‘

(6a+4ab):(a+b)=a;(Baa—2ab):(8a—2b)=a;
(6aa—9abd): (Ra—3b) =3a, &e.

246. We cannot fail, in this way, to find a part of the quotient ;
if, therefore, what we have found, when multiplied by the divisor,
does not yet exhaust the dividend, we have only to divide the re-
mainder again by the divisor, in order to obtain a second part of
the quotient; and to continue the same method, until we have
Jound the whole quotient.

. Let us, as an example, dividle aa - 3ad - 2bbbya + b; it
is evident, in the first place, that the quotient will include the term a,
since otherwise we should not obtain ¢ . Now, from the multipli-
cation of the divisor a 4 b by a, arises a a 4 a b; which quantity
being subtracted from the dividend, leaves a remainder 2ad - 25 b.
This remainder must also be divided by & 4 b; and it is evident
that the quotient of this division must contain the term 25. Now 2
multiplied by & 4 b, produces exactly 2a b + 25 b; consequently
a + 2 b is the quotient required ; which, multiplied by the divisor

- a+ b, ought to produce the dividend aa +3ab+265. See
the whole operation :

a+b)aa+3ab+2bb(a 428
aa+ab

2ab425bb
2ab4250

0.
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AU7T. This operation will be facilitated if we ehoose one of the
terms of the divisor to be written first, and then, in arrangtag the
terms of the dividend, begin with the highest powérs of that first
term of the divisor. 'This term in the preceding example was a ;
the following examples will render the operation more clear.

a—b)ad’—3aab+3adbb—VF(aa—2ab4bl

a—aabd

—R2aab+ 3add
—Q2aab4 2abdd

abdb-—-0
abdb—0b

0.

a4b)aa—bdb(a—0b
N - aa4ab

—ab—20b
—ab—0b

0.

83a—2b)18aa—8bb(6a+4b
1I8aea—12ad

12¢b5—80b5 .
12ab5—8bb

0.

at+d a4+ (sa—ad+tbb
@ +aabd

—aab+4 b

—aab—abd

abb 4 ¥
abb 4

0.
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2a—b)8d—b (4aa+2ad4bd

8a —4aanbd
4aab—--ba
4daab—2abdd
Qadbd—8
Qabd—-Pb
0.

aa—Rab4-bb)a*—4d b4+ 6aabdb—4ab 4 b
aa—R2ab4bb)a*—Ra b+ aabd

—Rab+5aabb—4ad
—2db+4aabb—2ald

aabb—2al 4 b
aabb—2ab® 4 b

0.

66—2ab+4bb)a' +4aabdb+16b (aatab+4bb
| #—2db +4aabb

Ra’b 416 8*
2a®b—4aabb 4 8al

4a0bb—8al 4165
4a0abb—Bab 165

0.

aa—22ab+2bb)a* +4b (aa+2ab 4200
@' —22b+2aabdd

2a°b—2aabb4 40
2a°b—4aabb +4a¥

Qaabb—4ab® 40
Qaabb—4ab® 4 4

0.
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1—Qz+2z)1 —52-+4+10252—102" + 5a* — 2*
1—3z243zr— 2*)1—R%x + 2

—3z+922x—102"
—3z+4+62x—32

3zaxa—"T12 4+ 54
3zz—62 4 32

—_—a 4 22 — 2
—d 4+ 2 —2a°
0.

CHAPTER V.

‘ Of the Resolution of Fractions into Infinite Series.

248. WHeN the dividend is not divisible by the di%sor, the quo-
tient is expressed, as we have already observed, by a fraction.

Thus, if we have to divide 1 by 1 — a, we obtain the fraction
-l—-}_-;. This, however, does not prevent us from attempting the
division, according to the rules that have been given, and continu-
ing it as far as we please. We shall not fail to find the true quo-
tient, theugh under different forms.

249. To prove this, let us actually divide the dividend 1 by the

divisor 1 — a, thus:

1—a)l (1 +l—_?_—;; or,1—a) 1(1

l—a 1—a
rewainder a . a -
a—a a

remainder a a

To find & greater number of forms, we have only to continue
dividing a a by 1 — a;
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a’ . P
l—a)aa(aa+l_a, then 1 — a) a* (a* 4 i—a
a a_al a’_a‘ 3
a a
and again 1 — a) a* (a* 4 ~— l-—a
a—a
T d, &e.
250. This shows that the fraction L  may bo exbibited under
all the following forms: '

L)1+ L) 1 4oty
m.)1+a+aa+1—§—a;'lV-)1+¢+a°+“'+1ia

8
V)l 4a+aa+a+a* 4 la a,&c.
Now, by considering the first of these expressions, which is

1—

14— i— and remembering that 1 is the same as = a’ we have

l—a a l—a4a__ 1
1+1—-a 1—a+1—a I—a  l1—a

If we follow the same process with regard to the second expres-

sxonl+a+

o that is to say, if we reduce the integral part

1 4- & to the same denominator 1 — a, we shall have 11—_2 to

whnch if we add + P shall have ___la—a-}- aa’ that is to
1

i _a

In the third expression 1 4-a 4-aa - la—'—-a’ the integers re-

—a .
duced to the denominator 1 — a make L:% ; and if we add to
l

that the fraction " have — - wherefore all these expres-

sions are equal in value to 1—1;—‘—1 ; the proposed fraction.
Eul. Alg. 10
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251. This being the case, we may continue the series as far as
we please, without being under the necessity of performing any
more calculations. We shall therefore have

. 8
i ! - = l+ataa+a*+a*+a*4a" + a"-|-1—a.—a,-
or we might continue this further, and still go on without end. For
this reason it may be said, that the proposed fraction has been re-
solved into an infinite series, which is
14-a4-aa+4-a*4-a*+-a* 4o’ +a’ 4o 4-a°4-a'*4-a'' 4-0’*, &c.

to infinity. And there are sufficient grounds to maintain that the

1
value of this infinite series is the same as that of the fraction N
—ar

252. What we have said may, at first, appear surprising ; but the
consideration of some particular cases will make it easily understood.
Let us.suppose, in the first place, a =1 ; our series will become

1414141414141, &ec. Thefract:xonl1 ,to which

it must be equal, becomes §. Now, we before remarked, that § is
a number infinitely great ; which is, therefore, here confirmed in a
satisfactory manner.

But if we suppose a = 2, our series becomes =142 4 4 48

+16 + 32 464, &c. to infinity, and its value must be , that is

1
1—2
to say, —l—l— ==—1; which at first sight will appear absurd. But

it must be remarked, that if we wish to stop at any term of the above
series, we cannot do so without joining the fraction which remains,
Suppose, for example, we were to stop at 64, after having written
14+ 2444 8+ 16 4 32 4 64, we must join the fraction
11—_2_8§,orl_ﬁi, or — 128; we shall therefore have 127 — 128,
that is in fact — 1.
" Were we to continue the series without intermission, the fraction
" indeed would be no longer considered, but then the series would
still go on.
258. These are the considerations which are necessary, when we
assume for @ numbers greater than unity. But if we suppose a less
than 1, the whole becomes more intelligible.
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- For example, let a == {; we shall have
1 | 1
T—e" 1—3"3" 2
which will be equal to the following series :

1+ 3+ 31 +¢ 4+ %5+ o + % + 14 &c. to infinity.

Now, if we take only two terms of this series, we have 1 4- 4, and

it wants 4, that it may be equal to ——— 2. If we take three

terms, it wants ; for the sum'is 1. If we take four terms, we
have 1%, and the deficiency is only 4. We see, therefore, that the
- more terms we take, the less the difference becomes, and that, con-
sequently, if we continue on to infinity, there will be no difference at
all between the sum of the series and 2, the value of the fraction
1 : '

1—a

o1 1
254. Let g=1}; our fraction T w:ll be == = =3=1%,

which reduced to an infinite series, becomes .

14 ¢4 4+ 27 + o' zbs &o
and to which l—}_—; is consequently equal.

- When we take two terms, we have 14, and there wants §. If we
take three terms, we have 14, and there will still be wanting .
Take four terms, we shall have 132, and the difference is g4, Since
the error, therefore, always becomes three times less, it must evi-

dently vanish at last.
. 1 1 '
255. Suppose a==§; weshallhave ;——= T—= 3, and

the series 1 + 3 + 2 4 % + #¢ + %%, &ec. to infinity. Taking
first 12, the eérror is 1§; taking three terms, which make 23, the

error is §; taking four terms we have QH, and the error is z¥.
256. If a= %, the fraction i R gy * & = 1}; and the series

becomes 1 + 3 + &% + o& +m, &c. The two first terms mak-
ing 1 4 %, will give y% for the error ; and taking one term more,

we have 1%, that is to say, only an error of & 7

1
257. In the same manner, we may resolve the fraction m, into
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an infinite series by actually dividing the numerator 1 by the de-
nominator 1 4 a, as follows:
l+a)l(l—a+aa.—-a°+a
1 + a

—
-——a—aa

aa
aa -+ ad

—a® —a'
a‘
at + a*

— a', &c. k

Whence it follows that the fraction 77— + is equal to the series

l—a4 aa—a*+4a*—a*4e*—aq’, &e.

- 258. If we make a = 1, we have this remarkable comparison:
1
l14a
fmity. This will appear rather contradictory ; for if we stopat— 1,
the series gives 0; and if we finish by 4 1, it gives 1. But thisis
precisely what solves the difficulty ; for since we must go on to in~
finity without stopping either at — 1 or at < 1, it is evident that
the sum can neither be 0 nor 1, but that this result must lie between

these two, and therefore be = }. o

m=ge=1—14+1=—1+41—1+41—1,&e. t0in-

2569. Let us nowmake a = }, and our fraction will be l—'_'l-_—{ = L

which must therefore express the value of the series’
l—3+1t—3+ % — &+ & & toinﬁnity

If we take only the two leading terms of this series, we have §,

which is too small by . If we take three terms, we have 4, which

is too much by . If we take four terms, we have §, which is too

small by ¢, &c.

1
T+

260. Suppose again al=§ ; our fraction will be =

=},

e
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and to this the series 1 — } 4 I — o 4 g% — xd7 + 74y, &e.

continued to infinity, must be equal. Now, by considering only two
terms, we have %, which is too small by {;. Three terms make
%, which is too much by 2. Four terms make ﬁ-.,, which is too
small by y3s, and so on.

1
261. The fraction j T+ a '
series another way ; namely, by dividing 1 by a 4 1, as follows:

1 1 1 1 1
SEDIG—ete—ta

may also be resolved into an infinite

1
.1+‘_‘
1
a s
1 1
'—a—’aa
1
aa
1 1
sata
-1
-
1 1-
P
. 1
| e
* . 1 1
s prar

1
— —a—i, &e.

Consequently, our fraction = _li_ 7» is equal to the infinite series
1 1 '
Pl + ——1. +¢l —_ ‘%,&.c. Let us make a =1, and
we shall have the series
-1 +1_1+1+l &o,.:::g,asbefore
And if we suppose a == 2, we shall have the series
—it+i—%t A A &e =1










80 Algebra. Sect. 2.

1 :
F==1+8—F— 1+ &e

This series must therefore be equal to the preceding one ; and sub-
tracting one from the other, 3 — & — 3 + §3, must be = 0.
These four terms added together make — g;.

264. The method which we have explained, serves to resolve,
generally, all fractions into infinite series ; and, therefore, it is often
found to be of the greatest utility. Further, it is remarkable, that
an infinite series, though it never ceases, may have a determinate
value. 1t may be added, that from this branch of mathematics
inventions of the utmost importance have been derived, on which
account the subject deserves to be studied with the greatestattention.

CHAPTER VI.

Of the Squares of Compound Quantities.

265. WHeN it is required to find the square of a compound
quantity, we have only to multiply it by itself, and the product will
be the square required.

For example, the square of a + b is found in the followmg

manner:

a4 b
a4 b
aa 4 ab

ab +00b

aat+2ab4bb.

266. So that, when the root consists of two terms added together,
as a 4 b, the square comprehends, 1st, the square of each term,
namely, a a, and b b; 2dly, twice the product of the two terms,
namely, 2 a b. So that thesumaa 4 2 a b 4 b b is the square
of a 4+ b. Let, for example, a = 10 and b = 3, that is to say,
let it be required to find the square of 13, we shall have 100 +-
60 4- 9, or 169.
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267. We may easily find, by means of this formula, the squares
of numbers, however great, if we divide them into.two parts. To
find, for example, the square of 57, we consider that this number
is == 50 4 7; whence we conclude that its square is

= 2500 -+ 700 4 49 = 3249.

268. Hence it is evident that the square of a 4+ 1 will be
aa 4 2 a 4 1; now since the square of ais a a, we find the
square @ + 1 by adding to that2 @ +- 1 ; and it must be observed,
that this.2 @ 4 1 is the sum of the two roots 4 and a 4 1.

Thus, as the square of 10 is 100, that of 11 will be 100 + 21,
The square of 57 being 3249, that of 58 is 3249 4 115 = 3364.
The square of 59 = 3364 <4 117 = 8481 ; the square of

60 = 3481 4 119 = 3600, &e.

269. The square of a compound qtantity, as a - b, is repre-
sented in this manner: (@ 4 5)’. We have then

(a+b=aa+2abd+ b,

whence we deduce the following equations: ‘

(a+1)=aa—~2a+1;(a+2"'=aa+4a+4;
(a+38)=aa+4+6a+9;(e¢+4)°=aa +8a+16; &ec.

270. If theroot isa —b, the square of 1t tsaa—2ab 4-b b,
which contains also the squares of the two terms, but in such a
manner that we must take from their sum twice the product of
those two terms.

Let, for example, a = — 10 and b =-— 1, the square of 9 will
be found = 100 — 20 4 1 = 8I.

211. Since we have the equation (¢ — b)* =a a6 —2ab + b b,
~ we shall have (¢ —~ 1) —=a¢a—2a 41, The square of a— 1
is found, therefore, by subtracting froma a thesum of the two rootsa
and a — 1, namely, 2a — 1. Let, forexample, a = 50, we have
aa= 2500, and ¢ — 1 = 49; then 49° == 2500 — 99 = 2401.

212. What we have said may be also confirmed and illustrated
by fractions. For if we take as the root § 4 £ (which make 1)

the squares will be:
oy + 5 + 3 =3, thatis L.
Further, the square of § — % (or of }) will be
| t—tt+i=4d
Eul. Alg. 11
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273. When the root consists of a greater number of terms, the
method of determining the square is the same. Let us find, for
example, the square of a + b + c.

a-4b+4c N
at+b+c

aat+ab+tac +be¢
ab4+ac+bb+bc+ce

¢a+ab+2%ac+ bbb+ 2bc+ce.
We see that it includes, first, the square of each term of the root, and
deside that, the double products of those terms multiplied two by two.
214. To illustrate this by an example, let us divide the number
256 into three parts, 200 + 50 4 6 ; its square will then be com-
posed of the following parts: :

40000 256
2500 , 256
36 _—
20000 1536
2400 ro 1280
600 512
656536 ‘ 65536

* which is evidently equal to the product of 256 X 256.

215. When some terms of the root are negative, the square ts
still found by the same rule; but we must take care what signs we
prefix to the double products. Thus, the square of a — b — ¢
beingaa +bb+cc—2ab—2ac 4 2b¢, if we repre~
sent the number 256 by 300 — 40 — 4, we shall have,

Positive Parts. Negative Parts.
—— —_—
-+ 90000 — 24000
1600 — 2400
320 —
16 — 26400
+ 91936
— 26400

65536, the square of 256, as before.

1
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CHAPTER VII.

Of the Extraction of Roots applied to Compound Quantftie:.

276. I order to give a certain rule for this operation, we must
consider attentively the square of the roota +- 6, which is

ca4ab4bb
that we may reciprocally find the root of a given square.

277. We must consider therefore, fiest, that as the square
aa+ 2ab + bbiscomposed of several terms, it is certain that
the root also will comprise more than one term; and that if we
write the square in such a manner that the powers of one of the
letters, as a, may go on continually diminishing, the first term will
be the square of the first term of the root. And since, in the pres
ent case, the first term of the square is @ a, it is certain that the
first term of the root is a.

278. Having, therefore, found the first term of the root, that is to
say «, we must consider the rest of the square, namely,2a b 4 b b,
to see if we can derive from it the second part of the root, which
is 6. Now this remainder 2 a b 4 & b may be represented by the
product, (2 @ 4 6) . Wherefore the remainder having two fac-
tors, 2 @ 4 b, and b, it is evident that we shall find the latter, 8,
which is the second part of the root, by dividing the remainder
2ab4bbby2a + 0. ‘

279. So that the quotient, arising from the division of the above
remainder by 2 a 4 b is the second term of the root required. Now
in this division we observe, that 2 a is the double of the fst term a,
which is already determined. So that although the second term is
yet unknown, and it is necessary, for the present, to leave its place
empty, we may nevertheless attempt the division, since in it we
attend only to the first term 2 a. But a3 soon as the quotient is
found, which is here b, we must put it in the empty place, and thus
render the division complete.

230. The calculation, therefore, by which we find the root of

the square a @ 4 2 a & + 4 b, may be represented thus :
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aa+2ab+bb(at+d

aa

281. We may, in the same manner, find the square root of
other compound quantities, provided they are squares, as the fol-
lowing examples will show.

aa+4+6ab4 9056 (a+ 30

aa

2a 4+ 3b)6ab+9bb
6ab4-9bd

0.

4aa—4ab+ 06 Ra—0b
daa

46—b)—4ab+bb
—4ab+bb

0.
9pp+Upg+169gg@p+4g
| 9pp
6p+49)Upg+16q¢
Upg+16¢g
0.

Wrzx—60zr436((5z—6
Wz

102 —6)—602z | 36
—860x 4 86

0. N
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282. When there is a remainder after the division, it is a proof
that the root is composed of more than two terms. We then con-
sider the two terms already found as forming the first part, and en-
deavour to derive the other from the remainder, in the same man-
ner as we found the second term of the root.. The following ex-
ample will render this operation more clear.

aa+2ab—2ac—-2bc+bb+cc(a+b—-c
aa

2a+b)206—2ac—26¢+bb+cc
2ab ‘ + bb

26 4+2b—c)—2ac—2bc+cc
—~—Rac—2bc+ cc

0.
a‘+2af+3aa+2a+l(aa+a+l

a‘

2aa+a)2a*+3aa
"2a*4 aa

2aa+2a+1)2aa +2a 41
Qaa+4+2a +"1

0.

4*—4a’b48abd’44b'(aa—2ab—20b0

a(

2aa—2ad)—4a’b4+8ab® 4+ 40
—4a*’b+4daabd

2aa—4ab)—ﬂbb)—-4aabb+8ab'+4b‘
‘—4aabb 4 8ab® 4 40

0.
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284. But when there is a remainder after the whole operation, it
is a proof that the number proposed is not a square, and conse-
quently that its root cannot be assigned. In such cases, the radical
sign, which we before employed, is made use of. It is written before
the quantity, and the quantity itself is placed between parentheses,
or under a line. Thus, the square root of a @ 4 & b is represent-
ed by o/(aa 4 58)0rby a/aa+bb; and o/ T—zz),0r AT —2z 1,
expresses the square root of 1 — z 2. Instead of this radical sign,
we may use the fractional exponent 4, and represent the square root

1
of aa+ 565, for instance, by (a a +5b)% orby aag-58) é.

CHAPTER VIII.

Of the Calculation of Frational Quantities.

285. WHEN it is required to add together two or more irrational
quantities, this is done, according to the method before laid down,
by writing all the terms in succession, each with its proper sign.
And with regard to abbreviation, we must remark that snstead of
A/ 8 + 4/ 8, for example, we write 2 4/ ; and that 4/a — 4/a=0,
because these two terms destroy oneone another. Thus, the quan-
tities 3 + 4/2 and 1 4 4/3, ‘added together, make 4 4- 2 o/3
or4 + 4/8; thesumof 5 + 4/3and 4 — 4/3 is 9; and that
of 243 +342andy/3—4/2is3 &/3 + 2 /2.

286. Subtraction also is very easy, since we have only to add the
proposed numbers, changing first their signs ; the following exaraple
will show . this ; let us subtract the lower number from the upper.

T 4— N3+ 23—3 B+ 4B
14+24/2—243—545+6486

8 —3434+44/3+245—2486
287. In multiplication we must recollect that a/a. multiplied by
/5 produces a; and that if the numbers which follow the sign o/
are different, as 8 and b, we have o/a b for the product of 4/
multiplied by 4/5. After this it will be easy to perform the fol-
lowing examples :
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1+ 43 44243
14 v2 2— &2
14438 84443

+ 3 +2 —4y7—4

14+2424+2=34+2y2 8—4=14

288. What we have said applies also to imaginary quantities; we
shall only observe further, that o/ —a multiplied by oy —35 pro-
duces — a. i

If it were required tofind the cube of — 1 4+ 4/=3, we should
take the square of that number, and then multiply that square by
the same number ; see the operatxon

—1 4+ y=3
—1+y=3
1 — =3
—v=3—3

1—2y"3—3=—2—24=3

—14 =3

24243

—2y=5+6
2+ 6=8.

289. In the division of surds, we have only to express the pro-
pased quantitics in the form of a fraction; this may be thenchanged
into another expression havmg a rational denominator. For if
the denominator be a 4 4/ 5, for example, and we multiply both it
and the numerator by @ — 4/3, the new denominator will be
a ¢ — b, in which there is no radical sign. Let it be proposed to

) 3+2v2
divide 3 + 2 4/2by 1 + 4/2; we shall first have 7 — NRVE S

Multiplying now the two terms of the fraction by 1 — 4/%, we
shall have for the numerator:
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and for the denominator,

3—R4y2 A
34243 :
9—64y2

+6v2—8 .
9—8= 4 1.

Consequently the quotient will be 4 + 4/2. The truth of this
may be proved in the following manner :
1+ w2
3—2y3
12 + 3 v
— 8 y3—4

12— 843 —4=8—542 ‘
* 990, In the same manner, we may transform such fractions into
bthers, that have rational denominators. If we have, for example,

the fraction 5 ;-;76" and multiply its numerator and denominator
by 5 4 2 4/6, we transform it into this
5—+12—"—§ =54 2 8.
In like manner the fraction —— +2 v = tesumes this form,
2 +9_~2 1 +_VQ-— 3 |
An d://g+v_be es =111 aLZ ST

201. When the denominator contains several terms, we may in the

same manner make the radical signs in it vanish one by ome. Let
1

the fraction —= Vi —vai—a3 be proposed ; we first multiply

these terms by 4/10 + 4/2 + 4/3, and obtain the fraction
V10 + V2 + 438 .
T 5—248
Then multiplying its numerator and degominator by 542 Vs,
wehave5~/10+ll~/2+9v§+2~/eo ’
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CHAPTER IX.

Of Cubes, and the Extraction of Cube Roots.

292. To find the cube of @ rost a 4 b, we oﬂy mokiply ifs
squarea ¢ 4 2 & b + b b again by a + §, thus,
aa+4+2ab45b
a+b
a*4+Raadb+abdd
 aab 4 2abbd 4 b

and the cube will be =a'+3aab+3abb+ 5%

It contains, therefore, the cubes of the two parts of the roat, and
beside that, 3aab + 3 ab b, a quantity equal to (3a b) X (a +b);
that is, the triple product of the two paris, a and b, muluphcd by
their sum.

293. So that whenever # root is cemposed of two terms, it is
' easy to find its cube by this rule. For example, the number
5 =3 + 2; its cube is therefore 27 4 8 4 18 X 5 =125,

+ Lot T + 3 == 10 be the raot ; the cube will be
: 343 4+ 27 + 63 X 10 = 1000.

To find the cube of 36, let us suppose the root 36 = 30 4 6,
and we have for the power required,

+ 27000 + 216 4 540 X 36 = 46656.

284. But if, on the other hand, the cube be given, namely,
n' 4+3aabd, 4 3 ¢bb 4 b’ and it be required tofind its root,
‘we must premise the following remarks :

First, when the cube is arranged according to the powers of one
Jester, mmﬂyhowbytheﬁrst term a®, the first term a of the
xaot, gince the cube of it is @’ ; if, therefare, we subtract that cube
from the cube proposed, we obtam the remainder,

3aab+3abb 4 0.
wlncb must furnish the second term of the root.

295. But as we already know that the second term is 4 5, we
bave principally to discover how it may be derived from the above
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remainder. Now that remainder may be expressed by two fac-
tors,as (3aa+3ad 4 b8) X (3); if, therefore, we divide
by 83a a4 3abd 4 bb, we obtain the second part of the root
+ b, which is required.

R96. But as this second term is supposed to be unknown, the
divisor aleo is unknown ; nevertheless we have the first term of that
divisor, which is sufficient ; for, it is 3 a a, that'is, thrice the square
of the first term already found; and by means of this, it is not diffi-
cult to find also the other part, b, and then to complete the divisor
before we perform the division. For this purpose, it will be ne-
cessary to join to 3 a a thrice the product of the two terms, or
3 a b, and b b, or the square of the second term of the root.

297. Let us apply what we have said to two examples of other
given cubes.

1L a'+12aa+48a+64(a+4

a®

3aa+12¢+16)12aa+48a+64 | |
12aa 4 48a 4 64 :

0.

115 a* —6a* +15u — 20a? +15a ~—6a+1
a' (aa—2a+l

' 3a* — 6a® 4 4ag) — 6a® + 15a* — 20a*
: — 6a® 4 12¢* — 8a? ,

w—lsa' +12aa + 30’ —6a + 1) 3¢*— 124* + 156a—6a + 1
 8a*—12a° -+ 15¢a—60+1

{

0'

" 298. The ana]ysls which we have-given is the foundation of the
common rule for the extraction of the cube root in numbers. An
example of theé operation in the number 2197:
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2197 (10 + 3 =13
1000 -

1197

L

1197

0.
Let us also extract the cube root of 34965783 :
34965783 (300 + 20 + 7
27000000 :

270000 7965783
18000 '
400

288400, 5768000

307200, 2197783
6720
49

313969 2197783

0.

CHAPTER X.

Of the Higher Po;oers of Compound Quantitics. A

299. AFTER squares and cubes come higher powers, or powers
of a greater number of degrees. They are represeated by expanents
in the manner which we before explained: we have only to re-
member, when the root is compound, to inclose it in a parenthesis.
Thus (a 4~ 5)* means that @ + b is raised to the fifth degree, and
(a — b)* represents the sixth power of a — 5. We shall in this
chapter explain the nature of these powers.
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300. Let a 4 b be the root, or the first power, and the higher
powers will be found by multiplication in the following manner :
(a+b)=a+5b
a +b
@ + ab
+ab4- b

(@ + b)* == a* + ab -+ bb
a 4+b .

&' + 2aab 4 abb
+ aab 4 2abb 4 b* .

(a+5) =da'+ 3aab 4 3abb 4 V*
; ab

a* - 3a°b 4 3aabd - ab®
+ a'b - 3aabb 4 3ab* 4 b
(a4 b)'=a" 444’0 4 6aadd + 4ab* 4 b*
a5
@' 4 4a*'d 4 64'bb 4 4aad® - ad*
+ a‘'b 4 4a*bb + 6aad® 4 4ad* 4+ &
(a+b)'=a'+5a‘b+ 10a*6b -+ 10aab® 4- Sab* 4 ¥
a +b
& + 5a%b + 10a%6h + 100’6 + 5aab* + ab*
4+ a'b 4+ 5abb + 106 + 10aab* + Sab® + B¢
(a+ )" =a"+6a°b + 15a'bh + 04’V + 15aad* 4 6ad® 4 b°
301. The powers of the root @ — 3 are found in the same man-
ner, and we shall immediately perceive that they do not differ from

the preceding, excepting that the Rd, 4th, 6th, . terms are
affectad by the sign minus ;
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(8—>d)=xa-—~b
T og—b

ag—b
—ab 4 bb

(a—b)y=d"—2b + bb

a —

@' — 2aab + abb
e aab 4 Rabb — b*

(a--—b)’—-a — 3aab 4 3abb — ¥’ :

a —b

a' — 3a® + 3aabb — ab?
— a + 8aabb — 3ab® + &

(a~—3)'==ga' — 44’ + 6aabb — 4ab* + b‘
a —b . .

a’ — 4a'b + 6a°0b — dach® 4 ab*
— a'b + 4a’%b — 6aad® 4 4ad* — b*

(6 —b)' =a* — 5a*b + 10a°hb — IOaab' + Sab* —b*
a—b

@' — ba’h 4 10a‘bh —10a’5* 4 Haad*— ab’
= a'b 4+ 5a‘bb 4 10a°b* + 10aad* —b5ab® 4 b°

(a—b)=a® — 6a’b + 15a'bb —R0a’* + 15qab*—6ab* 4 b°

. Here we see that all the odd powers of 6 have the sign—, while
the even powers retain the sign 4. The reason of this is evident ;
for since — 6 is the term of the root, the powers of that letter will
ascend in the following series; — 6, + b, — 6%, + b¢, =-b°,
+ a°, &c. which clearly shows that the even powers must be af-
feoted by the sign 4, and the odd ones by the contrary sign —.
" 302. An important question occurs in this place ; namely, how
we may find, without being obliged always to perform the seme
calculation, al the powers either of a 4 b, or a — b.

We must remark, in the first place, that if ‘we can assign all the
powets of a4 b, those of a — b are also found, since we bave only
to change the signs of the even terms, that is to say, of the second,
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305. With regard to the coefficients, st must be observed, that for
each power their sum must be equal to the number 2 raised to the
same power. Let @ = 1 and b = 1, each term, without the coeffi-
cients, will be = 1; consequently, the value of the power will be
simply the sum of the coefficients ; this sum, in the preceding ex-
ample, is 1024, and accordingly

A4 D*=2"°= 1024
It is the same with respect to other powers; we have for the
T 141=2=29,
IL14+24+1=4=2,
m.14+3+4+34+1=8=29
IV-14+4464+44+1=16=24
V.145410+410 45+ 1 =32=2",

VI 1464154204 15 4 6 + 1 =64 =2°,

VIL1 474214343+ +74+1=128=2,
&e. '

306. Another necessary remark, with regard to the coefficients,
is, that they increase from the beginning to the middle, and then de-
crease in the same order. 1In the even powers, the greatest coeffi-
cient s exactly i the middle ; but in the odd powers, two co-
efficients, equal and greater than the others, are found in the mid-
dle, belonging to the mean terms.

The order of the coefficients deserves particular attention ; for it
is in this order that we discover the means of determining them for
any power whatever, without caleulating all the preceding powers.
We shall explain this method, reserving the demonstration how-
ever for the next chapter.

307. In order to find the coeﬁctenta of any power propo:ed
the seventh, for example, let us write the following fracuom, one

- after the other ;

1" §v ﬁ's *’ %t %‘:
In this arrangement we perceive that the numerators begin by the
exponent of the power required, and that they diminish successively
by unity ; while the denominators follow in the natural order of the
numbers, 1, 2, 8, 4, &c. Now, the first coeﬁczent being always
1, the first fraction gives the second coefficient. The product of
the two first fractions, maltiplied together, represents the third co-
efficient. The product of the three first fractions represents the

- fourth coefficient, and so on.

Eul. Alg. 13
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So that the first coefficient == 1; the second == { = 7; the
third = 3 X § = 21 ; the fourth={ X § X § = 35; the fifth
=X §X§X$=85;thesinth—=F X § X § X § X $==21;
the seventh =21 X 8 =7; theeighth =7 X 4 = 1.

308. So that we have, for the second power, the two fractions
%, 4 ; whence it follows, that the first coefficient = 1 ; the second
= } = 2; and the third =2 X % = 1.

The third power furnishes the fractions 4, %, 4 ; wherefore the
ﬁrst coefficient=1; thesecond ={ == 3 ; thethird=3 X $ =3;
thefourth=i‘>(§><1}=1. A

We have for the fourth power, the fractions , #, §, }; conse-
quently the first coefficient = 1; the second ¢ = 4; the third
$ x ,_6, the fourth ¢ X 3 X 8§ =4; and the ﬁfthf X 3
X3EXt=L

309. This rule evidently renders it unneéessary for us to find
the preceding coefficients, and enables us to discover immediately
the coefficients which belong to any power. Thus, for the tenth
power, we write the fractions ¥,4, §, §, & &, %, , 8 1%, by means
of which we find

the first coefficient = 1,

the second = 1 =10,

the third = 10 X §==45,
the fourth = 45 X, § =120,
the fifth © =120 X =210,
the sixth =210 X § = 252,
the seventh - =22 X § =12l0,
the eighth =210 X § =120,
the ninth =120 X § =45,
the tenth = 45 X § =10,
the eleventh = 10 X 4= 1L

310. Wemay also write these fractions as they are, without com-
puting their value ;-and in this way it is easy to express any power of
@ 4 b, however high. Thus, the hundredth power of a +- &, will be

‘ A } 100 x99 .
(a+8 )% =6 4 190 X 0% 4 Top + a"0B" 4
© 100 X 99 X 98 100 X 99 X 98 x 97

Ixexs & U+ Txaxaxa ¢'b + ke,
whence the law of the succeeding terms may be easily deduced.
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CHAPTER XI.

Of the Transposition of the Letters, on which the Demonstration
of the preceding Rule is founded. '

811. Ir we trace back the origin of the coefficients which we
have been considering, we shall find, that each term is presented,
as many times as it is possible to transpose the letters, of which that
term consists; or, to express the same thing differently, the coeffi-
cient of each term is equal to the number of transpesitions that the
letters admit, of which that term is composed. In the second power,
for example, the term a b is taken twice, that is to say, its coefficient
is 2; and in fact we may change the order of the letters which com-
pose that term twice, since we may write a band 6 a; thetermaa,
on the contrary, is found only once, because the order of the letters
can undergo no change or transposition. In the third power of
a + b, the term a a b may be written in three different ways,aa b,
~aba,baa; thus the coefficient is 3. Likewise, in the fourth power,
the term a*b or & a a b, admits of four differentarrangemeats, aa a b,
aaba, abaa, baaa;therefore its coefficient is 4. The term
aabb, admits of six transpositions,a a bb, abba, baba, abad,
bbaa,baab, and its coefficient is 6. It is the same in all cases.

~ 312. In fact, if we consider that the fourth power, for example,

of any root consisting of more than two terms, as (a + b 4 ¢ + d)*,
is found by multiplying the four factors, I.a + & +.c4-d;
INa4b4+ct+d;Iadb4c+d;IV.atb4c+d;
we may easily see, that each letter of the first factor must be mul-
tiplied by each letter of the second, then by each letter of the
third, and lastly, by each letter of the fourth.

Each term must therefore not only be composed of four letters,
but also preseat itself, or enter into the sum, as many times as those
letters can be differently arranged wnth respect to each other,
whence arises its coefficient.’

313. It is therefore of great importance to know, in how many
different ways a given number of letters may be artanged. And,in
this inquiry, we must particularly consider, whether the letters in
question are the same, or different. When they are the same,
there can be no transposition of them, and for this reason the sim-
ple powers, as a*, a®, a*, &c., all have unity for the coefficient.
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314. Let us first suppose all the letters different ; and beginning
with the simplest case of twa letters, or a b, we immediately dis-
cover that two transpositions may take place, namely, a b, and b a.

If we have three letters, a b ¢, to consider, we observe that each
of the three may take the first place, while the two others will ad-
mit of two transpositions. For if a is the first letter, we have two
arrangements, a b ¢, a-¢ b; if b is in the first place, we have the
arrangements, b & ¢, b ¢ a; lastly, if ¢ occupies the first place, we
bave also two arrangements, namely, ca b, ¢ b a. And conse-
quently the whole number of arrangements is 3 X 2 =6.

If .there are four letters, a b ¢ d, each may occupy the first place ;
and in each case the three others may form six different arrange-
ments, as we have just seen. 'The whole number of n'ansposmons'
istherefore 4 X 6 =24 =4 X 3 X 2 X L, :

If there are five letters, a b ¢ d-¢, each of the five must be the
first, and the four others will admit of twenty-four transpositions
so that the whole number of transpositions will be

5X 4=120=5Xx4Xx38Xx2X1
“315. Consequently, however great the number of letters may be,
it is evident, provided they are all different, that we may easily de-
termine the number of transpositions, and that we may make use
of the following table :

Number of Letters. . ) Number of Transpositions.
L / . . 1=1.

1. . DR X =2,
1L 83X 2X1=6.
Iv., , 4X3XLIX1=24.

V. . TBX4X3x2x1=12.
VI. _ 6X 5% 4X3X2X 1=720,
VIL. TX6X5X4X38X2X1=>5040.
VIIL BXTX6X5X4X3X2X1=40320.

X 9x8x7x6x5x4x3x2x 1 = 362880.
X. 10x9x8x7x6x5x4x3x2x1_3628800.
316. But, as we have intimated, the numbers in this ;ab]é can be

made use of only when the letters are different; for if two or
more of them are alike, the number of transpositions becomes much
less ;-and if all the letters are the same, we have only one arrange-
ment. We shall now see how the numbers in the table dra to be
diminished, according to the number of letters that are alike.
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317. When two letters are given, and those letters are the same,
the two arrangements are reduced to one, and comsequently -the
number, which we have found above, is reduced to the half; that is
to.say, it must be divided by 2. If we have three letters alike, the
.six transpositions are reduced to one ; whence it follows that the
numbers in the table must be divided by 6. =3 X. 2 X 1. And
for-the same reason, if four letters are alike, we must -divide the
numbers found by 24 or4 X 3 X 2 4+ 1, &c.

It is easy therefore to determine how many transposmonsthe let- :
ters a aa b be, for example, may undergo. They are in number 6,
and consequently, if they were all different; they would admit of
6.X 5 X 4 X 3 X 2 X I transpositions. But since a is found
thrice in those letters, we must divide that number of transpositions,
by 8 X 2 X 1; and since b occurs twice, we must again divide it
by 2 X 1; the number of transpositions required will therefore be

6 X5 x4x3xXx2x1l

= TExex1xex1l ~oX1x3=60

818. It will now be easy for us to determine the coefficients of

“all the terms of any power. We shall give an example of the

seventh power (@ + b)". : :

The first term is ¢?, which occurs only once; and as all theé
other terms have each seven letters, it follows that the number of
transpositions foreach term wouldbe7 X 6 X 5 X 4 X 3 X 2 X 1,
if all the letters were different. But since in the second term, a® b,
we find six letters alike, we must divide the above product by

6 X 5X4X3X2 X1, whenge it follows that the coeﬂiment is
=‘7-}-6><5><4><3><2><l P
6Xbx4x3xex1 &

In the third term ¢® b b, we find the same letter a ﬁve tlmes, and
- the same letter b twice ; we must therefore divide that number first

byd X 4X 3 .>(v"2‘x 1, and then also by 2 X 1; whence re-
TXE6EX5X4XxIXIX1 TX6
5X4X3XeTXIX2IXI 2qx1T

The fourth term a* b* contains the letter « four times, and the
letter b thrice ; comsequently, the whole number of the transposi-
tions of the seven Jetters must be divided, in the first place, by -
4x3x2x1,and secondly, by 3 X 2 X 1, and the coefficient

_7><6><5x4x3><2x1 T X6X5
Bocomes = X3 X IXI X3X2X1 1 X2X3
TX 6 X 5X 4
IX2X3x4

sults the coefficient

In the same manner we ﬁnd for the coeflicient
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of the fifth term; and so of the vest} by which the rule before
given is demoustrated.

319. These considerations carry us further, and show us also how
to find all the powers of robts composed of more than two terms.
We shall apply them to the third pawer of a 4 b 4 ¢; the terms
of which must be formed by all the possible combinations of three
letters, each term having for its coefficient the number of its trans-
positions, as above.

Without performing the multiplication, the third power of
(a+b+4c)willbea® +3aab 4+3aac+3abb 4 6abe
+3acc+56°4+3bbec+3bcc+ c*

Supposes = 1,b =1, ¢ =1, the cube of 1 4 1 4 1, or of
3,willbel +3 +3+3+64-34+1+3+341=2017.

This result is accurate, and confirms the rule, -

If we had supposed a =1, 6= 1,and ¢ = —1, we should have
found for the cube of 1 -+ 1 — 1, that is, of. 1, .

1+3—3+3~6+3+1~3+3;1_1

CHAPTER XIL.

' Of the Expression of Irrational powers by Infinite Series.

320. As we have shown the method of finding any power of the
root a -+ b, however great the exponent, we .are able .to express
generally, the power of a + b, whose exponent is undetermined.
Ttis evident that if we represent that exponent by a, we shall have
by the rule already given (art. 307 and the following) :

n a—1 : .
(“+b)'=“'+¥""'b+ix—2—a'-’b'+ xﬂg I,)<
PR+ T x "2 41 b .

321. If the same power of the root a — b were ,required, we
should only change the signs of the second, fourth, sixth; &c.
~ terms, and should have
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— R ! '_;_ n—1
(@—b)'=a"—7a b+ %" 2 P —1X 5 X
n—=2e ., n—1 n—2_ n—3 _ .., '

3¢ b +-1—>< g X—g X3« b, &e. -

822. These formulas are remarkably useful ; for they serve also
to express all kinds of radicals. We have shown that all irrational
quantities may assume the form of powers, whose exponents are

fractional, and that V a = a’-’, :/ a= a*, and ~/a = ai, &e.
We have therefore, also,

s __ s __
VEFY =+ Y vEF T = (a + )b
and ) V(a + 0= (a+ »i, ke.
Wherefors, if w ‘? wish to find the square root of @ 4- b we have
only to substitute for the exponent n the fraction , in the general

formula [art. 320], and we shall have for the first, for the coeffi-
cients,

7_._1.7:—-1 I n—2 3 n—3 5,
=¥TE =1 3 — % 4 8
n—4 T n—=5 _9_

5 TT1076 T ie

Then
= *— -t l.n-l. 1 o =3 __ 1
6= a" =4/gand a* V;’a =ava® = i vy
&c., or we might express those powers of a in the following manner;
_ a" a a @ '
cmvi e e S
a"'"='a-:=—j'a""=a—'=v; &ec

© 923. This being laid down, the square root of a + b may be |
expressed in the following manner :

&/ (a + 5)-—- ‘
Va 1 Va ,Va 1
Va+26 " § b + x X = b T §X

[ R g

3
xexsvvam

324. If a, therefore, be a 'squai'e number, we may ’assign the
value of 4/a, and consequently, the square root of a - b may be
expressed by an infinite series, without any radical sign.
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Let, for example, a = ¢ ¢, we shall have 4/g =¢; then
B bb . b ‘o
VR e+ g X Gy g X g X e

We see, therefore, that there is no number, whose square root we
may not extract in the same way ; since every number may be re-
solved into two parts, one of which is a square represented by cc. 1f
we require, for example, the square root of 6, we make6 =4+ 2,
consequently cc =4, ¢ =2, b =2, whence results

CWE=2 4 i+ ok — i e |

If we take only the leading terms of this series, we shall have

2} = 8, the square of which, %%, is } greater than -6; but if we
consider three terms, we have 217; = i‘g, the square of whlch
M, is still 3% too small.

325. Since, in thisexample, § approaches very nearly to the true
value of 4/6, we shall take for 6 the equivalent quantity % — $.
Thus cc = ;¢ =14; b = — }; and calculating only the two
leading terms, we find

vi=t+ix P =p—ixiop—n=m
the square of this fraction being %7, exceeds the square of 4/8

only by t3+.
Now, making 6 = %%} — ¢#v, sothatc = 45 and b——;&v 5
and still taking anly the two leading terms, we bave

vi=th+3x F—gh—3 x z;—!=26—'n’a'u 445,
the square of which is 33PAfSR!. Now 6, when reduced to the

same denominator, is = ZARLES0 s the error therefore is only

restvoo:

326. In the same manner, we may express the cube root of

a + b by an infinite’'series.  For since J{"&‘l‘b) = (a 4+ b)’} we
_ shall have in the general formula # = , and for the coeﬂicxents

n_l_n—l__ 1 n—2 51:—3== g
17372 T 733 TT9 4 3’
' n—4 11
5 =1 ¥

and with regard to the powers of a, we shall have
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s 8
I_ . .- &, uy__No a
a" = 4/a; a"' ‘:, "-—n,‘ "=Va’&c’

10
243 %

827. If a therefore be a cube, or @ = ¢*, we have VG =, and
the radical signs w111 vanish; for we sha]l have ‘
b -1 & 10 b
328. We have, therefore, arrived at a formula, which will enable
us to find by approximation, as it is called, the cube oot of any
number; since every humber may be. reselved into two parts,
¢® + b,.the first of which is a cube. - :
If we wish, for example, to determme' the cube root of 2, we
represent % by I+ 1, s0that¢c =1, and b =1, consequently

V2 =14 ¢4~ } + ¥ &e., the two leading terms of this series
make 1% == 4 the cube of whnch §4,is too great by §¢. Let us
then make 2 == $4 — 1%, we have ¢ == 4 and b = — 3%, an

consequently ﬁ =%+1X -g—;— Thésg two terms give

4 — -y = $3, the cube of which is F433{4.
Now, 2 = 3484488, so that the erroris g$8%¢g. In this way we
* might still approximate, and the faster in proportion as we take a
greater number of terms.

CHAPTER XIIL
Of the Resolution of Negative Powers.
: - o .
829. Wz have already shown', that we may expresy = by a™';

we may therefore also express - + sy § by (a + b)’l ; 8o that the
Eul. Alg. 14
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1
fraction & T3 ™ay be considered as a power of a -}~ b, namely, that

power whose exponent is — 1; and from this it follows, that ‘the
series already found as the value of (a +- b)" extends also to this
case. R

330. Since, therefore, ~ + p is the same as (a + 8)~, let us

suppose, in the general formula, n = — 1; and we shall ﬁrst have
for the coefficients
n n—1 n—2 n—3 :
i=——1;—T=-—jl;—,—3—-=.——l;-—T=—~l, &e.
"Then, for the powers of a; _
1 1

a"=a" =3 a"‘"==¢"-'.-=—,; ot == ;';‘a"‘i'_—_= ) &e.

So that - : L
: 1 1 & bb b b b'
G+d) == —mtg—gto—m ke

a®
and this is the same senw that we found before by lelSlOll

331. Further, e + By bemtr the same with (a 4 3)™*, let us

‘reduge this quantity also to an infinite series. For this purpose, we
must suppose # == — 2, and we,shall first have for thecoeﬂicients
n 2 n—1 3 n—2 4 n—3

1=~ 7 2 — 2 8 -~ "3 7§ = 4* &e.
Then, for the powers of a ;
1 o1 1 -1
a"—..-_—a—; a"—‘=;i; a""=;‘; a"-’_—_"?,&c.
We therefore obtain . :
1 1 2 3 bd @
N s 1 = _~
(a+b) '_(a+b)l_‘a2 1 a+ ad' l
3 4 2 4 5 b‘
X§.X§X .+ 1. X3 X3 XgX &

Now,'
4=2;¥><&=3;%><§><e'=4;§xgxg><f=5,&c.
Consequently we have 7
1 1~ b b » b L b
Gy = 2 t3a—iatsa—65+75m
&e. : . -
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333. Léi us proceed and suppose n = — 3,and we shall have a
series expressing the value of '(a—-|l-_b_)” or of (¢ 4 ). Theco-
efficients will be

n__3n—1_ 4a—-2__ 5n—8_ 6,
1- " 1’°¢ T 7273 ¥ 4 T
and the powers of a become, ,
. 1. 1 1 :
a"=‘—1;; a""‘="?—; = p &ec.
which gives :
1 1 3. 46’ 3 4 5b’
(a+b)'=a“=_~1a‘+1 "1 X% X 3a'+1
' 46 66‘
X 5 X3 X gz b
1 B » [, b b
= ‘+6 —10 54155 —2A5+BG

b
— 36 bxo+45 u)&"

Let us now make n = — 4; we shall have for the coefficients

i—"U g s—g 3 -3 a1 ke
and for the powers,
. 1 1 1

a ___l‘; al—l=] an-!____i; an—l=_ a'-‘—'i, &c,

1 1 4 b 4_5_F 4_5_6._b
GFhy=a 1 XFTi1XeXF—1%XgX3Xa
4 5 _6_1_0
_+fX§X§szF&“

: 2 o bl'
,_—_%__-4:—109-—20 + 85 5 — 56 =, &ic.

333. The different cases that have been considered enable us to
conclude with certainty, that we shall have, generally, for any nega-
tive power of a + b;
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1 3bb 45 5b‘ 66
;1-—6 s + a“ + ao 1 +) &e.
aa -+ 2 ab 4 bb .

Qb 36 4B 5 68
l—— =+ 7 — +: &

a aa a a
20 4bb6 65 84 108
te -t Tt e

bb 26 30 4P
+— =+ — 5 ke

1 = the product, which the nature of the thing required.
336. If we multiply the series which we found for the value of

1
GIo” by'a -} b only, the product ought to answer to the fraction

a

1 : '
gy £ or be equal to the series already found, namely,

1 » ¥ o
——-—+ ;z+;a,'&c-l
and this the b.ctual multlphcanon will confirm.

N 1 366 4b 5%
&'&—F T’—_"+—‘" Le.
a+b \

1 2b 85 4v  Bb
;_';_a"l'a - 4 + a“
b 250 356 4%
‘ -+a-—7.,_- +?f—__“-°__’ &e.
1 b, bbb B
s aatT —atambe
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tween two numbers : and as this appears to be a bettér expression,
we shall reserve the words ratio and relation, to express geometri-
cal raties. -

340. The difference between two numbers is found, we know,
by subtracting the less from the greater; nothing therefore can be
easier than resolving the question, how much one is greater than the
other. So that when the numbers are equal, the difference being
nothing, if it be inquired how much one of- the numbers is greater
than the other, we answer, By nothing. For example, 6 being

=2 X 3, the difference between 6 and 2 X 31is 0.

341. But when the two numbers are not equal, as 5 and 3, and
it is inquired how much 5 is greater than 3, the answer is 2; and it -
is obtained by subtracting 3 from 5. Likewise 15is greater than 5
by 10; and 20 exceeds 8 by 12.

342. We have three things, therefore, to consider on this sub-
ject; 1st, the greater of the two numbers; 2d, the less; and 3d,
the difference. And these three quantities are connected together
in such a manner, that two of the three being given, we may al-
ways determine the third.

Let the greater pumber = a; the less = &, and the difference
== d; the difference d will be found by subtracting & from a, so
that d = a — &; whence we see how to find d, when aand b are
given.

343. But if the difference and the less of the two numbers or b,
are given, we can determine the greater number by adding together
the difference and the less number, which gives a = b 4- d. For,
if we take from & 4 d the less number J, there remains d, which
is the known difference. Let the less number = 12, and the dif-
ference = 8; then the greater number will be = 20.

. 344, Lastly, if beside the difference d, the greater number a is
given, the other number b is found by subtracting the difference
from the greater number, which gives b = a — d. For if I take
the number ¢ — d from the greater number a, there remains d,
which is the given difference.

345. The connexion, therefore, among the numbers a, b, d, is of
sueh a nature as to give the three following results: 1*d=qa —b;
' a=1b+4d; 3 b =a— d; and i one of these three com-
parisons be just, the others must necessarily be so.also. Wherefore,
generally, if 2z = « + y, it necessarily follows, thaty =2 — 2,
and e =2z—y.
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- 346. With regard' to these arithmetical ratios we must remark,
that if we add to the two numbers a and b, a number ¢ assumed at
pleasure, or subtracted from them, the dzﬁ'erence remasins the same.
That is to say, if d is the difference between « and b, that number d
will also be the difference between a - ¢ and'd 4 ¢, and between
a — cand b — ¢, For example, the difference between the num-
bers 20 and 12 being 8, that differefice will remain the same, what-
ever number we add to the numbers 20 and 12, and whatever num-
bers we subtract from them.

3847. The proof is evident; for if a — b‘; d we have also
(a+¢)—(b+¢c)=d;andalso (6 —¢)— (b—c)=d.

348. If we double the two numbers a and b, the difference will
also become double. Thus, when @ — b = d, we shall have,
26 —2b=2d; and, generally, na —n b = n d, whatever
oelue we gne to n.. : :

¥

CHAPTER 11

Of Arithmetical Pro_portzon b

349. WueN two arithmetical ratios, or relations, are equal this
equality is called an.arithmetical proportion.

Thus, when a — b = d and p — ¢ = d, so that the difference
is the same betwéen the numbers p and ¢, as between the numbers
- aand b, we say that these four numbers form an arithmetical pro-

_ portion ; which we write thus, a — b= p — ¢, expressing clearly
by this, that the difference between a and b is equal to the dlﬁ'er-
ence between p and ¢.

850. An arithmetica! proportion consnsts therefore of four terms,
which must be such, that if we subtract the second from the first,
- the remainder is the same as when we subtract the fourth from the

third. Thus, the four numbers 12, 7, 9, 4, form an arithmetical
proportion, because 12 — 7 =9 — 4.%

.*To show: that these terms make such a proportion, some write
them thus; 12..7::9..4.
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851. Hhem we have an arithmetical proportion, as a—b==p—¢,
we may make the second and third change places, writing i
8 —p=b—g; o
and this equality will be no less true ; ; for, since 'a——b = p —,
add  to both sides, and we have s = b 4 p — q; then subtract
p from both’sides, and we have a —p = b — ¢.
In the same manner, 312 —7=9—4,s0als0 .
12 —9=1—4.

852 We may, in every arithmetical proportion, put the second
term also in the place of the first, if we make the same transposition
of the third and fourth. Thatis to say,if s — b =p— ¢, we
havealso b —a = g— p. For b — a s the negative of a — b, and
g —pis-also the negative of p— ¢.” Thus, since 12 —7 == 9 —4,
we have also T — 12 =4 — 9.

853. But the great property of every arithmetical proportion i
this ; that the sum of the second and third term is always equal to
the ‘sum of the first and fourth. This ploperty, which we must

+ particularly consider, is expressed also by saying that the sum of

the means is equal to the sum of the extremes. Thus, smce
12—T=9—4, S

" wehave 7 4+ 9 =12 + 4 and the sum we find is 16 in Botb

354. In order to demonstrate this principal property, fet
a—b=p—y;
if we add toboth & + ¢, we have s + g =56 + p, that is, the
sum of the first and fourth terms is equal to the sum of. the second
and third. And conversely, gffour numbers, a, b, p, q, are such,
that the sum of the second and third is equal to the sum of the first
and fourth, that is,if b 4 p=a8 + g, we conclude, without a pos-
sibility of mistake, that these numbers are in arithmetical proportion,
ahd that a—b:p——q For, since a + q_b_—l—p, if we

“subtract from both sides b 4 ¢, we obtain ¢ — b = p — gq.

Thus, the numbers 18, 13, 15, 10, bemg such, that the sum.of
the means (13 + 15 = 28), is equal to. sum of the extromes
(18 4 10 = 28), itis certain, that they also form an aritbmetical
proportion ; and, consequently, that 18 — 18 = 15 — 10. »

355. It is easy, by means of this property, to resolve the follow-
mg question. * The three first terms of an drithmetical proportion

Eul. Alg. 15
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hemg given, to find the fourth? Let a, b, p, be the three first
terms, and let us express the fourtk by g, which it is required to
determine, then a 4 ¢ =& + p; by subtracting & fiom both
sides, we obtain g==5 + —a.

Thus, the fourth term 1s found by adding together the second and
third, and subtracting the first from that sum. Suppose, for exam-
ple, that 19, 28, 13, are the three first terms given, the sum of the
second and third is = 41 ; take from it the first, which is 19, there
remains 22 for the fourth term sought, and the arithmetical propor-
tion will be represented by 19 — 28 = 13 — 2%, or by

28 — 19 = 22 — 13,
or lastly, by 28 — 22 = 19— 13..
. 856. When in an arithmetical proportion, the second term is equal
to the third, we have only three numbers ; the property of whichis
this, that the first, minus the second, is equal to the second, minus
‘the ‘third ; or, that the difference betweén , the first and the second
number is equal to the difference between the second and the third.
The three numbers, 19, 15, 11, are of this kind, since
' 19 —15=15—11.

357 Three such numbers are said to form a continued arith-
metical proportion, which is sometimes written thus, 19:15:11.
Such proportions are also called arithretical progressions, partic-
ularly if a greater number of terms follow each other according
to the same law,

An arithmetical progression may be either & mcreasmg, or decreas-
ing. The former distinction is applied when the terms go on in-
creasing, that is to say, when the second exceeds the first, and the
third exceeds the second by the same quanmy ; as in the numbers

.4, 7,10. The decreasing progression is that, in which the terms
go on always dlmmlshmg by the same quantity, such as the num-
bers 9, 5, 1.

358. Let us suppose the numbers a, b, ¢, to be in amhmeueal
progression ; then ¢ — b=b-— ¢, whence it follows, from the
eéquality between the sum of the extremes and that of the means,
that 2 5 = @ 4 ¢; and if we subtract a from both, we have
: c=2b—a. :

359 So that when the two ﬁrst terms, a, b, of an arithmetical
progression are given, the third is found by takmg the first ﬁ'om
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twice the second. Let 1 and 3 be the two first terms of an arithe
. metical progression, the third will be == 2°X 3 —.1 = 5. And
these three numbers, 1, 3, 5, give the proportion ' — 3 = 3 — &
360. By following the same method, we may pursue the arith-
metical progression as far as we please ; we havé only to find the
Jourth by means of the second and third, in the same manner as we
determined the third by means of the first-and second, and so on.
Let a be the first term, and 4 the second, the third willbe =2 b — a,
thefourth==4b—2a—b_3 b — 2 a, the fifth

‘ =6b—4a—~2b+a=4b—3a,
thesmth::Gb—Ga—-3b+2a__5b-—4a,theseventh
=10b—8a—4%43a="6b—5a, &

r

CHAPTER III.‘

Of Arithmetical Progre.mam

861 "Wz have remarked already, that a series of numberseom-
posed of dny number of terms, which always increase, or deeresse
by the same quantity, is called an'arithmetical progression.: - -

" Thus, the. natural numbers written in their order, (as 1, 2, 3, 4,
5,6,7,8,9, 10, &c.) form an arithmetical progression, because
they constantly increase by unity ; -and the series 25, 22, 19, 16,
13,10, 7, 4, 1, &c. is also-such a prqgressnon, since the numbcn
constantly decrease by 3. . -

362. The number, or quantity, by whmh the terms of m nmh-
metical ‘progression become greater or less, is called the differenee.:

- 8o that when the first-term and the difference are given, we may
continue the arithmetical progression to any length.

For example, let the first term = 2, and the difference = 3, and
we shall have the followmg increasing progression; 2, 5; 8,-11, 14,
17, 20, 23, 26, 29, &c. in which each termxsfound,bytddmgthq
difference to the preceding term.

363, 1t s usual to write the natural numben, 1 2,!3 4 5, kc
tbonthennmofmehmmhmeucal ptoyumn,mordpnhq
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we may immediately perceive the rank which any term holdsin the
progression. These numbers, written above the terms, may bae called
indices ; and the above example is written as follows :

Indices; 1 23 4 5.6 7T 8 9 10

Arih. Prog. 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, &c.
where we see that 29 is the tenth'term.

364. Let a be the first term, and d the diﬁ'erence the amhmetl-
eal progression will go on in the following order:

I 2 3 4 5 6 7

a, a4 d, a+2d..,. 6+3d, a4-4d, a4-5d, a4-6d, &ec.
whence it appears, that any term of tlie progression might be easily
found, without the necessity of finding all the precedimg ones, by
means only of the first term @, and the difference d. For example,
the tenth term will be = « 4- 9 d, the hundredth term = a 4-99 d,
and generally, the term n will be =a 4 (n — 1) d.
" 865. When we stop at any point of the progression, it is of im-
portance to attend to the first and the last term, since the index of
the last will represent the number of terms. If, therefore, the first
term = a, the difference = d, and the number of terms = n, we
shall have the last term = a 4 (n — 1) d, which is consequently
Jound by multiplying the difference by the number of terms, minue
one, and adding the first term to that product. Suppoese, for exam-
ple. in sn writbmetical progression of 2 hundred terms, the first term
is == 4, and the difference = 3; then the last tarm willbe. ,

. =99 X 3  4=30L

388. When we know the first term .a.and the last z, with the
puinber of termas's, we ean find the difference.d. Far, since tha
last term 2z = a + (B — 1) 4, if we subtract a from both sides, we
obtain z— @ = (n — 1) d. So that by subtracting the first term
from the last, we bave the product of the difference multiphied by
the number of terms minus 1. We have, therefore, only. to divide
ame8byne=1l toobuintbereqlﬁmdnlueof the difference d

wbxnb will be =- :. Thig result furnishes the following rule :

Subtract the ﬁrat term ﬁ'om the last, divide the remainder by the
wumber of terms minus 1, and the quotient will be the difference:
by means of which we may write the whole progression.

- 967, Buppese, for example, that we have an arithmetical pro-
groseion of nine terms, whose first is == 9, and last w1 26, and that

{
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it .is required ¢o find the. difference; ‘We must subtract the first
term, 2, from thé last, 26, and divide- the remainder, which is 24,
by 9 — 1, that is, by 8; the quotient 8 will be equal to the dxﬁ'er-‘
ence requnred and the whole progression will be

1 2 3 4 5 6 7 8 9

R, .5 8 11, 14, 17, 20, 23, 26.

To give another example, let us suppose, that the first term =1,
the last == 2, the number of terms = 10, and that the arithmetical _
progression, answering to these suppositions, is required ; we shall
immediately have for the difference -1(2)—-:—11 = %,I and thence con-
clude that the progression is , ‘

1 2 3 4 5 6 7T 8 9 10

L 1 1§ 1% 1% 14, 1§ 1% 13 2

Another Example. Let the first term = 2}, the last = 12{,
and the number of terms ==7; the difference will be

' 124—24 1oy _ 61 o5
| T 76 %@
and consequently the progression , .
1 2 3 4 5 6 7
, 2&! 43‘&5 5{35 . 71"2‘: 9*) . 10&%, : 12; )

. 368, If now the firstterm a, the last term 2, and the difference d;
are given, we may from them find the number of terms n., For
since z —a = (n — 1) d, by dividing the two sides by d, we have-

z—a ‘ .
7~ ==n—1." Now,nbeing greater by 1 than # — 1, we have

" u- i-—}f +-1;. consequently, the number of terms vs. found by

dividing the difference between the first and the last term, or z —a,
by the difference of the progremon, andadding unity tothe quouent
z—a
d " S
For example, let the first term = 4, the last = 100, and the

106"’—5-[-1._9

dxﬂ'erence =12, the number of terms will be

and these nine terms will be

1 2 38 4 5 6 71 8 9
4 16, 98, 40, 52, 64, 16, €3 100,
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If the first term = 2, the last == 6, and difference = 1}, the
nuinber of terms will be ;; + 1==4; and these fourterms will be,

1 2 3 4.
2 33 4%, 6.
Agam let the first term = 34, the last = 74, and the difference

—3%

== 14, the nutnber of terms will be = + 1=4; which

1&

are,
‘3%, 4%, 63, T§.. :

369. It must be observed, however, that as the number of terms
is necessanly an integer, if we had not obtained such a number for
n, in the examples of the preceding article, the quesmns would
have been absurd,

* Whenever we do not obtain an integral number for the value of
z_;-_a’ it will be impossible to resolve the question; and conse-
quently, in order that questions of this kind may be possible, z—a;
must be divisible by d. -

370. From what has been said, it may be concluded, that we
bave always four quantmes, or things, to consider in anthmeUcal
progression ; - . e .

* 1. ‘The first term a. ‘

11. The last term z.
-, I1L.. The difference d.
IV. The number of terms =.

And the relation of these quantities to each other are such, that if
we know three of them, we are able to determine the fourth ; for,
I. If a, d, and n are known, we have 2 =2 +(n—l) d.
IL. If 2, d, and n are known, we have a =z — (n—1) d..
III Ifa,z,andnarekmwu,wehaved_tz—l:—;l.
IV Ifa,z, anddarelmown,wchauen—?ja + 1.
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CHAPTER 1IV.

Of the Summation of Arithmetical Progressions.

871, It is often necessary also to find the sum of an arithmetical
progression. ‘This might be done by adding all the terms tovether,
but as the addition would be very tedious, when the progression con-
sisted of a great number of terms, a rule has been devised, by
‘which the sum may be more readily obtained.

* 372. We shall first consider a particular given progressnon, such
that the first term = 2, the diffefence = 3, the last term = 29,
and the number of terms=10;

1 2 3 4 5 6 1 8 9 10

2 -5 8 11, 14, 17, 20, 23, 26, 29
We see, in this progression, that the sum of the first and the last
term = 31 ; the sum of the second and the last but one == 31 ;
the sum of the third and the last but two = 31, and so on; and -
thence we conclude that the sum of any two terms equa]ly distant,
the one from the first, and the other from.the last term, is always
equal to the sum of the first and the last term.

373. The reasons of this may be easily traced. For, 1f we sups
pose the first = a, the last = z, and the difference = d, the sym
of the first and the'last term is == a < z; and the second term
being = a + d, and the last but one = z'— d, the sum of these
two terms is also = a + 2. Further, the third termybeinga 424,
and the last but two = z — 2 d, it is evident that these twoterms
also, when added together make a 4-z. The de‘inonst.ration may
be easily extended to all the rest.

374. To determine, therefore, the.sym of the provressmn pro-
posed, let ug write the same progression term by term, inverted,
and add the corresponding terms together, as follows:

24 54 8411 4 14 4 17 4 20 4 23 4 26 + 29
942 +2+20+17T+14411+ 84+ 54 2
31 + 31 + 31 + 31 + 31 + 3t + 31 + 31 + 31 + 3I.

This series of equal terms is evidently equal to twice the sum of
the given progression ; now the number of these equal terms is 10,
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the third 11, and 50 on; always inoreasing 8 halfpenee ‘more for
each. foltowing. one ; the horse having 32 nails; it is required te tell
how imuth he will cost the purchaser, -

In this question, it is required ta find the sum of an- arithmetical
progsession, the first term of which s 8, the difference = 3, and

the aumber of terms == 32. We must therefore begin by deter-

mining the last term ; we find it (by the rule in articles 366 and 370)
== 5 4 81 X 3.==98. After which the sam required is easily
found =!£2—)-(—:-3—2 = 103 'X 16 ; whence we conclude that the
haorse cost 1648 halfpence, or 31. 8s. 8d.

879. Generally, let the first term be = g, the dxﬁ'erenee =d,
and the number of terms == n ; and let it.be requlmd to find, by

means of these data, the sum of the whole progression. As the last
term must be == ¢ 4 (n — 1) d, the sum of the first and last will
be == R4 + (n—1) d. Mubiplying thi¢ sum by the number of
tezms 7, we have 2 n'a 4 n (n — 1) d; the sum required there-
_— d

: ﬁ:rewtllbg=na+“(n o) D)

This formula, if applied to the preceding example, or to a == 5,
d = 8, and n == 32, gives

5x32+32xglx3

2 — 160 + 1488 = 1648;

the same sum that we obtained before.

-380. If it be required to add together all the natunl ‘numbers
from 1 to n, we have, for finding this sum, the first term == 1, the
last term = 7, and the number of terms = n ; wherefore the sum

requxredls-—“”;-” n(n+1)
If we make & == 1766, the sum of all the numbers, from 1 to
1766, will be = 883 X 1767 = 1560261. '
38L. Let the progression of uneven numbers be proposed, 1,3,
B, 7, &c. continued to n terms, and let the sum of it be required:
Here the first term is = 1, the difference = 2, the number of
terms == n; the last term will therefore be
=14+ (—1)2=2n—1,
and consequently the sum reqmred =nn
The whole therefore consists in multiplying the num}aer of termas
by itself. So that whatever number of terme of this ?ra‘rwm we

Rd. &g 16
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a¥d together, the swm «¥ll-be always a square,namely, the wquars
of the number. of deyms. 'This we shall exemplify as follows : - -
Indics, 1 2 3 4 5 671 8 -9 10, &e.
Progress. 1, '8, 6, T, 9, 11, 13, 15, 17, . 19, &e.
Sumy 1, 4, 9,16, 25, 36, 49, 64; 81, 100, ko.

* 382, Let the first term be = 1, the' difference = 8, and the
number of terms = n; we shall bave the pmgressmn 1,4,7, 10,
&c. the last'term of which will be 1 4 (n'— 1) 3 = 3 n ~—2;
wherefore the sum of the first and the last term =3 n — 1, and
consequently, the sum of this progression

_" B3n— 1) 3nn—n-
2 2 -
lfwemppoeen=20 the sum will be = 10 Xx- 89==5w

3883. Again, let the first term = 1, the difference == d, andth.
humber of terms == #; then the last term willbe =1 + (n—1)'d.
Adding the first, we have  + (n — 1) d, and nwltiplying by the
number of terms, we have 2n + n{n— 1) d; whence we de-

Juce the sum of the progressnon =n 4 ._.,_.._._" (n—1) d

. We subjoin the following small table :

d=1, mesumu=,,+"(";1) n‘n;—n\
d=2, == _,_9"(1“-1),}== -

S dm3, ‘,,,,+3N(n2—1) 352.,,
.d.=4’. ‘_;+4n(n—l)=2”n—;‘
d o= 5, — +5n(n—l). 5,”.;;-3“!‘
d=6 v""+6n(“—1) 3nn—2n
d_-;7, ' '=n+7”(“—1) 7»1;2__5,
d=8, f=,.+9n("—1) Ann—3n

Came, ey Y _9nacT

d =10, n+ Mn_l)_s,”‘_4n._
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Next follow those relations in which the ratio is another whole
number ; in 4: 2 the ratio is 2, and is called doubleratio ; in 12:4
the ratio is 3, and is called ¢riple ratio ; in 24 : 6 the ratio is 4, and
18 called guadruple ratio, &c.

We may next consider those relations whose ratios are expressed
by fractions, as 12 : 9, where the ratio is 4 or 14 ; 18:27, whete
the ratio. is §, &c. We may also distinguish those relations in
which the consequeat contains exactly twice, thrice, &c. the ante~
eedont ; such are the relations 6: 12, 5: 15, &c. the ratio of whlch
some call subduple, subtriple, &c. ratios..

Further, we call that ratio rational, which is an exp:esslble
sumber, the antecedent and consequent being integers, asim11 : 7,
8: 15, &kc. and we call that an frrational or surd ratio, which can
seither be exactly expnessed by integers, nor by ﬁmhons, ua
v8:8,4: 48

889. Leta be the anteoedem, b the consequent, and'd d:enuo,

we know atready that 4 and b bemg given, we ﬁnd d= 3

* If the consequent b were given wﬁhthenm,wubou}lﬁndﬂw
amtecedent ¢ = b d, because b-d ‘divided ‘by & gives d. Lastly,
when theanweedentamgiven, and the ratio d, weﬁndtheaonpv

quent & d’ for, dividing the ant,ecedent a by thp consequent. d’

we cbtain the quotient 4, that is to say, the ratio. -

390. Every relation a: b remains the same, though we multxply
or divide the antecedent and consequent by the same number; he-
cause the ratio is the same Letd be the ratio o( a:d, we have

d.ux, novthcmuooflheuhuonna nbmalso;:-:d, a,nd

htoftberdwon— .P-whhewwebﬂd

* 391. When & ratio has been reduced to its lowestterms, it is 6asy
to perceive and enynciate the relation. For example, when the

nﬁzhnhenm'tothmz weuy

ab=p:g, a:biupig,
\ﬂmhllmd,aumbupumq Thus,tberat:oo[therelmon
6:3 baing 4, or 2, we sy 6:3 = 2:1, We have likevyise
18:129=3:8, and 24:18 = 4:3, and, 80:45 =R:3, &Kc.
But if the ratio cannot be abridged, the relation will not become







S

1%  Alydea. Sont. 3
We st contimun #hid aperation 5l we ersise of & division thet

leaves mo remainder ; the divisor of this division, and conse-
quertly the last divisar, will be the greatest common divisor of the
two given numbers.

See this operation for the two numbera 576 and, 252,

252) 576 (2
504

%m(a
a6

“86) 12 (2
.

0. : .
8o that, in this instance, the greatest common divisos is 36.
807. Tt will be proper toilimstrate. this rule by some other exanes
ples. Let the grestest common divisor of the numbers 504 snd
312 be required.
312) 504 (1
312

192) 312 (1
192

120) 192 (1
190

) 120 (1

: T
®nrQ
8

s E
MBE

" tot

0. , ;
Bothkt%isﬁwgmtemmondimor mmﬂy\ho
relation 504 ¢ 812 is reduced to the-foim R0 : 18 R
‘398, Let the relation 625: 529begnen,md&agmm
mon divisor of these two numbers be requiredi - e
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CHAPTER VII.

Of .Geometrical Pfoportiom.

405.. Two geometrical relations are equal when their ratios are
equal. This equality of two relations is called a geometrical pro-
portion ; and we write for example a:b =¢:d,ora:b::c:d, to
indicate that the relation a: b is equal to the relation ¢ : d; but this
is more simply expressed by saying a is to b as ¢ to d. The fol-
lowing is such a "proportion, 8: 4 = 12:6; for the ratio of the
relation 8:4 is £, and this is also the ratio of the relation 12: 6.

406. So that a:4 = c: d being a geometrical proportion, the

ratio must be the same on both sides, and % = 5 ; and reciprocally,

o a ¢
if the fractions 7 and  are equal, we have a:b::¢:d.

407. A geometrical proportion consists therefore of four terms,
such, that the first, divided by the second, gives the same quotient
as the third divided by the fourth." Hence we deduce an important
property, common to all- geometrical proportlon, which is, that the
product of the first and the last term it always equal to the product
of the second and third ; or, more simply, that the product of the
extremes is equal to the product of the means.

408. In order to demonstrate this property, let us take the geo-

metrical propomon a:b=c:d, so that 7 3= 2. If we multlply both

be
these fractions by b, we obtam @ =, and multlplymg both sxdes

further by d, we have a d == b ¢. Now a d is the product of the
extreme terms, b ¢ is that of the means, and these two products
are found to be equal.

409. Reciproeally, if the feur numbers, a, b,c,d, are such that the
product of th etwo.entremes & and d &s equal to the product of the two
means b and c, we are certain that they form a geometrical propor-
tibn. For since a d == & ¢, we have only to divide both sides. by
b d which gives us Zj : 2 or % = g, and consequently

; a:b=c:d.

Eul. Alg. 17
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410. The four terms of a geometrical proportion, as a:b==cd,
may be transposed in different ways, without destroying the propor-
tion. For the rule being always, that the product of the extremes
is equal to the product of the means, or & d = b ¢, we may say:

1" bia=d:c; 2" a:c=Db:d; 3 d:b=c:a;
4" d:c=hb:a. :

411. Besides these four geometrical proportions, we may deduce
some others from the same proportlon, a:b=c:d. We may say,
the ﬁrst term, plus the second, is to the first as the third 4 the
JSaurth is to the third ; thatis,a + b:a=c + d:c.

"We may further say ; the first — the second is to the first, as the.
third — the fourth is to the third,ora — b:a =c—d:c.

For, if we take the product of the extremes and means, we -
have a ¢ — b ¢ = a ¢ — a d, which evidently leads to the equal-
ityad==bec.

Lastly, it is easy to demonstrate, thata + b:b=c¢ + d: d
and that a — b:b='¢c—d:d.

412. Allthe proportions which we have deduced froma:b=¢:d,
may be represented, generally, as follows:

ma-+nb:pat+qgdb=mc+nd: pc-}-qd.
~ For the product of the extreme terms is
mpac-}—npbc-}-mqad-}—nqbd
which, since ¢ d = b ¢, becomes
- mpac+npbectmqgbectngbd
Further, the product of the mean terms is
mpac+mgbc+npad+t+ngbdd;
or,smcead_bc,nlsmpac-l-mqbc+npbc+nqbd-
so that the two products are equal.

413. It is evident, therefore, that a geometrical proportion being
given, for example, 6:3 = 10:5, an infinite number of others
may be deduced from it. We shall give only a few: ‘

3:6=5:10;6:10=3:5;9:6_15:10;
3:3=568: 5;9:15=3:5;9:3=15:"'5.

414. Since, in every geometrical proportion, the product of the
extremes is equal to the product of the means, we may, when the
 three first terms are known, find the fourth from them. Let the
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three first terms be 24:16 = 40to....as the product of the
means is here 600, the fourth term multiplied by the first, that is, by
24, must also make 600 ; consequently, by dividing 600 by 24, the
quotient 25 will be the fourth term required, and the whole propor-
tion will be 24 : 15 = 40:25. ' Ini general, therefore, if the three
first terms are a:b=c¢:.... ‘we put d for the unknown fourth let-
ter ; ; and since a d = b ¢, we divide both sides by a and have

b b
d= —c. So that the fourth term is = 2¢ ot and is found by multi-

plying the second term by the third, and dwzdmg that product by
the first term. '

415. This is the foundation of the celebrated Rule of Threein
arithmetic ; for what is required in that rule?  We suppose three
numbers given, and seek a fourth, which may be in geometrical
proportion ; so that the first may be to the second, as the third is
to the fourth. -

416. _Some particular circcumstances deserve attention here.

First, ¢f in two proportions the first and the third terms are the
same, asina:b=c:d, and a: f=c: g, | say that the two second
and the two fourth terms will also be in geometrical proportion, and
that b: d = f: g. For, the first proportion being transformed into
this, a: ¢ = b:d, and the second into this, a: ¢ = f: g, it follows
that the-relations b:d and f: g are equal, since each of them is
equal to the relation a: ¢. For example, if 5:100 = 2: 40, and
5:15 = 2: 6, we must have 100: 40 = 15:86. '

417. But if the two proportions are such, that the mean terms are
the same in both, I say that the first terms will be in an inverse pro-
portion to the fourth terms. That is to say, if ¢: ¢:d, and
f:b=c:g,itfollowsthat a:f = g :d. Let the proportions be, for
example, 24:8 = 9:3,and 6:8 =9:12, we have 24 : 6 = 12: 3.
The reason is evident; the first proportion gives ad = b ¢; the
second gives f g = b ¢; therefore,

ad=fg,anda:f= g:d,ora:g: fd

418. T'wo proportions being given, we may always produce a
new one, by separately multiplying the first term of the one by the
first term of the other, the second by the second, and so on, with
respect to the other terms. Thus, the proportions ¢ : b == ¢ : dand
e:f=g:h will furnish this, a e:b f=c g:d k. For the first
giving @ d = b ¢, and the second giving ¢ & = f g, we have also
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adeh=0bcfg.

Now a de his the product of the extremes,.and b ¢ f g is the pro-
duct of the means in the new proportion ; so that the two products
being equal, the proportion is true. :

419. Let the two proportious be, for example, 6:4=15:10
and 9:12 = 15: 20, their eombination will give the propomon

6x9:4x 12=15X% 15:10 x 20,

or 54:48 == 225 : 200,
or 9: 8= 9: 8.

420. We shall observe lastly, that if two products dre equal,
a d = b ¢, we may reciprocally convert this equality into a geometri-
cal propomon for we shall always have one of the factors of the
first ‘product, in the same proportion to one of the factors of the
second product, as the other factor of the second product is to the
other factor of the first product; that is, in the present case,
a:c=0"b:dora:b=c:d. Let3 X 8=4X 6, and we may
form from it this proportlon, 8:4==6:3, or this,3:4 =6:8.
leemse, if 3 X 5=1 X 15, we shall have -

3: 15_—-1 5,0r5:1=15:83, or 3: 1=15:5.

CHAPTER VIIL
- Observations on the Rules of Propdrtg'dn and their Uiﬂity.

421, THis theory is so useful in the occurrences of common life,
that scarcely any person can do without it. ‘There is always a pro-
portion between prices and commodities ; and when different kinds
of money are the subject of exchange, the whole consists in deter-
mining their mutual relations. The examples, furpished by these
reflections, will be very proper forillustrating the principles of pro- -
portion, and showing their utility by the application of. them.

422. If we wished to know, for example, the relation between
two kinds of maney; suppose an old louis d’or and a ducat ; we
must first know the value of those pieces, when compared to others
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of the same kind. 'Thus, an old louis being, at Berlin, worth -5 rix
dollars* and 8 drachms, and a ducat being worth 3 rix dollars, we
_ may reduce these two values to one denomination ; either to ri% dol-
lars, which gives the proportion 1 L.:1 D =53 R3:R,or=16:9;
ar to drachms, in which ease we have1 L:1 D =128:72 = 16 :9.
These proportions evidently give the true relation of the old louis to
the ducat ; for the equality of the products of the extremes and the
means gives, in both, 9 louis = 16 ducats ; and, by means of this
comparison we may change any sum of old louis into ducats, and
vice versé. Suppose it weré requited to tell how many ducats -
"there are in 1000 old louis, we have this rule of three. If'9 louis
..are equal to 16 ducats, what are 1000 louis equal to? The an-
swer will be 1777% ducats.

If, on the contrary, it were requn-ed to find how mapy old louis
d’or there are in 1000 ducats, we have the following propottion.
If 16 ducats are equal to 9 louis; what are 1000 ducats equal to?
Answer, 5623 old louis d’or.

423. Here (at Petersburg), the value of the ducat varies, and
depends on the course of exchange. This course determines the
value of the ruble in stivers, or Dutch half-pence, 105 of which
make & ducat.

So that when the exchange is at 45 stivers, we have this propor-
tion, 1 ruble: 1 ducat = 45:105 =3:.7 ; and hence this equality,
7 rubles = 3 ducats.

By this we shall find the value, of a ducat in rubles for 3 du-
cats : 7 rubles = 1 ducat:.. ... 4nswer, 2} rubles.

If the exchange were at 50 stivers, we should have this propor-
tion, 1 ruble: 1 ducat =50 : 105 = 10 : 21, which would give 21
rubles = 10 ducats ; and we should have 1 ducat = 2 rubles.
La.'stly, when the exchange is at 44 stivers, we have 1 ruble : 1 du-

= 44: 105, and consequently 1 ducat = 2}} rubles = 2 ru-
bles 38y'y copecks.t

424. It follows from this, that we may also compare different
kinds of money, which we have frequently occasion to do in billsof
exchange. Suppose, for example, that a person of this place has

* The rix dollar of Germany is valued at 92 cents 6 miils, and a
drachm is one twenty-fourth part of a rix.dollar,
t A copeck is 35 part of a ruble, as is easily dedueed from the
 above.
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1000 rubles to be paid to him at Berlin, and that he wishes to know
the value of this sum in ducats at Berlin.

" The exchange is here at 474, that isto say, eneruble makes 47-}
stivers. In Hol]and 20 stivers make a florin; 24 Dutch florins
make a Dutch dollar. Further, the exchange of Holland with
Berlin is at 142, that is to say, for 100 Dutch dollars, 142 dollars
are. paid at Berlin. - Lastly, the ducat is worth3 dollars at Berlin.

425. To resolve the questions proposed, let us proceed step by
step. Begirning therefore with the stivers, since 1 ruble = 47}
stivers, or 2 rubles = 95 stivers, we shall have 2 rables : 95 stivers
= 1000: .. .. Answer, 47500 stivers. If wego further and say
20 stivers: 1 florin = 47500 stivers: .’ . . we shall have 2375
florins. Further, 23 florins = 1 Dutch dollar, or 5 florins = 2
Dutch dollars; we shall therefore have 5 florins: 2 Dutch dollars
= 2375 ﬂorms te .. Answer, 950 Dutch dollars.

Then taking the dollars of Berlin, according to the exchange at
142, we shall have. 100 Dutch dollars : 142 - dollars = 950 :" the
fourth term, 1349 dollars of Berlin. Let us, lastly, pass to the du-
cats, and say 3 dollars: 1 ducat = 1349 dollars:.... Answer,
449% ducats.

426. In order to render these calculations stlll more complete, let
us suppose that the Berlin banker refuses, under some pretext -or
other, to pay this surh, and to accept the bill 6f exchange without
five per cent. discount ; that is, paying only 100 instead of 105. In
that case, we must make use of the following proportnon '105:100
=— 449% :a fourth term, which is 4285-3 ducits. ‘

427. We have shown that six operations are necessary, in makmg
use of the Rule of Three ; but we ‘can greatly abridge those calcu-
lations, by a rule, which is called the Rule of Reduction. To ex-
plain this Tule, we shall first consider the two antecedents of each
of the six operations. C : g

1. 2rubles : 95 sltivers.

. II. 20 stivers : 1 Dutch flor.
1l. 5Dutchflor. -+ - : 2 Dutch doll.
IV. 100 Dutch doll. : 142 dollars.

.V, 3 dollars : 1 duecat.
V1. 105 ducats . : 100 ducats.

If we now look over the preceding calculations, we shall observe,
that we have always multiplied the given sum by the second terms, .
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and that we have divided the products by the first ; it is evident
therefore, that we shall errive at the same results, by multiplying, at
once, the sum proposed by the product of all the second terms, and
dividing by the product of all the first terms. Or, which amounts to
the same thing, that we have only to make the following proportion ; .
as the product of all the first terms is to the product of all the second

- terms, so is the given number of rubles to the number of ducats
payable at Berlin.

428. This calculation is abridged still more, when amongst the
first terms are found some that have common divisors with some of
the second terms ; for, in this case, we destroy those terms, and
substitute the quotient arising from the division by that common
divisor. The preceding’ example will, in this manner, assume the
following form.*

Rubles g. ;19,95 stiv. 1000 rubles.
20. : 1 Dutch flor.
8. : £ Dutch dollars.
100. : 142 dollars,
3. : 1 ducat.
105,21, ;' 3,106 ducats,
6360 1 2698 = 1060 : —
7)- 26930,
9) 3854 (2

]

428 (2.  Answer, 4281$ ducats.

‘429. The method which must be observed, in using the rule of
reductian, is this ; we begin with the kind of money in question, and
"compare it with another, which is to begin the next relation, in

which we compare this second kind with a third, and so on. Each
 relation, therefore begins with the same kind, as the preceding re-
lation ended with.  This operation is continued, till we arrive at
the kind of money which the apswer requires, and, at the end,
we reckon the fractional remainders.

* Divide the Ist and 9th by 2, the 3d and 12th by 20, the 5th and
12th (which is now 8) by 5, also the 2d .and 11th by 5.
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430. Other examples dre added to facilitate the practice of this
calculation.

If ducats gain at Hamburg 1. per cent. on two dollars banco ; that
is to say, if 50 ducats are worth, not 100, but 101 dollars banco,
and if the exchange between Hamburg and ‘Konigsberg,. is 119
drachms of Poland ; that is, if 1 dollar banco gives 119 Polish
drachms, how many Polish florins will 1000 ducats give ?

30 Polish drachms make 1 Polish florin.
Ducat 1 : ¢ doll. BO, 1000 duc.
109,50 : 101 doll. BO.) :
1: 119Pol.dr. ‘
30 : 1 Pol. flor. ' '

1560 : 12019 - 1068 duc. :....

"5) 120190
5) 40063 (1
8012 (3. JAnswer, 8012% P.fl.

431. We may abridge a little further, by writing the number,
which forms the third term, above the second row; for then the
product of the second row, divided by the product of the first row,
will give the answer sought.

Question. . Ducats of ‘Amsterdam are brought to Leipsic, hav-
ing in the former city the value of 5 flor. 4 stivers current ; thatis

- to say, 1 ducat is worth 104 stivers, and 5 ducats are worth 26
Dutch florins.  If, therefore, the agio of the bank* at Amsterdam
is 5 per cent. that is, if 105 currency are equal to 100 banco, and
if the exchange from Leipsic to Amsterdam, in bank money, is

- 83% per cent. that i, if for 100 dollars we pay at’ Lelpsxc 1334

dollars ; lastly, 2 Dutch dollars making 5 Dutch florins ; it is re-
quired to find how many dollars we must pay at Lelpsxc, accordmg
to these exchanges, for 1000 ducats?

* The difference of value betweéq bank money and current money
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8, 1696 ducats.’ .

Ducats : 26 flor. Dutch curr.
108,21 : 4, 2¢, 1¢¢ flor. Dutch banco.
400, ¢ : 533 doll. of Leipsic.
b : . ¢ doll. banco.

21 : 38) 55432 (1.

7) 18477 (4.

2639.
Answer, 263931 dollars, or 2639 dollars and 15 drachms.

CHAPTER IX.

Of Compound ﬁelatio_m.

432. Comrounp REevraTions are obtained, by multiplying the
terms of two or more relations, the antecedents by the antecedents,
and theconsequents by the consequents ; we say then, that the rela-
. tion between those two products is compounded of the relations given.

Thus, the relations a: 3, c: d, e: f, give the compound relation
ace:bdf*

-433. A relation continuing always the same, when we divide
both its terms by the same number, in order to abridge it, we may
greatly facilitate the above composition by comparing the antece-
dents and the consequents, for the purpose of making such reduc-
tions as we performed in the last chapter. _

For example, we find the compound relation of the [ollowmg
~ given relations, thus;

* Each of these three ratios is said to be one of the roots of the
compound ratio.

Eul. Alg. 18
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Relations gives.
12 : 25, 28 : 33, and 55 : 56.
12, 4,2: 5,258

28 : 11, 338.
88,11 : 2,56
‘ Q2 5.

So that 2 : 5 is the compound relation required.

434. The same operation is to be performed, when it is required
to calculate generally by letters ; and the most remarkable case is
that, in which each antecedent is equal to the consequent of the
preceding relation. If the given relations-are

: b

o 00 oNQ

¢
. d
)
@

the compound relation is 1: 1.

435. The utility of these principles will be perceived, when it is
observed, that the relation between two square fields is compound-
ed of the relations of the lengths and the breadths.

Let the two fields, for example, be A and B ; let A have 500
feet in length by 60 feet in breadth, and let the length of B be 360
feet, and its breadth 100 feet ; the relation of the lengths will be
500.: 360, and that of the breadths 60 : 100. So that we have

800, 5 : 6, 3dg.
60 : 199.
5 : 6 )

Wherefore the field A is to the field B, as 5 to 6. :

436. Another Example. Let the field A be 721 feet long, 88
feet broad ; and let the field B be 660 feet long, and 90 feet broad ;
the relatlons will be-compounded in the following manner.

Relation of the lengths, 126, 8 : 15, ¢4, ¢¢¢
Relation of the breadths, %8, 8,2 : 7]

Relation of the fields A and B, 16 : 15. -
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437. Further, if it be required to compare two chambers with
respect to the space, or contents, we observe that that relation is
compounded of three relations ; namely, of that of the lengths, that
of the breadths, and that of the heights. Let there be, for example,
the chamber A, whose length = 36 feet, breadth = 16 feet, and
height = 14 {eet, and the chamber B, whose length = 42 feet,
breadth = 24 feet, and henght = 10 feet; we shall have these
three relations; .

For the length 3¢, ¢ : 1, 49.
For the breadth 1¢, 4,2 : @, 24.
For the height 14, 2 : 5, 14.

. 4 : 5 :
So that the contents of the chamber A : contents of the chamber B,
as 4:6.

438. When the relations which we compound in this manner are
equal, there result multiplicate relations. Namely, two equal rela-
tions give a duplicate ratio or ratio of the squares ; three equal re-
lations produce the triplicate ratio or ratio of the cubes,andsoon ;
for example, the relations ¢: 4 and a: b give the compound rela-
tion a a:b b; wherefore we say, that the squares are in the du-
pllcate ratio of thelr roots. And the ratio a:d multlphed thrice,
giving the ratio a* : 8%, we say that the cubes are in the triplicate
ratio of their roots.

439. Geometry teaches, that two circular spaces are in the du-
plicate relation of their diameters ;. this means, that they are to
each other as the squares of their diameters. :

Let A be a circular space having the diameter = 45 feet, and
B another circular space, whose diameter = 30 feet ; the first
space will be to the second, as 45 X 45 to 30 X 30; or, com-
pounding these two equal relations,

45,9,3 : 2,6 .
45,9,3 : 2,6, 30.
9 : 4.

Wherefore the two areas are to each other as 9 to 4.
440. It is also demonstrated, that the solid contents of spheresare
in the ratio of the cubes of the diameters. Thus, the diameter of a
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globe A, being 1 foot, and the diameter of a globe B, being 2 feet,
the solid contents of A will be those of B, as 1*: 2% of,as 1
to 8. : :
If, therefore, the spheres are formed of the same substance, the
sphere B will weigh 8 times as much as the sphere A.

441. Tt is evident, that we may, in this manner, find the weight
of cannon balls, their diameters and the weight of one, being given.
For example, let there be the ball A, whose diameter = 2 inches,
and weight = 5 pounds; and, if the weight of another ball be
required, whose diameter is 8 inches, we have this proportion,
2°:8° = 5 to the fourth term, 320 pounds, which gives the
- weight of the ball B. - For another ball C, whose diameter = 15
. inches, we should have;

2%:15° =5:.... Answer, 2199& Ib.
42, When the ratio of two fractions, as ;_z : 2, is required, we

may always express it in integer numbers; for we have only to
multiply the fractions by b d, in order to obtain the ratio a d: b c,
which is equal to the other; from which results the proportion -

a ¢
Z ‘—1' = d d:bec
If, therefore, a d and & ¢ have common divisors, the ratio may be

reduced to less terms. ‘Thus,
H:8p =15 x 86:24 X 25 =9:10.

443. 1f we wished to know the ratio of the fractions - and 3, it s

evident that we should have L % = b:a; which is expressed by

saymg, that two fractuma, whwh have unity for their numerator, are -
in the reciprocal, or inverse ratio of their denominators. The same
may be said of two Jractions, which have any common numerator ; for

¢ ¢
=b:a. Butif two fractzons have their denommatars equal,

a3
asg g they are in the direct ratio of the numerators ; namely,
a:b. hus,%:ﬁ=1’g:.1ﬂ¢=6:3l=2:l,andl

Y:¥=10:150r,=2:3.
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. 444. It is observed, that in the free descent of bodies, a body
- falls 16* feet in a second, that in two seconds of time it falls 64
feet, and that in three seconds it falls 144 feet ; hence it is conclu-
ded, that the heights are to one anoher as the squares of the times ;
and that, reciprocally, the times are in the subduplicate ratio of
the heights, or as the square roots of the heights. ‘

If, therefore, it be required to find how ldng a stone must take to
fall from the height of 2304 feet; we have 16 : 2304 = 1 to the
square of ‘the time sought. So ‘that the square | of the time sought
is 144 and, consequently, the time required is 12 seconds.

- It is required to find how far, or through what height, a
stone w1ll ‘pass, by descending for the _space of an hour; that is,
. 8600 seconds. We say, therefore, as the squares of the times,
“that is, 1* : 3600*; so is the given height = 16 feet, to the height
' required.

-1 : 12960000 = 16:.. .. 207360000 height required.
16 , :

77760000
1296

207360000

If we now reckon 19200 feet for a league, we shall find this height
to be 10800 ; and consequently, nearly four times greater thanthe
diameter of the earth. ‘ ,

446. It is the same with regard to the price of precious stones,
which, are not sold in the proportion of their weight; every body
knows that their prices follow a much greater ratio. The rule for
diamonds is, that the price is in the duplicate ratio of the weight,
that is to say, the ratio of the prices is equal to the square of the
ratio of the weights. The weight of diamonds is expressed in ca-
rats, and a carat is equivalent-to 4 grains; if, therefore, a diamond
of one carat is worth 10 livres, a diamond of 100 carats will be
worth as many times 10 livres, as the square of 100 contains 1 ;
so that we shall have, according to the rule of three,

1* : 100* = 10 livres,
or 1 : 10000= 10 ..... Answer, 100000 livres.

*15 is used in the original, as expreeeink the descent in Paris feet.
1t is here altered to English feet.
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There is a diamond in Portugal, which weighs 1680 carats ; its
price will be found, therefore, by making

1*: 1680*=101liv.:....o0r

1 @ 2822400 = 10 : 28224000 liv.

447. The posts, or mode of travelling, in France furnish exam-
ples of compound ratios, as the price is according to the compound
ratio of the number of horses, and the number of leagues or posts.
For example, one horse costing 20 sous per post, it is requxred to
. find how much is to be paid for 28 horses and 4% posts.

We write the first ratio of horses, 1 28,
Under this ratio we put that of the stages or posts, 2 : 9,

And, compounding the.two ratios, we have Q : 252,

Or, 1 : 126 = 1 livre to 126 francs, or 42 crowns.

Another Question. If I pay a ducat for 8 horses, for 3 Ger-
man miles, how much must I pay for thirty horses for four miles ?
The calculation is as follows :

48, 4 : 5, 15, w’
3 : 4,

1 : 5,=1 ducat : the 4th term, which will be 5 ducats.

448. The same composition occurs, when workmen are to be
paid, since those payments generally follow the ratio compourided
of the number of workmen, and that of the days which they have
been employed.

If, for example, 25 sous per day be given to.one mason, and it
is required to find what must be paid to 24 masons who have
worked for 50 days ; we state this calculation ;

1 @ A4

1 : 50

1 : 1200=25:.... 1500 franos.
25

20) 30000 (1500.

As, in such examples, five things are given, the rule, which
serves to resolve them, is sometimes called, in books of arithmetic,
The Rule of Five.
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CHAPTER X.

Of Geometrical Progressions.

449. A series of humbers, which are always becoming a cer-
tain number of times greater or less, is called a geometrical pro-
gression, because each term is constantly to the following one in
the same geometrical ratio. And the number which expresses
how many times each term is greater than the preceding, is called

the exponent. Thus, when the first term is 1 and the exponent
' =2, the geometrical progression becomes,

Terms1 2 3 4 5 6 7 8 9  &e
Prog. 1, 2, 4, 8, 16, 32, 64, 128, 256, &c.
the nuigbers 1, 2, 3, &ec. a}ways marking the place which each
térm holds in the progressmn

450. If we suppose, in general, the first term = a, and the ex-

ponent = b, we have the following geometrical progression;
1,2 3 4 5 6 17, 8 ....n

Prog. a, ab, ab®, ab® ab*, ab® abd® ab’....ad" .,

So that, when this progression consists of n terms, the last term is
== a 6"~'. 'We must remark here, that if the exponent  be greater
than unity, the terms increase continually ; if the exponent b =1,
the terms are all equal; lastly, if the exponent b be less than 1, or
a fraction, the terms continually decrease. Thus, when a =1
and b = %, we have this geometrical progression; '

L4 43, fas o o' 13w &e.
451. Here therefore we have to consider ;
I. The first term, which we have called a.
. II. The exponent, which we call 4.
III The number of terms, which we have expressed by n.
IV. The last term, which we have found = a ™.
So that, when the three first of these are given, the last term is s found
by multiplying the n — 1 power of b, or "', by the first term a.
If, therefore, the 50th term of the geometrica] progression 1, 2,
4,8, &c. were required, we should havea = 1, b = 2,'_ahd
n = 50 ; consequently the 50th term = 2*°. Now 2° being
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=512; 2'° will be = 1024. Wherefore the square of 2*°, or 2*¢,
== 1048576, and the square of this number, or 1099511627776 =
2¢°. Multiplying therefore this value of 2¢° by 2°, or by 512,
we have 2*° equal to 562949953421312.

452. One of the principal questions, which-occurs on this sub-
ject, is to find the sum of all the terms of a geometrical progression ;
we shall therefore explain the method of doing this. Let therebe
given, first, the following progression, consisting of ten terms;

1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
the sum of which we shall represent by s, so that
s=142+4+ 44+ 8+ 164 324 64 4 128 4 256 4 512;
doubling both sides, we shall have
2s=2+44+8+16 +32+64+ 128+256+512+1024
Subtracting from this the progression represented by s, there re-
mains s = 1024 — 1 = 1023 ; wherefore the sum requiredis 1023.
453. Suppose now, in the same progression, that the number of
terms is undetermined and = m, so that the sum in question, or
5, =1+24+2 42 42¢....2°\ If we multiply by 2, .
we have 2 s = 2 4 2* 4- 2° - 2‘ . «.. 2", and subtracting from

this equation the preceding one, we have s = 2* — 1. We see,
therefore, that the sum required is found, by multiplying the last

term 2", by the exponent 2, in order to have 2", and subtracting

unity from that product.

454. This is made still more evident by the following examples,
in which we substltute successively, for n, the numbers 1, 2 3,4,
&ec.
1=1; 14 2=3; l+2+4=‘7; 1424+ 448=15;

142 +4+8+16=31;1 42 +4+ 8+ 16 432==63, &e.
 455. On this subject the following question is generally proposed.
A man offers to sell his horse by the nails in his shoes, which are in
number 32; he demands 1 liard for the first nail, 2 for the second,
4 for the third, 8 for the fourth, and so on, demanding for each nail
twice the price of the preceding. It is required to find what would
be the price of the horse ?

This question is evidently reduced to finding the sum of all the
terms of the geometrical progression, 1, 2, 4, 8, 16, &c. continued
to the 32d term. Now this last term is 2°'; and, as we have
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alyeady ‘found 2*° = 1048576, and 2° == 1024, we shall have
2'° X.2'° == 2% equgl to 1073741884 ; and multiplying again
by 2, the last term 2% = 2147483648 ; doubling therefore this
number, and subtracting unity from the product, the sum requxred
becomes 4204967295 liurds. . These. liards make 10737418284
sous, and dividing by 20, we have 53687091 livres, 8 sous, 9 de-
niers for the sum required.

456. Let the exponent now be. = 3, and let it be required to
" find the sum of the geométrical progressxon 1, 3,9, 27, 81, 43,
729, consisting of 7 terms. Suppose it = s, so that

X c—-l+3+9+27+81+948+729;
we shall then have, multiplying by 3,
3:-3+9+2’7+81 +243+'7$Z9+218’1
and subtractmg the preceding series, we have’
23-—2187—-1 = 2186.

So that the double of the sum is 2186, and consequently the sum
requu'ed == 1093.

457. In the same progression, let the number of terms = n,and
the sum'=3; sothats =1 +343* 4 3* +3* +.. 3""
If we multiply by 3, we have 3 s=23 +3* 3% 4-3*+.. ‘
Subtracting from this the value of s, as all the terms of it, except the
first, destroy all ‘the terms of the value of 3 s, except the last, we -
shall have s = 3" — 1; therefore s = E—-g-—]i Bo that the sum
required is found by multiplying the last term by 3, subtracting 1
from the product, and dividing the remdinder by 2. This will
appear, also, from the following examples ;

" 3x9—
1=11+3—-§5§2-——_4 1+3+9— > 12135
3 X 27— . |
1+3+9+27———2-——=40;1+3+9+2‘1+81=
3 x 81 — . : '

458. Let us now suppose, generally, the first term == a, the ex-
ponént = b, the number of terms = x, and their sum == s, so that
s=a=ab+ab‘+ab‘+ab‘+ Loabt,

If we multiply by b, we have ’
Ed. Alg. 19
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bs=ab+ab'4-ad* 4 ab* 4ab®4....al",
and subtracung the above equation, there remains .
(b—l)s = ab‘-—a,

whence we easty deduce the sum required s = E?T__“ Cmue-
quently the sum of any geometrical progression is found by multi-
plying the last term by the exponent of the progression, subtracting
the first term from the product, and dividing the remamder by
the exponent minus unity.

459. Let there be a geometrical progression of seven terms, of
‘which the first=3; and let the exponent be = 2 ; we shall then
have a = 3, = 2, and n = 7; wherefore the last term —= X 2°,
or 3 X 64 =192; and the whole progression willbe ..

3, 6, 12, 24, 48, 96, 192.. o

Further, if we multiply the last term 192 by the exponent 2,
- we have 384 ; subtracting the first term, there remains 381 ; and
dividing this by 5 —1, or by 1, we have 381 for the sum of the
whole progression. )

460. Again, let there be a geometricdl progression of six terms;
let 4 be the first, and let the exponent be =§. The progression is

) 47 6’ 9’ %7, gll’g%i' .

If we multiply this last term 242 by the exponent #, we shall

have Z2; the subtraction of the first term 4 leaves the remainder
&, whieb, divided by b — 1 =}, gives 2§5 = 83}."

461. When the exponent is less than 1, and consequently, when
the terms of the progression continually diminish, the sum of such
a decreasing progression, which would go on to mﬁmty, may be
accurately expressed. :

- .For example, let the first term = 1, the exponent = 4, and
the sum = s, so that ¢

S—1+i+i+s+1’a+n’w+a‘:+&¢-

ad infinitum.
If we multiply by 2, we have.

2s=2+ i+ttt e

ad mﬁmtum
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And, subtracting the preceding progression, there rem#ins 3 =2
for the sum of the proposed infinite progression.

462. If the first term = 1,the exponent = b and the sum =1s;
so that

a==1'+1}+}+2lr+glr+&c.admﬁmtum.
Multiplying the whole by 3, we have ‘
3s=3+4+1+4 3+ 1 + 7 + &c. ad infinitum ;
and subtracting the value of s, there remains 2 s = 3; wherefore
the sum s = 1}.

463. Let there be a progression whese sum = 3, first term =2,
and exponent —%, so that s = 2 + 34+ % + 32+ A% + &e.
ad infinitum.

Multiplying by g, we have 48 =§ +2+§+ +§-}+{»}+
&c. ad infinitum. Subtracting now the progression s, there remains
% # = 3; wherefore the sum required = 8.

464. If we suppose, in general, the first term = a, and the ex-

ponent of the progression — g, S0 that this fractlon may be less

than 1, and consequently c¢ greater than b; the sum of the pro-
gression, carried on, ad infinitum, will be found thus;

Make:=a+ AL S VS

Multiplyiig by o we shell have

‘ ' LR ¥
2—::’?.&“:: +al: + = + &ec. ad infinitum.
And subtracting this equatxon from the precedmg, there remains
¢ ——) s =a.
Consequently
a
=iy
c A
If we multiply both terms of this fraction by ¢, we have
' ac K
t=i=T

The sum of the mﬁmte goometncal progressnon proposed is, there-
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fore found, by dividing the first term @ by 1 minus the exponent,
or by multiplying the first term @ by the denominator of the expo-
nent, and dividing the product by the same denominator dxmlmshed
by the numerator of the exponent. : -

465. In the same manner, we find the sums of progressxons, the
terms of which are alternately affected by the signs + and —.
Let for example,

b ab abd® ab? ab

c ¢ ¢’ ra ¢
And, adding this~equation to the preceding, we obtain
.0+§c=m '
Whence we deduce the sum required,

a __ ac’
s = 1——”_-, o=y
¢
466. We see, then, that if the first term a = £, and the expo-
nent-—i-,thatlstosay,b_. 2 and ¢ = 5, we shall find the sum
of the progression § + s + & + &% + &c. = 1; since, by
subtracting the exponent from 1, there remains §, and by dividing
the first term by that remainder, the quotient is 1.
Further, it is evident, if the terms be alternately positive and
negative, and the progression assume this form;

-

- s+ i — Al + &e:
the sum will be
a 3 3
IF07177
¢

467. Another Example. Let there be proposed the infinite
progression, o
‘ n+rav+mw+wﬁva+ru’¢w+&°

The first torm is here %, and the exponent is ;. Subtracting
this last from 1, there remains %, andif we dmde the first term by
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this fraction, we have 4 for the sum of the given progression. So
that taking only one term of the progression, name]y, <5, theerror
would be .

Taking two terms + rﬁ—u ﬁﬁ;, there would still be want-
ing t§v to make the sum = 4.

468. Another Ezample Let there be given the infinite pro-
gression, )

9+ o+ by + riow + roboy + &o.
The first term is 9, the exponent is y. So that 1, minus the

exponent, = 1 ; and —3— = 10, the sum required.
‘This series is expressed by a decimal fraction, thus 9 9999999, &c.

CHAPTER XI.

Of Infinite Decimal Fractions.

469. Ir will be very necessary to show how a vulgar fraction n;ay
be transformed into a decimal fraction; and, conversely, how we
may express the value of a decimal fra.ctxon by a vulgar fraction,

470. Let it be required, in general, to change the Jraction > into

b

"a decimal fraction ; as this fraction expresses the quotient of the ‘

division of the numerator a by the denominator b, let us write, in-
stead of a, the quanmy 2,0000000, whose value does not ot all differ
Jrom that of a, since it contains neither tenth parts, nor hundredth
parts, &c. Let us now divide this quantity by the number b, ac-
cordmg to the common rules of division, observing to put the point
in the proper place, which separates the decimal and the integers.
This is the whole operation, which we shall illustrate by some exam-
ples. ~

Leet there be given first the fraction 4, the dwmon in decnnals
will assume this form,

2) 1,0000000' " 1
"~ 0,5000000 — &' '

Hence it appears, that } is equal to0,5000000 or to 0,5 wh;ch

. e e
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is sufficiently evident, since this decimal fracuon represents 5
which is equivalent to .

471 -Let } be the given fraction, and we have,

3) 1,0000000
~0,3333333 % §

" This shows that the decimal fractlon, whose value-is = }, can-
uot, strictly, ever be discontinued, and that it goes on ad infinitum
repeating always the number 3. And, for this reason, it has been
already shown, that the fractions +% - iy + 1w + Todoy &c.
ad infinitum, added together make 4.

The decimal fraction, which expresses the value of %, is also con-
tinued ad infinitum, for we have,

3) 2,0000000 2
—mm C. = 5.
And besides, this is evident from what we have just said, because
3 is the double of 4. -

472. If } be the fraction proposed we have

4) 1,0000000 _ 1
0,9500000 ¢ = 7'

So that } is equal to 0,2500000, or to 0,25 ; and thisis ev1dent,
since & + thy = A = -
In like manner, we should have for the fractiop 3,
‘ 4) 3,0000000 3
o 0,7500000 — .
Sothat2~__075 and in fact 75 + nu_ﬁ,ﬁ,_;
‘The fraction £ is changed into a decimal fraction, by making
‘ 4) 5,0000000 5
1 2500000 'y
Now l + 136!; = £,
473. In the same maaner, } will be found equal to 0,2 i= 04;
3=06;4=08;¢=1; §=1,2 &
When the denominator is 6, we find } = 0,1666666, &c. whxch;s

' equal to 0,666666 — 0,5. Now 0666666—%, and 0,5 =4

wherefore 0,1666666 — § — § =

We find, also, 3 = 0,333333, &c = #; but § becomes
0,5000000 = 4. Further, § = 0,833333 — 0,333333 - 0,5,
thatistosay, 3 4+ 4 =4§. .
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. 474. When the denommator is 7, the decimal fractions become
more complicated. For example, we find 4 = 0, 142857 however
it must be observed, that these six figures are repeated continually.
To be convinced, therefore, that this decimal fraction precisely ex-
Ppresses the value of 4, we may transform it into a geometrical
progression, whose first term is = Ty and the exponent

Hu"c’nn‘%

= rovduoy; and consequently, the sum (art. 464) = f p—
5oT

(mu]tlplymg both terms by 1000000) = 348835 — -}

475. We may prove, in a manner still more easy, that the deci-
mal fraction which we have found is exactly ==} ; for substituting
for its value the letter s, we have

s = 0,142857142857142857, &c.

10 s = 1, 42357142857142857, &c.

100 s = 14, 2857142357142857, &c.
1000 s = 142, 857142857142857, &c.
10000 s — 1428, 57142857142857, &ec.
100000 s = 14285, 7142857142857, &e.
1000000 s = 142857, 142857142857, &e.
Subtract s = 0, 142857142857, &c.

1999999 s = 142857. '

And, dividing by 999999, we have s = 48§55 = 4. Where-
fore the decimal fraction, which was made = s, is = $..

476. In the same manner # may be transformed into a decimal
fraction, which will be 0,28571428, &c. and this enables us to find
more easily the value of the decimal fraction, which we have sup-
posed = s; because 0,28571428, &c. must be the double of it,
and consequently =2s. For we have seen that

100 s = 14,28571428571 &c.

So that subtracting s = 0,28571428571 &c.

there remains’ 98s =14
wherefore s=3 = 4. :
We.also find $ = 0,42857142857 &c. which, accordmg to our
supposition, must be = 3 ¢ ; now we have found that
10 s = 1,42857142857 &c.
So that subtracting 3 s = 0,42857142857 &c.

" we have - 7 s = 1, wherefore s =4
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477. When a proposed fraction, therefore, has the denominator 7,
the-decimal fraction is infinite,and 6 figures are continually repeated.
_ The reason'is, as it is easy to perceive, that when we continue the
division we must return, sooner or later, to a remainder which we
have had already. Now,in this division, 6 different numbers on}y
can form tlie remainder, namely, 1, , 3, 4, 5, 6; so that, after the
sixth division, at furthest, the same figures must returnl but when
the denominator is such as to lead to a division without remamder,
these cases do not happen.

478. Suppose, now, that 8 is the denominator of the‘fractlon
proposed-; we shall find the following decimal fractions ;

=0,125; § = 0,25; §=10375; $ =0,5; § = 0,625;
§=0,75; § = 0,875; &e. -

If ‘the denorhmator be 9, we have 3 = 0,111 &c ; G = 0,222
&c,,——-0333&c. '
If the denominator be 10, we. have

| = 0,1; g=02; f = 03.
This is evident from the nature of the thing, as also that 4y == 0,01;
thit 5= 0,37; that 33 0,256 that yoiky = 0,0024 &c.
479. If 11 be the denommator of the given fraction, we shall have
Y == 0,0909090 &c. Now, suppose it were required to find
the value of this decimal fraction ; let us'call it 8, we shall have

3 ==0,090909, and 10 s = 00,909090; further 1003—909090..

If therefore, we subtract from the last the value of s, we shall have
99 s = 9, and consequently s = 5 = 7&%. We shall have, also,
2 = 0,181818 &c.; & = 0,2727,27 &e.; = 0,545454 &e.

480. There is a great number of decimal fractions, therefore, in

which orte, two, or more figures constantly recur, and. which ‘con-

tinue thus to infinity. Such fractions are curious, and we shall
show how their values may be easily found.
Let-us first suppose, that a single figure is constantly repeated,
and Jet us represent it by a, 50 that s = 0,agagaas.. We have’
‘ 10 s = a,asagaad
and subtracting s = 0,aaaadan

©! =
s

‘we have " 935 =a; wherefore s =
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" When two ﬁgures are repeated, as a b, we have s == 0,abababa.

Therefore 100 s = ab,ababab ; and if we subtract s from it, there

remains 99 s = a b; consequently & = %Z.

When three figures, as a b ¢, are found repeated we hnve
s = 0,abcabeabe ; consequently, 1000 s = abc,abcabe ; and sub-
tract s fiom it, there remains 999 s == a b ¢; wherefore s == gg;’
and so on,

 Whenever, therefore, a de¢imal fraction of this kmd occurs, it is
eesy to find its value. Let there be given, for example, 0,296296,
its value will be §§§ = r, dividing both terms by 27.

This fraction ought to give again the decimal fraction proposed;
. and we may easily be convinced that this is the real result, by di-
viding 8 by 9, and then that quotient by 3, because 27 =3 X 9.
We have 9) 8,0000000 -

3) 0,8988888

0,206296%, &c.
which is the decimal fraction that was proposed.

481. We shall give a curious example by changing the fraction
T 0

IX9XIXAIXE X6X T XBXIX m’,intoadecimalfracnon.
The operation is as follows :
. 2) 1,00000000000000

3) 0,50000000000000
4) 0,16666666666666
5) 0,04166666666666

6) 0,00833333333333

-7) 0,00138833888888

8) 0,00019841269841

9) 0,00002450158730

 10) 0,00000275573192

0,00000027557319
Eu. Alg. 20




SECTION IV.

OF ALGEBRAIC EQUATIONS, AND OF THE RESOLUTION OF THOBE
EQUATIONS. .

CHAPTER L

Of the Solution of Problems in general.

AnrticLe 482. The principal object of Algebra, as well as ofall
the parts of Mathematics, is to determine the value of quantities
which were before unknown. This is obtainedby considering atten-
tively the conditions given, which are always expressed in known
numbers. For this reason Algebra has been defined, The science
which teaches how to determine unknown gquantities by means of
known quantities.

483. The definition which we have now given, agrees with all
that has been hitherto laid down. We have always seen the
knewledge of certain quantities lead to that of other quantities,
which before might have been considered as unknown.

Of this, addition will readily furnish an example. To find the
sum of two or more given numbers, we had to seek for an unknown
number which should be equal to those known numbers taken to-
gether.

In subtraction we sought for a number which should be equal to
the difference of twa known numbers.

A multitude of other examples are presented by multiplication,
division, the involution of powers, and the extraction of roots. The
question is always reduced to finding, by means of known quanti-
ties, another quantity till then unknown.
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- 484. In the last section also, different questions were resolved,
in which it was required to determine a number, that could not be
deduced from the knowledge of other given numbers, except un-
der certain conditions.

All those questions were reduced to finding, by the aid of some
given pumbers, a new number which should have a certain connex-
ion with them ; and this connexion was determined by certain con-
ditions, or properties, which were to agree with the quantity sought.

485. When we have a question to resolve, we represent the num-
ber sought by one of the last letters of the alphabet, and then con-
stder in what manner the given conditions can form an equality

. between two quantities. This equality, which is represented by a

kind of formula, called an equation, enables us at last to deter-
mine the value of the number sought, and consequently to resolve
the question. Sometimes several numbers are sought; but they
are found in the same manner by equations.

. 486. Let us endeavour to explain this further by an example.
Suppose the following question, or problem was proposed.

Twenty persons, men and women, dine at a tavern; the share
of the reckoning for one man is 8 sous,* that for one woman is 7
sous, and the whole reckoning amounts to 7 livres 5 sous; required,
the number of men, and also of women?

In order to resolve this question, let us suppose that the number
of men is = z; and now considering this number as known, we
shall proceed in the same manper as if we wished to try whetherit
corresponded with the conditions of the question. Now, the number
of men being = z, and the men and women making tegether
twenty persons, it is easy to determine the number of the women,
having only to subtract that of the men from 20, that is to say, the
number of women = 20 — z.

But each man spends 8 sous ; wherefore z men spend 8 x sous.

And, since each woman spends 7 sous, 20 — z women must
spend 140 — 7 =z sous. ' '

So that adding together 8 = and 140 — 7 z, we see that the
whole 20 persons must spend 140 4-  sous. Now, we know
already how much they have spent ; namely, 7 livres 5 sous, or 145
sous ; there must be an equality therefore between 140 4 x and

* A sous is g of a livre; a livre § of a crown, or 17 cents 6 mills.
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145 ; that is to say, we have the equanon 140 + ¢ = 145, and
thence ‘we easily deduce @ == 5.

So that the company consisted of 5 men aud. 15 women.

487. Another question of the same kind. :

Twenty persons, men and women, go to a tavern; the men
spend 24 florins, and the women as much’; but it is found that
each man has spent 1 florin more than each woman. Required,
the sumber of men and the number of women ? L

. Let the mumber-of men = .

That of the women will be = 20 — z.

- Now these » men having spent 24 florins, the share:of each
L, 24
man is - florins.

Further, the 20 — x women havmg also -spent 24 ﬂonns, the
share of each womain is 2024 A —— ﬂorms

But we know that the share of each woman is one florin less than
that of each man ; if, therefore, we subtract 1 from the share of &
man, we must obtain that of a woman ; and consequently

PZ S 24
: 1 =@z

Thls, therefore, is the equatlon from which we are to deduce the
value of z. 'This value is not found with the same ease as in the
precedmg question ; but we shall soon see that z = 8, which value -
corresponds to the equatlon for ¥ — l = {# includes the equal-
ity 2 = 2.

488. 1t is evident how essential it is, in all problems, to consider
the circumstances of the question attentively, in order to deduce
from it an equation, that shall express by letters the numbers sought
or unknown. After that, the whole art consists in resolving those
equations, or deriving from them the values of the unknown num-
bers ; and this shall be the subject of the present section.

489. We must remark, in the first place, the diversity which
subsists among the questions themselves. In some, we seek only
for one unknown quantity ; in others, we have to find two, or more ;
and it is to be observed, with regard to this last case, that in order
to determine them all, we must deduce.from the circumstances,
or the conditiops of the problem, as many equations as there are
unknown quantities. '
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490. It must have already been. perceived, that anequation con-
sists of two parts separated by the sign of equality, =, toshew that
those two quantities are equal to one another. We are often obliged
ta perform a great number of*transformations on those two parts, in
* order to deduce from them the value of the unknown quantity ; but
these transformations must be all founded on the following princi-
ples; that two guantities remain equal, whether we add to them,
or subtract from them equal quantities ; whether we multiply them,

or divide them by the same number ; whether we raise them both
- to the same power, or extract their roots of the same degree.

491. The equations, which are resolved most easily, are those in
which the unknown quantity does not exceed the first power, after
the terms of the equation have been properly arranged ; and we call
them simple equations, or equations of the first degree. But if,
after having reduced and ordered an equation, we find in it the square,
or the second power of the unknown-quantity, it may be called an
"equation of the second degree, which is more difficult to resolve. -

' CHAPTER IL

Of the Resohition of Simple Equations, or Equations of the
First Degree.

492. WrEN the number sought or the unknown quantity, isre-
presented by theletter z, and the equation we have obtained is such,
that one side contains only that z, and the other simply a knowa
number, as for example, z = 25, the value of  is already found.
We must always endeavour, therefore, to arrive at such a form,
however compllcated the equation may be when first formed. We
shall give, in the course of this section, the rules whlch serve to
facilitate these reductions.

493. Let usbegin with the simplest cases, and suppose, first, that
we have arrived at the equation z + 9= 16 ; we see immediately
that = 7. And, in general, if we have found z 4 a =1, where'
a and b express any known numbers, we have only to subtract «



158 Algebra. Seat. 4

from both sides, to obtain the equation 2 = b — a, which indi-
.cates the value of z.

494. If the equation which we have found sz —a=2>,ve
add a to both sides, and obtain the value of z = b + @.

We proceed in the same manner, if the equation has this form,
z—a==aa 4 1 ; for we shall haveimmediately r =aa 4 a 4 1.

In this equation, z — 8 a4 = 20 — 6 «, we find

:c—-20—6a+8a,ora:=20 + 2a.

And in this, 2+ 66 =20 4 3a,we havex =2043a—6a,
orz =20 —38a.

495. If the original equation has this form,z —a 4 b== ¢, we
may beginby adding a to both sides, which will give z +b=c+ a;
and then subtracting b from both sides, we shall inde —=¢ 4+ ¢ — b&.
But we might also add 4+ a — b at ‘once to both sides; by this
we obtain immediately £ = ¢ 4+ a — b.

So in the following examples: - '
fr—2a+8b=0, wehavew=20—3b
Ife—3a+42b=25 4+ a4 2b,wehaver =25 4 4a.
Ife—9+4+6a=25 + 2a, we have x = 34 —4 a.

496, When the equation which we have found has the form

a & = b, we only divide the two sides by @, and we have x = ‘—l'

Baut if the equation has the form a 4 b — ¢ = d, we mustfirst
make the terms that accompany a « vanish, by adding to both sides
— b 4 ¢; and then dividing the new equation,ax == d—b4-¢,
d—2b .
by a, we shall have z = — p _+ °
We should have found the same value by subtracting 45 — ¢
from the given equation ; that is, we should have had, in the same

d—b+4c

Hence,

fom,az=d—b+ c,and x = p
Ifeax +5=17,wehave 20 =12, and z = 6.

If32—8="17, wehave 3x =15, and x = 5.
If4cc—5—-3a——l5+9a,wehave4m—-20+12a,

and, consequently, 2 =5 + 3 a.
497. When the first equation has the form ~- = b, we multxply
both sides by a, in order to have 2 = a &.

But if we have 2 v+ b — ¢ == d, we must first make
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-=d—b+4c¢

afterwhichiveﬁndaﬁ:(d—b+c)d=.ad-—-ab+c.
Letdx—3=4,wehave 4 2 =7, and z = 14.
Letix—142a=3 + a, we have 4 z=4 — a4, and
r=12 —3a. . :
Let —

a—1

—1=a, we have ai =a+l,andz=aa-—1.

I

498. When we have arrived at such an equation as Ebf =c,we

first multiply by b, in order to have ¢ 2 b ¢, and then dividing

bya,weﬁndw—%g

If ab_w — ¢ = d, we begin by giving the equation this form

% =d 4 2} .
after which we obtain the value of a 2 = b d + b ¢, and that of
bd4+be

P |

Let ussuppose § z—4 =1, weshall have § 2 =5, and 2z =15;

wherefore x = 4p, or 7.
tz43=5, wehaveiw—S—Q =4 ; wherefore 30 =18,
and z == 6.

499. Let us now consider the case, which may frequently occur,
in which two or more terms contain the letter x, either on one side
of the equation or on both.

If those terms are all on the same side, as in the equation
2 4 % 4 5 =11, we have w+,w—-6 or 3 r =12, and
lastly, z = 4.

Let 2 4 3 z 4+ 3} = 44, and let the value of z be requxred tif
we first multiply by 3, we have 4 # + § # = 132; then multi-
plying by 2, we have 11 z = 264 ; wherefore z = 24. We
might have proceeded more shortly, beginning with the reduction
of the three terms which contain z, to the single term % x; and
then dividing the equation %* # = 44 by 11, we should have had
1 ¢ = 4, wherefore 2 — 24.

let 42 —3 24+ § 2= 1, we shall have, by reduction,
S e=1,and » = 2%.
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Let, more generally, a 2 — b x + ¢ x==d ; thisisthesame as
d
(a —b + ¢) x = d, whence we derive ey

500. When there are terms containing # on both sides of the
equation, we begin by making such terms vanish from the side
from which it is most easily done ; thatis to say,in which there are
fewest of them.

If we have, for example, the equation 3 ¢ 4+ 2 =« 4 10, we
must first subtract 2 from both sides, which gwes Qx4+ 2=10;
wherefore 2 x = 8, and * = 4.

Letz 4+ 4 =20 —2z; ltlsevadentthat2m+ 4 =20; and
consequently 2 # = 16, and 2 = 8.

Let # 4+ 8 =232 — 3 x; we shall have 4 2 + 8 ==32 then
42=2,andz=6.

Let 15 — 2 == 20 — 2 =, we shall have 15 + x =20, and
z=25.

Let1l 4+ =25 — } =, we shall bave 1 4 } « =5 after

‘that §x=14; 32 =28; lastly, 2 = § =24.

If $ — § # = } — } 'z, we must add } 2, which gives }

‘{5 @; subtracting 4, there remains (& 2 = %, and muluplymg by
12, we obtain ¥ = 2. '

If 1} — § =14+ 3z, weadd 3 z, which gives 13 =} 4+ L z.
Subtracting }, we bave ] x = 1}, whence we deduce 2 =1 == T
by multiplying by 6, and dividing by 7.

501. If we have an equation, in which the unknown number r
is a denominator, we must make the fraction vanish, by muluplymg
the whole equation by that denommator :

Suppose.that we have found T — B =12, we first add 8, and

have'l—::—o = 20; then multiplying by x, we have 100 = 20 x;
and dividing by 20, weé find x = 5.

Let -5—-{-—13 =T,

If we multiply by z — 1, we have 5 « + 3=T2—1.

Subtracting 5 z, there remams 3=2z—1.

Addmg 7, we have 2 @ ==10. Wherefore r=2>5. .

502. Sometimes, also, radical signs are found in equanons of the
first degree. For example, a number « below 100 is required,and

such, that the square root of 100 — 2 may be equal to 8, or

PN

/(100 —z) = 8; the square of both sides will be 100 — 2 = 64,

-—
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and addmg z we have 100 = 64 + «'; whence we obtain
= 100 — - 64 == 36. C
Or, since 100 — x == 64, we m:ght have  subtracted 100 from
both sides ; and we should then bave had—z = — 36 ; whence,
muluplymg by — 1,2 = 386.

CHAPTER III

Of the Solutwn of Quemom relatmg to the precedmg Chapter.

503. Question 1. To divide 7 into two such parts, that the
greater may exceed the less by 3.

Let the greater part = z, the less will be == 7 ~— x; so that
r=T1—2+4 3orx=10—=z; addmgm,WehaveQm-—'w;
and, dividing by 2, the result is z = 5.

Answer. The greater part is therefore 5, and the less is &

Question I1. Tt is required to divide a into two pans so that the
greater may exceed the less by 6.~ - - .

Let the greater part = x, the other will be 6.—x; 50 that
a:=a—a:+ b; addmgw,we have 2z =a +b and dm;--

dmgby2 w_a+b

Another Solutwn Let the greater part = z; and, asit exoeedsv
the less by , it is evident that the less is smaller than the otherby
b, and therefore must be = 2 — b. Now these two parts, taken
tegether, ought to make a; so that 2 2 — b=a; addmg b, we

: ]
have 2 2 = a + b, wherefore 2 = %, which is the vg]}m of

the greater part; that of the less will be’ o
| a+b — 5,0 a-{g—b ng,ora_g_b" »
504. Questwn II. A father, who has three sons, ledves them
1600 crowns. The will specifies, that the eldest shall have 200
* crowns more than the second, and that the second shall have 100
crowns more than the youngest. Required the share of each? '
Eul. Alg. 21
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Let the share of the third son == z; then, that of the.second
will be = = + 100, and that of the first = @ 4 300. Now these
three shares make up together 1600 crowns. We have, therefore,

-3z 4+ 400 = 1600
3z = 1200
andx = 400.

Answer. The share of the youngest is 400 crowns ; that of the
second is 500 crowns; and that of the eldest is 700 crowns.

. 505. Question IV. A father leaves four sons, and 8600 livres ;
according to the will, the share of the eldest is to be double that of
the second, minus 100 livres ; the second is to receive three times
as much as the third, minus 200 livres ; and the third is to receive
four times as much as the fourth, minus 300 livres. Reqmred
the respective portions of these foursons? - ‘

Let us call z the portion of the youngest; that of the third son
will be = 4 2 — 300 ; that of the second = 12 & — 1100, and
that of the eldest = 24 z — 2300. The sum of these four shares
must make 8600 livres. We have, therefore, t_h‘e equation

41 z — 3700 = 8600, or 41 z = 12300, and = == 300.

Answer. The youngest must have 300 hvres, the third son_900,
the second 2500, and the eldest 4900, ‘

506. Question V. A man leaves 1100 crowns to be divided be-
tween his widow, two-sons, and three daughters. -He intends that
the mother should receive twice the share of a son, and each son
to receive twice as much as a daughter. .Required, how much .
_ each of them is to receive ?

 Suppose the share of a daughter = z, that of a son is conse-
quently == 2 z, and that of the widow = 4 z; the whole inherit-
ancelstherefore 3z4 4« +4a: so!batllz‘—- 11000, and
z = 1000: :

. Answer. Each daughter receives 1000 crowns,
So that the three receive in all 3000
Each son receives 2000 crowns, C
So that both the sons receive 4000

" And the mother receives . 4000

~ Sum 11000 crowns.
507 Quemon VI. A father intends, by his will, that his three
lon; should share his property in the following manner; the eldest
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is to receive 1000 crowns. léss .than half the whole fortune ; the
second is to receive 800.crowns less-than the third of the. whole
property ; and the third is to have 600 crowns less than the fourth
- of the property. -Required, the sum of the whole fortune, and
the portion of each son ?-
Let us express the fortune by z.
The share of the first son is }  — 1000
That of the second = = }x— 800
~ Thatof thethird - .  }2x— 600. N
So that the three sons receive inall } 2 4 g2 +¢ a:—SMOO,
and this sum must be equal to 2.
We have, therefore, the equatlon He— 2400— x, o
Subtracting z, there remams, vr .— 2400 =0.
Adding 2400, we have vy x = 2400, Lastly, multiplyiag by
12, the product is 2 equal to 28800.
Answer. The fortune consists of 28800 crowns, and
The eldest of the sons receives 13400 crowns

The second ‘ 8800
. The youngest 6600
28800 émwns.

508. Quemon VIL A father leaves four sons, who share hls
property in the following manner : :

The first takes the half of the fortune, minus 3000 lwres.
- The second takes the third, minus 1000 livres.

The third takes exactly the fourth of the property.

The fourth takes 600 livres, and the fifth part of the prope.rty.

What was the whole fortune, and how much did each son re-
ceive ? '
. Let the whole fortune be = z;

The eldest of the sons will bave } * — 3000

The second L } = — 1000
The. third ‘ ’ Py ,
The youngest . 1z 4 600.

The four will have received in aljr 43+ },a: -|-'{-a=.—-34w,
which must be -equal to . K

Whence results the equation § & — 3400 = z; .

Subtracting 2, we have 3} # — 3400 = 0;

Adding 8400, we have 3§ v = 3400;
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Dividing by 17, we bave #; + = 200;
Multiplying by 60, we have x == 12000.
Answer. The fortune consisted of 12000 livres.

The first son received 3000
The second 3000
The third 3000
The fourth 3000

509. Question VIII. To ﬁnd a number such, that if we add to
it its half, the sum exceeds 60 by as much as the number itself is
léss to 65.

" Let the number = z, then 2 1-}:—60 65 — x; thatis
to say, } * — 60 = 65 — z;

Adding , we bave § * — 60 = 65;

Adding 60, we have §} x = 125;

Dividing by 5, we have § x = 25

Multiplying by 2, we have 2 = 50.

Answer. The number sought is 50.

510. Question IX. To divide 32 into two such parts, that if the
less be divided by 6, and the greater by 5, the two quotients taken
together may make 6.

Let the less of the two parts sought = x; the greater will be
== 82 — z; the first, divided by 6, gives g ; the second, divided
by 5, gives 32;_3; ﬁow,g + 32——;-—-—'1: == 6. So that multiplying
by 5, we have § ¢ + 32 — 2 = 30, or — } = + 32 = 30.

Adding } z, we have 32 = 30 + } .

Subtracting 30, there remains 2 == § z.

Mutltiplying by 6, we have 2 = 12.

Answer. The two parts are ; the less = 12, the greater = 20.

511. Question X. To find such a number, that if multiplied by
b, the product shall be as much less than 40, as the number itself

. is less than 12.

Let us call this number z. It is less than 12 by 12 — z.
Taking the number z five times, we have 5 z, which is less than
40 by 40 =— 5 z, and this-quantity must be equal to 12 — .

We have therefore 40 — 5z = 12 — a.

Adding 5 z, we have 40 = 12 + 4 «.

Subtracting 12, we have 28 = 4 x.

Dividing by 4, we have x = 7, the number sought.
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‘Now, since the number of terms is 8, if we' suppose the differ-
ence = z, we have only to seek for the eighth term upon this sup-
position, and to make it = 10. The sécond term is'5 <4 z, the
third is 5 4 2 z, and the eighth is 5 4- 7 z; so that ‘

54+ Tz=10
Tz= 5§
andz = #$

Answer. The difference of the progression is §, and the number
of terms is 8 ; consequently the progression is )
1 2 3 4 5 6 171 8
5+ 58+ 64+ 7h+ 74 + 84 + 9+ 10
the sum of which = 60.
515.. Question XIV. To find such a number that if 1 be sub-
tracted from ita double, and the remainder be doubled, then if 2 be

‘subtracted, and the remainder divided by 4, the number resulting

from thes'e operations shall be 1 less than the number sought.
: Suppose this number = x ; the double is 2 z; subtracting 1,
there remains 2 2 — 1; doublmg this, we have 4 2 — 2; sub-
tracting 2, there remains 4 x— 4 ; dividing by 4, we have x —1 ;
and this must be one less thanz; so that, g — 1 =2 — 1.

But this is what is called an identical equation ; and shows that
x is indeterminate ; or that any number whatever may be subsutu-
ted for it.

516. Question XV. I bought some ells of cloth.at the rate of
7 crowns for 5 ells, which I sold again at the rate of 11 crowns for
7 ells, and I gamed 100 crowns by the traffic. How much cloth
was there ? o '

Suppose that there were x ells of it; we must first see how
umuch the cloth cost. This is found by the following proportion :

If five ells cost 7 crowns ; what do x ells cost?

Answer, } & crowns. '

This was my expenditure. Let us now see my receipt; we
must make the following proportlon as 7 ells are ‘to 11 crowns,

so are  ells to ¥ = crowns.

This receipt ought to exceed the expenditure by 160 crowns ;
we have, therefore, this equation,
- Yoo=%2 4 100;
Subtracting % x, there remains 4 2 = 100.
Wherefors 6 x = 3500, anda:==583,
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. Answer. There were 65834 ells, which. were bought for 816§
crowns, and sold again for 9164 crowss, by which means the pro-
fit was 100 crowns.

517. Question XVI. ‘A person buy’s 12 pieces of cloth for 140
crowns. Two are white, three are black, and seven are blue. - A
piece of the black cloth costs two crowns more than a piece of the
white, and a piece of blue cloth costs three crowns more than a
‘pieee of black. - Required the price of each kind ?

Let a white piece costx crowns ; then the two piecesof this kind.
will cost 2 2. Further, a black piece costing x + 2, the three
pieces of this colour will cost 3 # + 6. Lastly, a blue piece costs
x + 5 ; wherefore the seven blue pieces cost 7 # 4 35. - So that
the twelve pieces amount in all to 12 z + 41.

Now, the actual and known price of these twelve pieces is 140
orowns ; we have, therefore, 122 4+ 41 = 140, and 1% o = 99‘
wherelore ¢ = 8¢ ;

- So that a piece of white cloth costs 8} crowns ; a piece of black
cloth costs 10} crowns, and a piece of blue cloth costs 13} ¢rowns.

518. Question XVII. A man, having bought some nutmegs,
says that three nuts cost as much more than one sous as four cost
him more than ten liards: Required, the price of those nuts ?

We shall call  the excess of the price of three nuts above one
sous, or four liards, and shall say ; If three nuts cost z + 4 liards,
four will cost, by the condition of the question,  + 10 liads.
Now, the price of three nuts gives that of four nuts in another way
also, namely, by the rule of three. Wemake3:z + 4=4:
Answer, 4 x 4 16 :

3
Sotht4‘”+16 =2 +10; or, 4z + 16 =32 + 30;
wherefore ¢ + 16 '
and x —-14

Answer. Three nuts cost 18 liards, and four cost. 6 sous ;
- wherefore each cost 6 liards.

519. Question XVIII. A certain person has two silver cups,
and only ane cover for both.,. The first cup weighs 12 ounces,
and if the cover be put on it, it weighs twice as much as the other
cup ; but if the other cup be covered, it weighs three times as

much as the first : Requxred the weight of the second cup and
that of the cover?
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Suppose the weight of the cover = @ ounces ; the first cup being
covered will weigh » 4 I12ounces. Now this weight being double
that of the second cup, this cup must weigh {  + 6. If it be cov- -
ered, it will weigh § 2 4 6 ; and this weight ought to be the triple
of 12, that is, three times the weight of the first cup. We shall
therefore have the equation § 2 4 6 == 36, or fo= =230 ; where-
fore 4 z = 10 and x = 20.

Answer. The cover weighs 20 ounces, and the second cup
weighs 16 ounces.

520. Question XIX. A banker has two kinds of change ; there
must be & pieces of the first to make a crown ; and there must be &
pieces of the second to make the same sum. A person wishes to
have ¢ pieces for a crown ; how many pieces of each kind must the
banker give bim?

Suppose the banker nges x pieces of the first kind ; it is evident
that he will give ¢ — z pieces of the other kind. Now, the z pieces

) x
of the first are worth 7 crown, by the proportion a: 1 =z : ;; and

: c—
the ¢ — x pieces of the second kind are worth 3 z crown, because

we haveb:1.=c—z:c 5 z So that

c—

z ba :
;+ =l;or7+c—w=b;orba.'+ac—as==ab;
or rather, b ¢ — & £ = a b — a ¢ ; whence we have*

ab—ac a(b—c)
T= g e=Tg g

Consequently, :
bc—abd b(c—a)
= " b—a
. v . alb—c) | ,
Answer. The banker will give —3———" pieces of the first
b(c— ‘
b—
Remark. These two numbers are easxly found by the rule of
" three, when it is required to apply the results whlch we have ob-
tained. To find the first we say ; :
. a (b__2

b—a

b—a:b—c=a:
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The second number is found thus ;
b—a:c—a=<b: 5 (c-_:)

It ought to be observed also that a is less than 3, and that ¢ is
also less than & ; but at the same time greater than a, as the na-
“ture of the thing requires.

521. Question XX. A banker has two kinds of change ; 10
pieces of one make a crown, and 20 pieces of the other make a
grown. Now, a person wishes to change a crown into 17 pieces of
money : How many of each must he have?

-We have here @ = 10, b == 20, and ¢ = 17 ; which furnishes
the following proportions ;

L 10: 3= 10 : 3, sothat the number of piecesof the first kind
is 3.

I1. 10 : 7 ==20 : 14, and there are 14 pieces of the second kind.

528. Question XXI. A father leaves at his death several ch:l-
dren, who share his property in the folowing manner :

" ‘The first receives a hundred crowns and the tenth part of the
mﬁamder

* ‘The second receives two hundred crowns and the tenth part of
what remains.

The third takes three hundred crowns and the tenfh part of
what rextmins.

‘The fourth takes four hundred crowns and the tenth part of
what theh remains, and o en.

Nowusfoundachamdthutthe property has been divided
equally among all the children. Required, how mueh it was, how
many children there were, and how much each received ?

This question is ratherof a singular nature, and therefore deserves
particular attention. Inerder tovesolve it more easily, we shail sup-
pose the whole fortune == ¢ crowns ; and simee all she children
receive the same sum, let the share of each = x, by which means

the number of children is expressed by E This being laid down, we
ey pmcéed to thesolution of the question, which willbe as follows:

Eul. Alg. 22
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S::‘,yo:opbr:- o'der of Portion of each. -Diffezenced.
divided. Chﬂdnn N . Lk -,
-1e z—lgo
z 10 o
—_—r — 200 a:——lOO
z— o 2 .r—200+ —io 00—————10 =0
'z — Q22— 800} z— 100
z—2y 3 z=2300+ 75 ,_IQQ—T“_'O
. z— 3 x =400, 100
z—34 4% [r=400 + — 5 oo — =7
" zed g —500), ... *— 100
‘z—44 5O m=500+z ';0 — 1100 — 10_'..‘=0
- —Bpe— and so on.
z—bBa 6% |z=—0600 4 > 5;’0 600

We have inserted, in the last column, the differences which we
obtain by subtracting each portion from that which follows, Now
all the portions being equal, each of the differences must be =0,
And as it happens that all these differences are expressed exactly
alike, it will be sufficient to make one of them equal to nothing, and

we shall have the equation 100 xTOIOO Multiplying by
10, we have 1000 — & — 100=0 or 900 — z == 0; conse-

quently z == 900. :
We now know, therefore, that the share of each child was 900
crowns ; so that taking any one of the equations of the third column,
the first, for example, it becomes, by substituting the value of z, -
900 = 100 + z—"l'ol—o—o, |
whence we immediately obtain the value of 2 ; for we have
9000 = 1000 + z — 100, or 9000 = 900 + 2;

wherefore z = 8100 ; and consequently Z =9.

Answer. So that the number of children = 9 ; the fortune left
by the father == 8100 crowns ; and the share of each child = 900
crowns.
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CHAPTER IV.

Of the Resolution of Two or more Equations of the First Degree.

523. It frequently happens that we are obliged to introduce into
algebraic calculations two or more unknown quantities, represented
by the letters z, y, z; and if the question is determinate, we are
brought to the same number of equations ; from which, it is then
required to deduce the unknown quantities. As we consider, at
present, those equations only which contain no powers of an un-
‘known quantity higher than the first, and no products of twe, or
more unknown quantities, it is evident that these equatlons will all
have the form 6 z + b y o} ¢ z == d.

524. Beginning, therefore, with two equations, we shall endeavour
to find from them the values of 2z and y. That we may consider
this case in a general manner, let the two equations be,

Laz+bdby=candIl.fo + gy=Ah,
in which a, b, ¢, and f, g, , are known numbers. 1t is required,
therefore, to obtain, from these two equat:ons, the two unknown
quantities 2 and y.

525. The most natural method of proceeding will readlly present
itself to the mind ; which is to determine, from both equations, the
value of one of t.he unknown quantities, z for example,and to con-
sider the equality of those two values ; for then we shall have an
equation in which the unknown quantity y will be found by itself,
and may be determined by the rules which we have already given.
Knowing y, we have only to subsutute its value in one of the quan-
ties that express z.

526. According to this rule, we obtain from the first equation,

2 =5 -—ab y,and from the second » = A _}g—g—l, statiﬁg these

two values equal to one another, we have this new equation ;
c—by _h—gy,
. a = f 5
multiplying by a, the productis
ah—agy

f )

c—by=
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multiplying by f; the productisf¢ — fby =ak —a g y; ad-
ding a g y, we have fc — fby 4 6 gy =a h; subtracting f ¢
there remains
—~fbyt+agy=ah—fc;or(ag—bf) ye=ah—fo;
lasily, dividing by a g — 6 f, we have

: ah—fec

- In order now to subs.ﬁtute this value of y in one of shetwo values

c—by
which we have found of z, as in the first, where z = -———, we

a
shall first have

b abht+bef
-4 ag—bf °
whesce : ' o
: ~ ' h4bdef
c—by=c— ag—1bF1"’
or :
o b _6cg—bcf—abh4becf scg—abdh .
c=0y= ag—bf - age—bf’
and dividing by a, ~

c~by _%E —bh .

a  ag—bf

527, Quatum 1. Fo illustrate this method by examples Tet it
e proposed to find two numtbers, whose sum may be = 15, and
&fference =7,

‘Lt us call the greater nuntberz, end the less y. 'We shall‘have,

Lz+y=15adll. 2—y="1.

The ﬁrstequauongwesx:: 15 — y, and the seeond 9 =7 +- y;
whence results -the new equation 15 — y =T + y. So that
152=7 4 Ry; 2y =8, ammd gy = 4; bywhlchmeansweﬁnd
z==11. ‘

Answer. 'The less number is 4, and the greater is 11.

528. Question 11. We may also generalize the preceding ques-
tion, by requiring two numbers, whose sum may be == g, and-the
difference == b.

Let the greater of the two be == z,acd the less = y.

We shall have I. # +y =—a, and II. 2 — y =.b; the
first equation gives ¥ = a — y ; and the second-z = b 4- .
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Whereforea-—;,=b +y;a=b+ 2y; 2ymma—1b;
a—~—b , .
lastly, y = —5 and consequently,

a—b a+b
P

r=a—y=a—

, : . atb '
Answer.. The greater number, or z, is= ; , and the less, or

y, I8 ==a;zb,' or which comes to the same, 2 = } a 4 } b, and

= }a— 3} b; and hence we derive the following theorem.
When the sum of any two numbers ts a, and their difference is b,
the greater of the two numbers will be equal to half the sum plvs
Ralf the dtﬁ'erance : and the less of the two numbers wdl be equal
to kalf the sum minus Aelf the difference.

529. We may also resolve the same question in the following
manner :

Since the two equations are ¢ +y =g, a9d ¢ — y=b; il
we add one to the other, we have 2 z = a + 6. 'Wherefore

w=—a+b '
Lastly, subtracting tha same equauouftmthamher; we have
2y = a — b; wherefore y = ;b.

580. Question 111 A roule and an ass were carrying burdm
amounting to some hundred weight, The ass complaimed .of ki,
and said to the mule, I need only one hundsed weight of yourioad,
to make mine twice as heavy as yours, The mule answered, Yes,
but if you gave me 3 hundred weight of yours, I should be loaded
three times as much as you would be. How many hundred weight
did each carry ?

Suppose the mule’s load to be x bundred weight, and that of the
ass to be y hundred weight. If the maule givas one bundred weight
to the ass, the one will have y 4 1, and there will remain for the
other x — 1; and since, in this case, the ass is' loaded twice as
much as the mule, we havey + 1 =22 — 2.

Further, if the ass gives a hundred weight to the mule, the latter
has r < 1, and the ass retains y — 1 ; but the burden of ¢the foi-
mer being now three times that of the latter, we have,

a:+l—3y—-3



174 ) Algebra. _ ~ Sect. 4.
Our two equations will consequently be,
Ly41=2z—2 Nao4+1=3y—3.

The ﬁrstgives:o:::"i—8 and the second givesz =3 y—4;

2
y+3
2

whence we have the new equation = 3 y — 4, which gives

y = Y, and also determines the value of z, which becomes 23.

Answer. The mule carried 2 hundred weight, and the ass car-
ried 24 hundred weight.

531. When there are three unknown numbers, and as many equa-
tions; as, for example,LL.x +y —2=8,Il.2 4 2 —y=9,
IH. y 4+ z — z = 10, we begin, as before, by deducing a value of
« from each, and we have from the I®, 2 =8 +4 z — y; from
thellt, 2 =19 4 y— z; and from the III¢, 2 =y 4 z—100.

Comparing the first of these values with the second, and after
that with the third also, we have the following equations :
L842—y=94+y—2z,ll.84+2z—y=y+2z2—10.
. Now, the first gives 2z — 2y =1, and the second gives
2 y = 18, or y = 9; if therefore we substitute this value of y in
2z—2y=1,wehave 22 — 18 =1, and 2 z = 19, so that

"z == 9}; it remains therefore ogly to determine z, thch is easily

found = 8%.

Here it happens that the letter z vanishes in the last equation,
and that the value of y is found immediately. If this had not been
the case, we should have had two equations between z and y, to

be resolved by the preceding rule.
- 532. Suppose we had found the three following equations,

.8245y—42=25 I.5z—2y 4 32z=46,
IL 3y + 52—z = 62
If we deduce from each the value of «, we shall have

L $=25—5g+4z, I w=46+25!—3z,

L =3y 4 5z — 62.

Comparing these three values together, and first the third with
the first, we have

3y +52z—62=

25—5y+4z‘
3 ’
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multiplying by 3,9y + 162 — 186 =25 —56y + 4 z; %0
that 9y + 1562 =211 — 5y + 42z, and 14y + 11 z=211
by the first and the third. Comparing also the third with the
second, we have
l 46 +2y—3=2
5 T

or46 + 2y —38 2= 15y 4 2 z — 310, which when redu-
ced is 356, = 13y + 28 z.

We shall now deduce, from these two new equations, the value
of y;

I. 211 = 14 y + 11 z; wherefore 14 y = 211 — 11 2z, and

3y+52—62=

211 — 11z
y="yg
II. 356 = 13 y +4 28 z; wherefore 13 y = 356 — 28 z, and
A 856 — 28 2
=——13_-

" These two values form the new equation
211— 11z 3856 —2W=z
M - 13 :
which becomes 2743 — 143 z_4984-—-392 z,0r 249 z — 2241,
whence z = 9.

This value being substituted in one of the two equations of y and
z, we find y = 8; and lastly a similar substitution, in one of the
three values of z, will give x = 7.

533. If there were more than three unknown quantities to be de-
termined, and as many equations to be resolved, we should pro-
ceed in the same manner; but the calculations would often prove
very tedious.

It is proper, therefore, to remark, that, in each particular case,
means may always be discovered of greatly facilitating its resolu-
tion. These means consist in introducing into the calculation, be.
side the principal unknown quantities, a new unknown quantity ar-
bitrarily assumed, such as, for example, the sum of all the rest;
and when a person is a little practised in such calculations he eesily
perceives what is most proper to do. The following examples
may serve to facilitate the application of these artifices.

534. Question IV. Three persons play together; in the first
game, the first loses to each of the other two, as much money as
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tach of them bas. In the next, the second petson loses to each of
the other two, as much money as they have slready. Lastly,n the
third game, the first and th¢ second person gain each, from the
third, as much money as they had before. They then leave off,
and find that they have all an equal sum, namely 24 louis each.
Required, with how much money each sat down to play?
- Buppose that the stake of the first person was z louis, that of the
second ¥, and that of the third z. Further, let us make the sum of
oll the stakes, or 2 4+ y + 3 = s. Now, the first person losmg in
the first game as much money as-the other two have, he loses
8 — x; (for he himself having had z, the two others must have
had s — x) ; wherefore there will remain to him 2 x — s ; the
second will have 2 y, and the third will have 2 z.
So that, after the first game, each will have as follows :

the 1. 2 x — s, the IL 2 9, the III. 2 .

In the second game, the second person, who has now 2 y, loses
as much money as the other two have, that is to say s — R y; so
that he has left 4 y — s. Withregard to the others, they will each
have double what they had ; so that after the second game, the
three persons have ;

the .42 — 234, the II. 4 y — s, the IIL. 4z.
In thre third game, the third person, who has now 4 &, i the

loser ; he loses to the first 4 @ —~ 2 5, and to the second 4 y ~— ¢
consequently after this game the three persons will bave; -

the .8z --45,the .8y —2s,the IlI.8 2z —3.

Now, each having at the end of this game 24 louis, we have
three equations, the first of which immediately gives x, the second
¥, and the third z ; further, s is known to be = 7R, since the three
persons have in all 72 louis at the end of the last game; but it is
not necessary to attend to this at first. We have

la8m-—-4c===24,or8.r==94+4:,orw===3+}c \
IL8y—Rec=R4,0r8y =44 s, or yo=3 + ¢ 8}
HL.8z— o=, a8z 4 s ore=3+4}s;

Adding these three values, we have
r+y+2z2=9+fs

So that, since.x + y'+ 2 =3, wehave s = 9 + } s; whete-
fore } s =9, and s = 7.
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If we now substitute this valub of # in the-expressions whioh we
have found for z, y, and z, we shall find that before they began'to
play, the first person bad 39 Jouis ; the second Ql louis g and‘the
third 12 louis.

~'This solution shows, that by means of an expressyon for the sum
- o!' the three unknown quantities, we may overcome the difficulties
which oteur in the ordinary methud.

585. Although the preeeding question appears difficuit at first, it
may be resolved even- without algebra. We have only to try to-do
it inversely. Since the players, whea thsy left off, had esch 24
louis, and, in the third game, the first and the seeond doubled l.he
money, they must have had before that last game ;

The 1. 1%, the 1I. 12, and the TIL. 48. |

In the second game the first and the third doubled their money ;
so that before that game they had; - .

The 1. 6, the 11, 42, and the IIIL. 24.

Lastly, in the first game, the second and the third gained each as
wuch monay as they began with ; so that at first the three persons
bad ; ' « :

L 89, 11. 21, I1L. 12.

The same result as we obtained by the former solution.

536. Question V. Two persons owe 29 pistoles ; they have
both money, but neither of them enough to enable, him, singly to
dwcharge this common debt ; the first debtor says therefore to the
secoud, if you give me % of your money, I singly will immediately
pay the debt. The second answars, that he also could discharge
the debt, if the other would give him 3} of his money, Required,
how many pistoles each had ?

ﬂupposethnttheﬁrsthaswpndes andtht& the second hlsy
‘pzstdea
Wiashallﬁrsthayo, ' .1:.+§y=-99,

then also, _ y+3x=29 :
The first equation gives » __ 29— § y, and the sevond,
116 — o 116 —4
w#—l—q-g-—i_‘z;sotbat%—-gy -———-3—-—-!-/

From this equanou, we get y = 14 }; wherefore r=19].
Eul. Alg. o 23
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- Anewer. Thefirst debtor had 193 pistohs and the second had
143 pistoles.

537. Question VI. Three brothers bought a vineyard for a
hundred louis. The youngest says, that he could pay for it alone,
if the second gave him half the money - which he had ; the sec-
ond says, that if the ‘eldest would ‘give him only the third of his
money, he could pay for the vineyard singly ; lastly, the eldest asks
only a fourth part of the money of the youngest, to pay for the
vineyard himself. - How much money had each?-

Suppose the first had = louis ; the second, y louis; the third, z
louis ; we shall then bave the three following equations ; .

I a:+§y—100 IL y 4 $z=100. IIL z+{m==100
two of whjch only give the value of , namely,

 Le=100—j}y 1Lax=400—4z

So that we have the equation,
100—}y—400—4z,0r4z—.}y=300

which must be combined with the second, in order to determine y

and z. Now the second equation was y + '} z = 100; we there-

fore deduce from it y = 100 — 1 z; and the equation found last

being 4 z — y = 300, we have y =82—600. Consequently

 the final equationis, 100 — } z =8 z— 600 ; so that 8§ z =100,
or ¥ z="100,and z = 84 Wherefore

y =100 — 28 = 72, and z = 64.

- Answer. The youngest bad 64 louis, the second had 72 loms
and the eldest had 84 louis. -

£38. As, in this example, each equation contains only two un-
known quantmes, we may obtain the solution required in an easier
wa

'{‘he first equatlon gives y =200—2x;s0 that yis determmed
by = ; and if we substitute this value in the second equation, we
bhave 200 — 22 4 } 2 = 100 wherefore } z = 2 2 — 100,
and 2 =62 —300.

So that z is also determined by = ; and if we mtroduoe this vnlue
into the third equation, we obtain 6 z— 300 4 } =100, in
which z stands alone, and which, when reduced to 25 x— 1600 =0,
gives ¢ = 64. Consequently, y = 200 — 128 = 72, and _

z == 384 — 300 = 84.
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. 538. 'We may-follow the same method, when we have a gregter °
number of equations: Suppose, for example, that we have iv general :

}I.u+;=n,ll.:c+%=‘n,l_ﬂ.y,+-:=

IV. z-{-E::n; or, reduciug the fractions,

Lautz=anIlLdz4+y=>0nlllcyJ z=cn,
IV.dz4+u=4dn.
Here, the first equation gives immediately =< a n — a u, and_
this value being substituted in the second, we have .

abn—adu4y=2>bn; sothaty:z:bn—abn+abu;
. the subsututlon of this value in the third equation, gives
ben—abcntabeut z=cn;

wherefore 2 ==cn—bcn + a b cn—abcu; substituting
this in the fourth equation, we have

cdn—bcdn+abcdn—abcdu+u=dn
Sothatdn —cdn 4 bcdn—abcdn=—abcdu+tu,
or(abed—1)u=abcdn—bcdn+cdn—dn; whence
we have

' abedn—bedn + cdn—d n ‘“ (abed — bed + cd— d).

= “abed — 1 abed — 1
Consequently, we shall have,
__ abedn — acdn 4 adn— an (abcd —acd 4 ad — a).
- abcd — 1 = abed — 1
__ abcdn — abdn + abn— bn _ @bcd — abd + ab—b).
y= abed — 1 abed — 1
abedn — aben 4 ben— on (abcd —abec 4 bc — ¢).
£= abed — 1 =nX abed — 1
abcdn——bcdn+cdn—dn (abcd —bed 4 cd — d).
abed — 1 abed — 1

A 540, Question VII. = A captain has three companies, one of
Swiss, another of Swabians, and a third of Sexons. He wishes to.
storm with part of these troops, and he pronuses a reward of 901
crowns, on the followmg condition : i
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Tirst each soldier of tlbm which essiuhe, shall réveive
1 erown, wd that the mdtbemvydnll beequallydumhuted
among the two other companies.

Now it is found, that if the Swiss make the assanlt, each soldier
of the other companies receives } of a crown ; that, if the Swabians
assault, each of the others receives 1 of a crown; hastly, that if
the Saxons make the assault, each of the others receives } of a
crown. Required the number of men in each company ?

Let us suppose the number of Swiss — z, thatof Swabians =y,
and that of the Saxons== z. Andletusaleo maker -y 42 =0
because it is easy to see, that by this, we abridge the calculation
cansiderably. If, therefore, the Swiss make the assault, theirsum-
ber being z, that of the other will be s — z ; new, the former re-
ceive 1 crown, and the latter half a crown; so that we shall bave,

z + } s—iz= 901.
We find in the same manner, that if the Swabians make the
assault, we have,
y+is—3y=0901 |
» And Tastly, that if the Samns moant the asseuk, we have

z24+3e—}z= 901 :
Each of these three equations will enahle us to determine one of
the unknown quantities z,.y, z;
For the first gives 2= 1802 — s,
the second gives 2y = 2703 — s,
the third gives 8z = 3604 — s,
- If we now take the values of 6 z, 6 y, and 6 z, and write those
vatues one above the other, we shali have,
62 =—1081% — 64‘, .
6y= 8109 —3,
6z= T208 -2,

and adding; 68 =26120— 113, 0r17s = 26129; 30
‘#yat ¥ = 1687; this is the whole tymber of'soldkn,by‘vﬂlioh
mamweﬁnd '

" 2= 180R « 1537 '« 965 ; e

2y = 2103 — 1537"== 1168, ot y = 588; -

3 z = 3604 — 1537 = 2067, or z = 689.
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Answer. The company of Swisx consists of 265 men ; that of
Swabians 583 and that of Saxdns 689. :

CHAPTER V.

Of the Reaolunon of Purc Qu.adratw Equations,

541. AN equation is said to be of the second degree, when it
contains the square or the second power of the unknown quantity,
without any of its higher powers. An equation, containing like-
wise the third power of the unknown quantity, belongs tocubic equa-
tions, and its resolution requires particular rules. There are, there- -
fore, only three kinds of terms in an equation of the second degree.

1. The terms in which the unknown quantity is not found at all,
or which are oomposed only of known numbers.

2. The terms in which we find only the’ ﬁrst power of the un-
known quantity. .
8. The terms which contain the square, or the second power of

the unknown quantity.

So that 2 signifying an unknowm quantity, and the letters a, 3, ¢, d,
&ec. representing known numbers, the terms of the first kind wil}
have the form a, the terms of the second kind will have the form
b @, and the terms of the third kind will have the form ¢ z «. ‘

542. We have already seen, how two or more terms.of the same
. kind may be united together, and considered as a single term.

For example, we may consider the formulaaz 2 —bz 2 4 cax
as a single term, representing it thus (a — b 4 ¢)  2; since, in
fact, (6 — b 4~ ¢) is a known quantity.

And al¢o, when such terms are found on both sides of the sign =
we have seen how they may be brought to one side, and then re-
duced to a single term. Let us take, for example, the equatlon,

zrx—3z4+4=6zrx—8ax411;
. We first subtract 2 x z, and there remains
—3r4+4=383rzx~82+ All.,;
then adding 8 x, we obtain,
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Do 44=8=zz + 11;
Laslly, subtractmg 11, there femains 8 zx = 6 x — 7.

543. We may also bring all the terms to one side of the sign =,
30 as to leave only O on the other. It must be remembered, how-
ever, that when terms are transposed from one side to the other,
their signs must be changed.*

Thus, the above equation will assume thls form,

3z2—8xr+4+T7T=0;
and, for this reason also, the following general formula represents
all equations of the second degree.

szt bt c=0,
in which the sign 4 is read plus or minus, and mdlcates that such
terms may be sometimes positive and sometimes negative.

544. Whatever be the original form of a quadratlc equation, it
may always be reduced to this formula of three terms. If we have,
for exn.mple, the equation -

azx + b ca+ f

cx+d- &z + K
we must, first, reduce the fractions ; multiplying, for this purpose,
bycw+d we have ‘

am+b_ccc¢+cgf::’:dw>+fd N
~ then by g » + &, we have' '
aga:w+bga:+aha:+bh—cea:m+cfa:+eda: +f¢l
which is an equation of the second degree, and reducible to the
three following terms, which we shall transpose by arranging them.
in the usual manner :
O=agzz+bga+4bh,
"—cezztahz—fd,
' —cfx, ‘
—edz. :
We may exhibit this equatxon also in the following form, whmh
is still more clear ;.

0= (ag—ce)za+ (Bg +ah—cf—ed)m+bh-—-fd

¢ That is, the quantity thus t.ransposed is added to or aubt.racted
from each side of the equatxon
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545. Fquations of the second’ degree, in- which all the three
kinds of terms are found, are called complete; and the resolution of
them is attended with greater difficulties; for which reason we
shall first consider those, in which one of the terms is wanting.

Now, if the term = « were not found in the equation, it would not
be a quadratic, but would belong to those of which we have already
treated. If the term, which contains only known numbers, were
wanting, the equation would have this form,axx = bx =0,
which being divisible by x, may be reduced toa x :|: b=0, which
is likewise a simple equation, and belongs not to the present class.

546. But.when the middle term, which contains the first power of
X, 8 wanting, the equation assumes this form,axx 4 ¢ = 0, o
& X X == 7F ¢ ; as the sign of ¢ may be either positive or negative.

We shall call such an equation a pure equation of the second de-
’ gree, since the resolutlon of it is attended with no difficulty ; for we

have only to dwule by a, which givesxx = 7’ and takmg the cquare

root of both sides, we find x = J by means of which the cqua-

twn 1s resolved.
547. But there are three cases to be considered here. In the

first, when E is a square number (of which we can therefore really

assign the root) we obtain for the value of x a rational number,
which may be either integer or fractional. For example, the
equation z # = 144 gives * = 12. And z » = ;% gives z = §.

» . c 1J - .
The second variety is when; is not @ square, in which case we

must therefore be contented with the sign /. 1If, for example,
z.x = 12, we have x = 4/13, the value of which may be deter-
mined by - approxlmatlon, as we have already shown.

The third case is that in which : becomes a negative number ;

then the value of x is altogether impossible and’imaginary; and
‘this result _proves that the question, which leads to such an equa-
tion, s in tiself zmpomble

548. We shall also observe before proceedmg further, that when-
ever it is required to extract the square root of a number, that root,
as we have already remarked, has always two values, the ene posi-
tive and the other negative. Supposetve have the equationxx = 49,
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the value of x will be not only + 7, but also — T, which is ez~
gressed by 3 = + 7. So that.all those questions admit of 2
double answer ; but it wilk be easily perceived that in several eases,
in those, for example, which relate to a certain numbcr of men,
the negative vadue cannot-exist.

549. In'such equations also, asaz ¢ = b a. whexe the knowﬂ
quantity ¢ is wanting, there may be two values of z, though we find
only ane if we divide by z. In the equation x # = 3 =, for. exam~
ple, in which it is required to assign such a value of =, that x z may
become equal to 3 x, this is done by supposingz = 3, a value
which is found by dividing the equation by = ; but beside this value,
there is also another, which is equally satisfactory, namely, 2 = 0;
for then 2 © = Oy and 3 2. == Q. Equatiems, therefore, of the
second degree, tn general, admit of two sohutions, whilst sintple
sguations admst only of one. -

We shall now lllustrNe, by some examples, what we have sald
with regard to pure equations of the second degree.

550, Question I. Required a number, the half of which multi-
plied by the third may produce. 24. '

Let this number = z; } «, multlphed by 4 x, must give 24 ; we
shall therefore have the equation } z z = .

. Multiplying by 6, we have  # — 144 ; and the extraction of the
root gives # = + 12. We put o ; for ifz= + 12, we have
4z =6, and § 2,= 4 ; now the product of these two numbers is
24; and if ® = = 12, we have $ ¢ = — 6, and } = — 4, the
product of which is likewise 24.
" 551. Question II. Required & number such, that by adding 5
W it, and subtracting-5 from it, the product of the sum by the dif-
ference would he 96.

Let this number be x, then ¢ + 5, multiplied by # — 5, must
give 96 ; whence results the equation, z z — 25 = 96.

Addmg 25, we have ¢ ¢ = 121 ; and extracting the root, we
have r = 11. Thusz + 5 == 16, glso 2 — 5 = 6 ; and lastly,
6 X16=96., '

" 552. Question 11I. Required a number such, that by adding it
to 10, and subtracting it from 10, the sum, multiplied by the re-
mainder, or difference, will give 51.

* Let « be this oumber ; 10 + x, multiplied by 10 — x, must
make 51, so that 100 — x » = 51. Adding z «, and subtracting
51, we have & z = 49, the square root of which gives 2 ="17. ~
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553. Question IV. Three persons, who had been playing, leave
_off; the first, with as many times 7 crowns, as the second hes
8 crowns ; and the second, with as many times 17 erowns, as
the third has 5 crowns. Further, if we multhly the money pf
the first by the money of the second, and the: money of the see-
ond by the money of the third, and lastly, the meney of the third
by that of the first, the sum of these three products will be 3830%.
How much money has each?

Supposé that the first player has @ crowns ; and since he has as
many times 7 crowns, as the second has 3 crowns, we know that
his money is to that of the second, in the ratio of 7 : 3.

We shall therefore make 7: 3 =  to the money of the second
player, which is therefore # z.

Further, as the money of the second player is to that of the
third in the ratio-of 17 : 5, we shall say, 17:5= 2« to the
money of the third player, or to 5 .

Multiplying , or the money of the first player, by § z, the money
of the second, we have the product ® z 2. Then § z, the money of
the second, multiplied by the money of the third, or by ¥ =, gives
&5 @ «. Lastly, the money of the Yhird, or 4% = multiplied by a,
or the money of the first, gives (4% z . ‘The sum of these three
products is 4 * @ + g5 r2 4 A% ¢ x; and, reducing these frac~
tions to the same denominator, we find their sum §3] # », which
must be equal to. the number 38303
" 'We have, therefore, §3% » * = 38304.

So that ¥&* z » = 11492, and 1521 z z being equal to 9572836,
dmdmg by 1521, we have z z = °37#%*%; and taking its root;
we find ¥ = 3§84, This fraction is reducible to lower terms if we
divide by 13 ; so that z = *3° == 79} ; and hence we conclude,
that 4 » = 34, and 3% z = 10.

Answer. The first player has 79% ¢rowns, the second has 34
crowns, and the third 10 crowns.

Remark. This calculation may be performed in an easter man:
ner ; namely, by taking the factors of the numbers which present
themselves, and attending chiefly to the squares of those factors.

It is evident, that 507 = 3 X 169, and that 169 is the square of
13; then, that 883 =7 X 119,and 119 =7 X 17. Now we

3 X 169
have J5~4g * % = 38304, and if we multiply by 3, we have

Eul. Alg. 2
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?7—x—><—1%—g rz=11492. Let us resolve this number also into
its factors$ we readdy perceive, that the first is 4, that is to say, that
11492 == 4 X 2873 ; further, 2873 is divisible by 17; so that
2873 = 17 X 169. Consequently our equation will assume the

9-x 169
following form ; 75— 1T i a8%%= 4x 17T X 169 which, divided by

9
169, is reduced O Tt = 4x 17 ; multiplying also by

. 4 X 289 x 49
17 X 49, and dividing by 9, we have rz = -—x——g——i—--,mwhmh
all the factors are squares; whence we have, without any further
calculation, the root
Te2X1Tx1T 288
z _X X = =19}, .

3 3

as hefore.

554. Question V. A company of merchants appoint a factor at
Archangel Each of them contributes for the trade, which they
have in view, ten tlmes as many crowas as there are partners. The
profit of the factor i i fixed at twice as many crowns per cent., as
there are partners. Further, if we multiply the yd part of hlS
total gain by 23, the number of partners will be found Required,
what that number is.

Let it be = z; and since each partner has contnbuted 10 z,the
whole capital is = 10 z . Now, for every hundred crowns, the
factor gains 2 w, so that with the capital of 10 x 2 his profit will be
4 %, 'The 13y part of this gain is g4 2 * ; multiplying by 2§, or
by %°, we have 88y =°, or r}g 2°, and this must be equal to the
number of partners, or w '

We have, therefore, the equation gdy #° =z, or 2° =225 2;
which appéars, at first, to be of the third degree; but as we may
divide by z, it is reduced to the quadratic r x = 225, whence
& =15,

Answer. There are fifieen partners, and each contribated 150
crowns. ' ’ '
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CHAPTER VI

Of the Resolution of Mixt Equations of the Second Degree.

585. AN equation of the second degree is said to be mixt, or
complete,* when three kinds of terms are found in st, namely,
that which contains the square of the unknown quantity, asa X x ;
that, in which the unknowu quantity is found only of the first pow-
er,asbx ; lastly, the kind of terms which is composed only of knoton
quantsties. And since we may unite two-or more terms of the same
kind into one, and bring all the terms to one side of the sign =,
the general form of a mixt equation of the second degree will be

axrFbeTc=0.

In this chapter, we shall shéw how the value of z is derived
from such equations. It will be seen that there are two methods
of obtaining it.

566. An equation of the kind that we are now considering may
be reduced, by division, to sucha form, that she first term may con-
tain only the square x x of the unknown quantity #. We shall leave
the second term on the same side with x, and transpose the known
term to the other side of the sign =—. By these means our eque-
tion will assume the form # z + p # = + ¢, in which p and ¢
represent any known numbers, positive or negative ; and the whole
is at present reduced to determining the true value of z. We shall
begin with remarking, that if x 2 4 p » were a real square, the
resolution would be attended with no difficulty, because it would
only be required to take the square root of both sides. -

557. But it is evident that # 4 p x cannot bea square ; since
we have already seen, that if a root consists of two terms, for exam-
ple, X -} n, its square always contains three terms, namely, twice the
product of the two parts, besides the square of each part ; that is to
say, the square of x +nisxx 4 2nx 4 nn. Now we have
already on one side z x 4 p x ; we may, therefore, consider x x as
the square of the first part of the root, and in this case p x must
represent twice the product of x, the first part of the root by the

* Sometimes called also affected.
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second part ; consequently, this second part must be } p, and in
JSact the square of x + % p,4s foundtobexx +px + :pps

558. Now x x + p x 4+ ¢ p p being a real square, which has
Jor its root, x -+ } p, tf we resume our equation XX+ px=q,
we have only to add L p p to both sides, which gives us

‘xx+Px+tPP-—q+iPP:
the first side being actually ¢ "square, and the other containing
only known quantities. If, therefore, we take the square root of

Jboth sides, we find

x+§p=vAPP+ 9
and subtracting } p, we obtain

=—3p+VEFPT D '
and, a2 every square root may be taken cither affirmatively or nega-
twely, we shall have for x two vakues expressed thus ;

‘—'—‘Pi'J pp+ 9

559. This formula contains the rule by which all quadmtw equa—
tions may be resolved, andit will be proper to commit it to memory,
that it may not be necessary torepeat, every time, the whole opera-
tion which we have gone through. We may always arrange the
equation, ia such a manner, that the pure square 2 zmay be found
on one side, and the above equation have the form 22 -+ py =g,
where we see immediately that

T==—3%p dT-J pp+9¢
. 560, The general rule, therefore, which we deduce from this, in

" order to resolve the equation 2 2 == — p x 4 ¢, is founded on -

this consideration :

That the unknown quantity x is equal to half the coeﬂicxent, or
multiplier of  on the other side of the equation, plus or minus the
square root of the square of this number, and the known quantity
which forms the third term of the equation. .

Thus if we had the equation z z == 6 = 4~ 7, we should imme-
diately say, that 2 =3 + /9 57 =3 4 4, whence we have
these two valuesof 2, e =7; Il. 2 =— 1. In the same

maner, the equation x z == 10 = — 9, would give
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=<5 4 /B-0=5 :i:4
that is to say, the two values of £ are 9 and 1.
661. This rule will be still better. understood by distinguishing
.the following cases. I. when p is ap even number; 1. when p is
an odd number ; and III. when p is a fractional number.
I. Let p be an even number, and the equation such, that

ze=2px+¢;
we shall, in this case, havez = p & 4/pp + g

II: Let p be an odd number, and the equanon rr=px+4q;
we shall here have

[

w=§Pd:J4pp+q,
and since

1
tpp =021

we may extract the square root of the denominator, and write

) 4 + 4
w=”i~/pp+ P VP2P+ q

III. Lastly, if p be a fraction, the equation may be resolved in
the following manner; let the equation be

bz

a:c:c..—.bw-{-c,orma:: T+ X

QIO

and we shall have by the rule,
b b ¢
"=gaFANTaaty
Now, S
bd c bb+44dac
4aa e 4daa
the denommator of whichis a square ; so that
b 4+ A58 F 4 ac
3 2 a >
562. The other method of resolving mixt: quadratic equaﬁons,
to transform them into pure equations. This is done by substitution ;
for example, in the equation z x = p x 4 ¢, instead of the un-
_ known quantity «, we may write another unknown quantity y; suoh
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that z == y + 3 p; by which means, when we have determined Y

we may immediately find the value of .

- If we make this substitution of y 4 } 2 instead of z, we have
zx=yy+py+ippandpr=py + } p p; consequently our
equation will become y y + p ¥ -+ %pp=py tzpr+o

which is first reduced, by subtracting p ¥, to ‘

yy+ipp=4irp+9q;

and then, by subtracting  p p,toyy=4p P + ¢g. This isa
pure quadratic equation, which immediately gives

1
y==% JZPP'FQ'
Now, since £ == y + } p, we have
1
z.=:‘rP=bJ—pp +9

as we found it before. We have only, therefore, to jllustrate this
rule by some examples.

563. Question I. There are two numbers ; one exceeds the
other by 6, and their product is 91. What are those numbers ?

If the less is x, the other is  4- 6, and their product

‘ rr+4+ 622291,
Subtracting 6 z, there remains z # = 91 — 6 z, and the rule gives
t=—384 4/9+91 =—38110; sothat's ="T,and r = — 13.

Answer. The question admits of two solutions ;

By one, the less number z is = 7, and the greaterz 4 6 = 13.

By the other, the less number 2= 13 and the greater
24+ 6=—T1.

564. Question II. To find a number such, that if 9 be taken
from its square, the remainder may be a number, as meny units
greater than 100, as the number sought is less than 23.

Let the number sought = @ ; we know, that x # — 9 exceeds
100 by z ¢ — 109. And since x is less than 23 by 28 — z, we
have this equation ; z& ~— 109 == 23 — 2. )
~ Wherefore x 2 = — = + 182, and, by the rule,

o T e 1 BB 1. %
‘m's._*#JZ'*_ISQ— ziJT" g+ g
So that z = 11, end o = — 1%,
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Answer. When only a positive number is required, that numnber
will be 11, the square.of which minus 9 is 112, and consequently
greater than 100 by 12, in the same manner as 11 is less than 23
by 12.

565. Question 1II. 'To find a number such, that if we multlply
its half by its third, and to the product add half the number re-
quired, the result will be 30. .

Suppose that number = z, its half, multiplied by its thlrd will
make } z2; so that 4 z ¢ + & 2 = 30. Multiplying by 6, we
have 2 x + 3 x = 180, or z & = — 3 » + 180, which giVes

3 5”— .8

Consequently z is elther = 12 or — 5.

566. Question IV. To find two numbers in a double ratio to
each other, and such that if we add their sum to their product, we
obtain 90.

Let one of the numbers = 2z, then the other will be = 2 x;
their product also = 2 « , and if we add to this 8 z, or their
sum, the new sum ought to make 90, So that
Rz +3r=90; Lzz=90 —B.r, za-———-;w-]—» 45,
whence we obtain | :

9 3 &

Consequently z = 6, or — T3.

567. Question V. A horse-dealer, who bought a horse for a
certain number of crowns, sells it again for 119 crowns, and his
profit is as much per cent. as the horse cost him. Requlred what
he gave for it?

Suppose the horse cost z crowns ; then as thehorse-dea]er gaing
x per cent., we shall say, if 100 give the profit z, what does x give ?

Anewer, Jgo.  Since, therefore, he has gained T, and the borse

T
originally cost him = crowns, he must havesoldxt for z +100,

wherefore
2z
— {60 = 119.
Subtracting z, we have
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rz
joo=—7%+ 119;
and mn]tnpl)nng by 100, we have z 2 = — 100 z 4+ 1190& Ap-
plying the rule we find
T = — 50 4 4/3500 F 17900 = — 50 - 4/ 73400 = — 50 4 120.

Answer. The horse cost T0 crowns, and since the horse-dealer

gained 70 per cent. when he sold it again, the profit must have
been 49 crowns. The horse must have been, thereﬁ)re, sold again
for 70 - 49, that is to say, for 119 crowns.
. 568. Questw'n V1. A person buys a certain number of pieces
of cloth ; he pays, for the first, 2 crowns ; for the second, 4 crowns ;
for the thlrd 6 crowns, and in the same manwer always 2 crowns
more for each following pxece Now, all the pieces together cest
him 110. How many pieces had he? .

Let the number sought = 1. - By the question. the purchaser
paid for the different pieces of cloth in the following manner :

forthe 1,2, 3,4, 56....2
he pays 2, 4, 6, 8,.10.... 2 z erowns.

It is therefore required to find the sum of the aritbmetieal pro-
gression 2 + 4 4 6 + 8 4 104 .. .... 2 x, which camsists of
z terms, that we may deduce from it the price of all the pieces of
cloth taken together. The rule which we have already given for
this operation, requires us to add the last term and the first; the
sum of which is 2 + 2; if we multiply this sum by the number
of terms z, the product will be 2 ¥z 4 z; if we lastly divide by
the difference 2, the quotient will be rz 4 z, which is the sum
of the progression ; so that we have 7z + z = 110; wherefore
rr ="— 2 4 110, and

r=— +J1+1-10_—--+ L. 10

Answer. The number of pieces of clothis 10,

569. Question. VII. A person bought several pieags of cloth,
for 180 crowns. If he had received for the same sum 3 pieces
mows, he would have p#id 3 crowns less for each piece; How
many pieces did he buy ? g

Let us make the number sought == 2 ; then each piece will have

180
cost hiin ——crowns. Now, if the purchaser bad had z + 3 pieces
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1 .
for 180 crowns, each piece would have cost ———; crowns; and,

z X3
since this price is less than the real price by three crowns, we have
this equation,

180 180 3
z + 3 - T —_ Q.
Multiplying by z, we have +-§ =180—3x; dmdmg by 3,

we have 6(_):3 == 60 — x ; multiplying by # 43, we have

60 z — 180 + 57w—ww,
adding z x, we shall have x z 4 60 # = 10 4- 57 z; subtracting
60 x, we shall have x z = — 3 z + 180.

® The rule, consequently, gives

3 19 _ 3.,
w—‘--‘—§+JZ+ 180,orw_—§+§_12.

Answer. He bought for 180 crowns 12 pieces of cloth at 15
crowns the piece, and if he had got 3 pieces more, namely, 15
pieces for 180" crowns, each piece would have cost only 12 crowns,
that is to say, 3 crowns less. .

* 570. Question VIII. Two merchants enter into partnership
with a stock of 100 crowns ; one leaves his money in the partner-
ship for three months, the other leaves- his for two months, and
each takes out 99 crowns of capital and proﬁt What proportion
of the stock did each furnish ?

Suppose the first partner contributed z crowns, the other will
have contributed 100 — 2. Now, the former receiving 99 crowns,
his profitis 99 — x, which he has gained in three months with the
principal  ; and since the second receives also 99 crowns, his profit
is ¢ — 1, which he has. gained in two months with the principal
100 — z; it is evident also, that the profit of this second partner

g g
would have been %—E,'i’f he had remained tbree months in the .

partnership.  Now, as the profits gained in the same time are in
proportion to the principals, we have the following proportion,
: S - 3z—38 '
2:99 —2=100—2:—5

Ed. Alg. - 2
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The equality of the product of the extremes to that of the
means, gives the equation
3zx2—38¢x
2
Muluplymg by 2, we have
827 —8r=19800 —398x 4 2z x;
subtractingsz, we havex ¢ — 3 v = 19800 — 398 z ;
adding 3 z, we have  * = 19800 — 395 x.

Wherefore by the rule,
z__ég@+J15m25 ___3:5_{_425 9_0_45'

Answer. The first partner contnbuted 45 crowns, and the other
55 crowns. 'The first, having gained 54 crowns in three months
would have ‘gained in one month 18 crowns ; and the second having
gained 44 crowns in two months, would have gained 22 crowns in
one month : now these profits agree; for, if- with 45 crowns 18
crowns are gained in one month, 22 crowns will be gained in the
same time with 55 crowns.

571. Question IX. Two girls carry 100 eggs to market ; one
had more than the other, and yet the sum which each received
for them was the same. The first says to the second, if I had had
your eggs, I should have received 15 sous. The other answers,
if 1 had had yours, I should have received 63 sops. . How many
eggs did each carry to market?

Suppose the first had z eggs; then the second must have had
100 — .

Since therefore the former would have sold 100 — z eggs for
15 sous, we have the followmg proportion ; -

100 15 15‘1”-—
N—2:15=2z... to100 sous.

= 9900 — 1992 + z 2.

~ Also, since the second would have sold z eggy for 64 sous, we
find how much she got for 100 — z eggs, by saying

.'c'go=100—w . 10 ~——; 20:c
3 3z

Now each of the girls received the same sum ; we have conse-
quendy the equation,
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152 = 2000 —W=z -
00—z~ "3z

which becomes this, ‘
25 2 v == 200000 — 4000z ;
and lastly this,
2x=— 160z 4+ 8000;
whence we obtain
= —80 + V6400+8000—-—80 + 120 = 40.

Answer. The first gir] bad 40 eggs, the second had 60, and
each received 10 sous.

572. Question X. Two merchants sell each a certain quantity
of stuff ; the second sells 3 ells more than the first, and they receiv-
ed together 35 crowns. The first says to the second, I should have
got 24 crowns for your stuff ; the other answers, and I should have
got for yours 12 crowns and a half. How many ells had each?

Suppose the first had z ells ; then the secorid must have had
x4 3ells. Now, since the first would have sold =z 4 3 ells for

24 crowns, he must have received 5—_}_—33 crowns for his @ ells.

And with regard to the second, since he would bave sold x ells
' W x— 715

for 12} crowns, he must have sold his z + 3 ells for o7

so that the whole sum they received was
‘ Uz Wz +15
s+ 3t 23
This equation becomes z z = 20 x ~— 75, whence we have
2 =10 &+ 4/100—75 = 10 £ 5.

Answer. The question admits of two solutions ; accordiug to the
first, the first merchant had 15 ells, and the second had 18 and
since the former would have sold 18 ells for 24 crowns, he must
have sold his 15 ells for 20 crowns; the second, who would have
sold 16 elis for 12 crowns and a balf, must have sold his 18 ells
for 15 erowns ; so that they actually received 35 crowns for their-
commodity. -

According to the second solution, the first merchant had 5 ells,
and the other 8 ells; so that, since the first would have sold 8 ells
for 34 crowns, he must have received 15 crowns for his 5 ells; and

= 35 Crowns.
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since the second would have sold 5 ells for 12 crowns and a half,
his 8 ells must have produced him 20 crowns. ~ The sum is, as
before, 35 crowns.

CHAPTER VII.

. Of the Nuture of Equations of the Second Degree.

573. WaHaT we have already said sufficiently shows, that equa-
tions of the second degree admit of two solutions ; and this pro-
perty ought to be examined in every poiat of view, because the na-
ture of equations of a higher degree will be very much illustrated
by such an examination. We shall therefore retrace, with more
attention, the reasons which render an equation of the second de-
gree capable of a double solution ; since they undoubtedly wdl ex-
bibit an essential property of those equations.

'574. We have already seen, it is true, that this double solution
arises from the circumstance that the square root of any number
may be taken either positively, or negatively ; however, as this prin-

-ciple will not easily apply to equations of higher degrees, it may be
proper to illustrate it by a distinct analysis. Taking, foran example,
the quadratic eguatio'n, z ¢ = 1% z — 35, we shall give a new rea-
son for this equation being resolvable in two ways, by admitting for «
the values 5 and 7, both of which satisfy the terms of the equation.

575. For this purpose it is most convenient to begin with trans-
posing the terms of the equation, so that one.of the sides may be-
come 0 ; this equation consequently takes the form

xx— 122 4 35 =0;
and it is now required to.find a number such, that if we substitute
it for x, the quantity x £ — 12 x 4- 85 may be really equal to
nothing ; after this, we shall have to show how thls ‘may be done .
in two ways.

- '576. Now, the whole of this consists in showmg clearly, that
a quantity of the form x x — 12 x 4 85 may be considered as the
product of two factors ; thus, in fact, the quantity of which we speak
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is composed of the two factors (zx — 5) X (z — 7). For, since

this quantity must become 0, we must-also have- the product
(2—5) X (z —T7)=0; ’

but a product, of whatever number of factors it is composed, be-

comes = O, only when one of those factors is reduced to 0 ; this

is a fundamental prineiple to which we must pay particular atten-

tion, especially when equations of several degrees are treated of.

577. It is therefore easily understood, that the product

(x=8) xEx—=7) L
may become 0 tn two ways ; one, when the first factor x — 5=0;
the other, when the second factor, x — T = 0. In the first case
x = 5, in the other,x='7 The reason is, therefore, very evident,
why such an equation 2z — 12 2 + 35 = 0, admits of two solu-
tiohs, that is to.say, why we can assign two values of x, both of
which equally satisfy the terms of the equation. This fundamen-
tal principle consists in this, that the quantity # * — 12 , 4- 35
may be represented by the product of two factors.

578. The same tircumstances are found in all ‘equations of the
second degree. For, after having brought all the terms to oneside,
we always find an equation of the following formzz —ax + b = 0
and this formula may be always considered as the product of two
factors, which we shall represent by (z — p) X (z—¢q) , Without
concerning ourselves what numbers the letters p and q represent.
‘Now, as this product must be = 0, from the nature of our equation
it is evident that this may happen in two ways; in the first place,

" when z == p; and in the second place, when z = ¢ ; and these

are the two values of @ which satisfy the terms of the equafion.

579. Let us now consider the nature of these two factors, in
order that the multiplication of the one by the other may exactly
produce z 2 — a z + b. By actually multiplying them, we get
zz — (p + ¢) = + p ¢; now this quantity must be the same as
zz— az -+ b, wherefore we have evidently p + ¢ = @, and
p g = b. So that we have deduced this very remarkable property,
that in every equation of the form x x — a x 4 b == 0, the two
values of X are such, that their sum is equal to a, and their pro-
duct equal to b ; whence it follows that, if we know one of the
values, the other abo i easily found . :
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680. We hive considered the case in whick the two values of &

are positive, and which requires the secand termof the equation to

~ bave the sign-—, and the third term to have the sign 4. Let us

also consider the cases in which either one or both values of 2 be-

come negative.. The first takes place when the two factors of the

equation give a product of this form (z — p) X (s g); for then

the two values of 2 are 2 = p, and 2 = — ¢ ; the equation itself

becomes z & 4 (¢ — p) ¥ —p ¢ = 0; the second term has the

sign -, when ¢ is greater than p, and the sign —, when ¢ is less
than p ; lastly, the third term is always negative.

The second case, in which both values of = are negative, eccurs,
when the two factors are (z + p) X (2 + ¢); for we shall then
have 2 = — p and 2 = — ¢ ; the equation itself becomes

re+@+9r+pg=0, ‘
in which both the second and third terms are affected by the sign 4.

581. The signs of the second and the third term consequently
show us the nature of the roots of any equation of the second degree.
Let the equation bexx....ax.... 5 ==0, if the second and
third terms have the sign -, thetwo values of x are both negative ;
if the second term has the sign —, and the third term has -}-, both
values are positive lastly, if the third term also has the sign —, one
of the values in question is positive. - But in all cases, whatever,
the second term contains the sum of the two valyes; and the third
term contains their product.

582. After what has been said, it will be very easy to form equa-
tions of the second degree containing any two given values. Let
there be required, for example, an equation such, that one of the
values of x may be 7, and the other — 3. We first form the sim-
ple equations # = 7 and & == — 3; thence these —7 == 0 and
x4+3=0, which gives us, in this manner, the factorsof the equa-
tion reqmred which consequently becomes x  — 4 £ — 21 =0.
Applying here, also, the above rule, we find the two given values
ofz; forif rr =42+ 21, we have s =2 & VB=2+5,
that is to say, z = 7,or £ = — 3.

583. The values of « may also happen to be equal. Let there
be sought, for example, an equation, in which both values may be
= 5. The two factors willbe (x — 8) X (z— 5),and the equa-
tions sought will be x £ — 10  + 25 ='0. In this éduation, »
appears to have only one value; but it is because z is twice found
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== 5, as the commen method of resolution shows; for we have
2z =10z~ 25; wherefore r =5 + 4/0 = 5;t0thntls
to say, 2 is in two ways = 5.

584. A very remarkable case, in which both values of = become
imaginary, or xmpossxble, gometimes occurs ; and it is then whally
impossible to assign any value for «, that would satisfy the terms of
the equation. Let it be proposed, for example, to divide the num-
ber 10 into. two parts, such, that their product may be 30.. If we
call one of those parts x, the other will be == 10 — &, and their

' product will be 10 £ — 2 z == 30 ; wherefore @ ¢ = 10 2 — 30,
andz =5 + y_ 5, which being an tmaginary number, shows
that the question ts tmpomble

585. It is very important, therefore, to dnscover some sign, by
means of which he may immediately know, whether an equation of
the second degree. is possible or not.

Let us resume the general equation a ¢ — z x 4 b = 0. We
shal] have

, 1
w¢=aw—b,andw=§aj‘:J%aa-—b.

This-shows, that if  is greater than } a &, or 4 b greater thtna &,
the two vlaues of z are alwaysimaginary, since it would be required
to extract the square root of a negative quantity ; on the contrary, if
b is less than } a a, or even less than 0, that is to say, is a negative
number, both values wxll be possible or real. But whether theybe
real or imagihary, it is no less true, that they are still expressible,
and always have this property, that their sumis = a, and their pro-
duct =2b. In the equationz z «— 6 2 4- 10 = 0, for example, the
sum of the two values of  must be == 6, and the product of these
two values must be == 10; now we find, L. £ = 3 4 /7, and
IL 2 =3 — V—' 1, quantities whose sum == 6, and the product
== 10.
'686. The expression, which we have just found, may be repre-
sented in a manner-mote general, and so as to-be applied to equa-
 tions of thxs form,fw z :L—_ g + k== 0; for this equation gives

S
—, &, lgg B
TEEFElL T

and.




200 | Algebra. Sect. 4.

or " x = :t‘g:ts%/}g—“lfh,.

whence we conclude that the two values are imaginary, and conse-
quently the equation impossible, when 4 f his greater than g g ; that
is to say, when, in the equation f z 2 — g @ — h = 0, four times
the product of the first and the last term exceeds the square of the
second term : for the product of the first and the last terin, taken
four times, is 4 f Az z,and the square of the middle term isg gz z;
now, if 4 f k x x is greater than g g zx, 4 fh isalso greaterthan g g,
and in that case, the equation is evidently impossible. In all other
cases the, equation is possible, and two real values of = may be as-
signed. }t is true they are often irrational ; but we have already
seen, that, in such cases, we may always find them by approxima-
tion ; whereas no approximations can take place with regard to
imaginary expressions, such as 4/ =3 ; for 100 is as far from being
-the value of that root, as 1, or any other number.

587. We have further to observe, that any quanmy of the second
degree, x X =+ ax = b, must always be resolvable into two factors,
such &s (z & p) X (¢ 4 ¢). For, if we took three factors, such
as these, we should come to a quantity of the third degree, and
taking only one such factor, we should not exceed the first degree.

It is therefore certain that every equation of the second degree
necessarily contains two values of x, and that it can neither have
more nor less.

588. We have already seen, that when the two factors are found,
the two values of .z are also known, since each factor gives one of
those values, when it is supposed to be =0. Theconverse.alsois
true, viz. that when we have found one value of z, we know also
one of the factors of the equation ; for if # = .p represents one of
the values of z, in any equation of the seconddegree, x — p isone
of the factors of that equation ; that is to say, all the terms having
been brought to one side, the equation is divisible by z — p; and
further, the quotient expresses the other factor.

489. In order to illustrate what we have now said, let there be
given the equation 2 4+ 4 x— 21 = 0, in which we know that
x =3 is one of the values of z, because 4+ 3 +4 +31— 21 =0;
this shows, that z — 3 is one of the factors of the equation, or
that » z 4+ 4 = — 21 is divisible by z — 3, which the actual di-
vision proves.
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2—3Nrvz+4x—2 (247
xx—3a

Tx—21
Tx—21

0.

So that the other factor is 2 + 7, and our equation is represent-
ed by the product (z — 3) X (z 4 7) = 0; whence the two
values of z immediately follow, the first factor giving * = 3, and
the other 2 = — 7.

Eul. Alg. 26



QUESTIONS FOR PRACTICE.

Fractions.

SECTION L.—CHAPTER 9. -

22 b X
1. Reduce — and - to a common denominator.

2cax d(_x_b
ac M ye

Ans.

a4 b
c

a ) a .
2. Reduce I and to a common denominator.

ac _ab4 b
Am.b—cand ¥ e -

z
3. Reduce g g, 37, and d to fractions having a common de-

] ' 9cx 4ab 6acd
nominator. « Ans. 6acbac™ ‘—6—a<_¢.: .

3 2z 2 .
4. Reduce 3 and a 4 - to a common denominator.

9a 8az dea’+24:c
12a¢ 126’ "% 124

' i *4 at

5. Reduce Y %, and x__w 17 to a common denominator.

8z +4+3aRa*r+42a® d6.1:'+6a’

6z+6a 62+6a '™ 6z 1+6a"

Ans.

Ans.

b ¢ d
6. Reduce 5ah3 and g to & common denominator.

2a'b 2a¢ 4a*d
A, 4a*’ 4a"and 4a*’
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_ BECTION I.—CHAPTER 10,

. x Rx z
7. Required the product of & and 5. Ans. .
10z 4z?
8. Required the product of 2, 51, and o ST Ans, _ﬁil’
z+a z* + ax
9. + ¢ Ans ;1’———!—70
9
10. Required the product of % and ° b Ans. Qa:
. ez 3a* 3z
11. Required the product of 5~ and 35— Ans. =
] 3 b 3
12. Required the product of —- . , and ;bc Ans.9axz.
' b4+'b
13. Required the product of b + — d . Ans. 2 + i
| g b
14, Required the product of = 5o and wb ::__ R
zt— b*
Ans. ey bor
—1
15. Required the product of w, ) andi ¥
et —u
| ./2113. aT'_'?E—b.
. . Re
16. Required the quotient of 3 divided by 5~ Ans. 13.
2 4 d
17. Required the quotient of _b_a divided by —‘-; . Anes. 2—05—0 .
' + z+ b
18. Required the quotient of 5——— 5 divided by Frt o
4 5z2*46ax+ a’
TR =2
. . Rz* . . T
19. Required the quotient of P divided by ———.
2
Aﬂd. l al_ +;’-
12
20. Required the quotient of 5 ? divided by 13 Ans. 96103
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+ dmdedy 'H.

22. Required the quotient of T2~

Re [z b Scr z—b
23. Required the quotient of 3—— divided by 7. Ans. &~

— b
24. Required the quotient of z,_’”g o dimded by
t ]

Am.z-{-;.

@tbe

r—b"

Infinite Series.

SECTION II.—CHAPTER 5.

4

azr Lo .
25. Resolve Py into an infinite series.

= @
Am.z+;—+;+;;, &e.

b
26. Resolve e into an infinite series.

b b bz ba® -~
Am—-—-—w+-aT——&‘—+&c.

a
Or resolved into factors,
ex =245k

i a
271. Resolve m into an infinite series.

a b ¥

1
48. Resolve ] i: into an infinite series.
' Ans. 1 422+ 22 + 22 + 224, &

]
29. Resolve 7~y into an infiite series.

3z 4z

Ans. l——a- + po ~——aT,&,c.



30.
31.

32.

33.

34.
35.

36.

37.
38.
39.
40.
41.
42.

43.
. Multiply o/5a—3zby 2a.  Ans. o/1657 — 12472

45,
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7 Surds or Irrational Numbcﬁ.

SECTION I.—CHAPTERS 12, 19; AND SECTION 11.—CHAPTER 8, &c.

Reduce 6 to the form of 4/5. . Ans. 4/38.
Reduce a+- btotheformofa/bc. Ans.o/za+ 2ab 1 55.
Reduce 3 ‘:/c. to the form bf Ad. Ans. l%l?

Reduce o and bg‘to the common exponent %

drs.a z}’ and 583,
Reduce 4/48 to its simplest form. - Ans. 4 /3
Reduce 4/a"z — o7 2* to its simplest form.
Ans. ag/azr —1z 2.
3
Wat b
86—8a

to its simplest form.

s — et
b—a

Reduce
»

Addvstoﬂq/‘ and 4/ 810 4/50. Ans. 3V6 and 4/ 5.
Add V4 @ and Va‘ together. Ans. (a 4 2) V“'
Add ‘7 and‘_Ti together. : Ans. b—b—+_c. ‘
babe
Subtract 4/4a from 4\/ a*. Ans. (a —2) v/
‘Subtract‘\ from - i. Ans. bb—ce T —
, , b Nbe
Multiply JQabb JQad ‘ Ans. J3a; d
Multiply 4/4 b_y_va b. Ans. Jai B

a ,
Multiply 53 +/a—z by (¢ — d) v az.

ac—ad

Aﬂs- —_2 b

V' —ao.
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46. Multiply o’z — &5 — 4/3 by 4/a + &/5 —
Ans. /75 + &/3.

i + 3 f; —n
47. Divide a by a; and a by a. . Ans.'a and amm el
d
48. Divide 7 — /@7 A by 57 Va—r.

Ans. (¢ — d) &/3 7.
49. Divide a* —ad — b 4 d 4/b by a — 4/b.

: Ans. a + /b — d.
50. What is the cube of 4/3? Ans. 4/8.

51. What is the square of 3 Jb_c- ? Ans. 9 ¢ :/b'—c
52. What is the fourth power of J

Am. 15 —2%: o)
53. What is the square of 3 4~ 4/5? Ans. 14 4 6 4/5.

54. What is the square root of a*? Ans. agq or /@
55. What is the cube root of a &*? Ans. a b b‘}; or :/m.

56. What is the cube root of 4/at o p? Ans. Ja’—-x’.
57. What is the cube root of a’ Va:—z” *

Ans. \/a —Jaz—z'-
58. What multiplier will render ¢ 4 4/3 rational ?
Ans. a — /3.
59. What multlpher will render 4/5 — 4/} rational ?
Ans. o/ + &/b+
60. What multiplier will render the denominator of the fraction
§E

V7T\/_3 rational ? _Am.‘ A7 — 4/3.

SECTION 11.—CHAPTER 12.
61. Resolve 4/a® § 7 into an infinite series.

xt x* 5t

z
Am. o + 5 — g + 160 — Smar ¥



Questions for Practice.
62. Resolve 4/ 1 ¥ intoan mﬁmte series.
1 1 ]
Ans. 1 + a—a8 1 16

63. Resolve 4/37—7 into an infinite series.

3 . . .
64. Resolve 4/ T— 2 into an infinite series.

, o A l—5—5—g
65. Resolve 4/7—2 into an infinite series.
x* x* x° 5t

Ans. r — o= — o= — o — o

2r 87 167~ 1287

1 . . . .
66. Resolve ——=——— into an infinite series.
Aa — . :

z* 3z 15 2°

&ec.

1
‘E+ﬁ+80°+48_7, &e.

67. Resolve (a —-.z")IE into an infinite series.
: ' 2 2 2 6 a*
dne. b X (1= g — g5 5 — g — &
——
68. Resolve Jaa + w: into an infinite series.
@ —z
z* z o
Ans. 1 4 ;;-i— Y 4 Y &ec.
69. Resolve @ + Xl into an infinite series.
@+ o)
2 .1:’ 5 40
Ans. X (1 — + o I. + &e.
. 94 8la
a Va

Summation of Arithmetical Progressions.

SECTION I1I.~—~CHAPTER 4,

70. Requrrep the sum of an increasing arithmetical progression,
having 3 for its first term, 2 for the common difference, and the
number of terms 20. Ans. 440,

71. Required the sum of a decreasing arithmetical progression,
having 10 for its first term, } for the common difference, and the
number of terms 21. . Ans. 140.
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72. Required the number of all the strokes of a clock in twelve
hours, that is, a complete revolution of the index. Ans. 8.
73. The clocks of Italy go on to 24 hours ; how many strokes
do they strike in a complete revolutionof the index? Ans. 300.
74. Oue hundred stones being placed on the ground, in a straight
line, at the distance of a yard from each other, how far will a per-
son travel who shall bring them one by one to a basket, which is
placed one yard from the first stone. '
Ans. 5 miles and 1300 yards.

The greatest Common Divisor.

. $ECTION III. CHAPTER 6.~~SECTION 1, CHAPTER 8.

cx x3 - x
6. Beduce Z-?—-{:-ta—’_m to its lowest terms. Ans. 23
2 —bz - z3—~baz
76. Reduce ﬁm toitslowest terms. .Ans. Py
U bt . - m2 bz
77. Reduce ;f—:m to its lowest terms. Ans. z :_:——
o —y? 1
78. Reduce Prp— to its lowest terms.  .Ans. 55—_-{_—!/;.
a' — z*

79. Reduce pr Sto its lowest terms.

—a*z 4+ a 12 —

Ans.

a4z
-
ba* 4+ 10a'z+4 5a* 23 |
80. Reduce Prreda Fea7 Lo to its lowest terms.

5a‘+5a’w_
a2 x4 a z? 4 a*

Ans.

Summation of Geometrical Progressions.

SECTION I11.—CHAPTER 10.

8l. A sERrvaNT agreed with a master to serve him eleven years
without any other reward for his service than the produce of one
wheat comn for the first year ; and that product to be sown the sec-
ond year, and so on from year to year till the end of the time, allow-
ing the increase to be only in a tenfold proportion. What was the
sum of the whole produce ? Ans. 111111111110 wheat corns.
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N. B. It is further required to reduce this number of corms to
the proper measures of capacity, and then by supposing an average
price of wheat, to compute the value of the corns in money.

82. A servant agreed with a gentleman to serve him twelve
months, provided he would give him a farthing for his first month’s
service, a penny for the second, and 4d. for the third, &c. What
did his wages amount to ? Ans. 58251, 8s. 51d.

83. Sessa, an Indian, having invented the game of chess, showed
it to his prince, who was so delighted with it, that he promised him
any reward he should ask ; upon which Sessa requested that he
might be allowed one grain of wheat for the first square on the chess-
board, two for the second, and so on, doubling continually, to 64,
the whole number of squares; now supposing a pint to contain
71680 of those grains, and one quarter to be worth 1. 7s. 6d., it is

required to compute the value of the whole sum of grains.
Ans. £64481488296.

Simple Equations.

SECTION 1V.—CHAPTER 2.

84, If 2 —4 4 6 == 8, then will x = 6.

85. If 4 2 — 8 =3 2 4 20, then will x = 28.
86. If az=ab—a, then willz =6 — 1.
87. If 2z 4 4 = 16, then will z = 6.

3
88. Ifaa:+26a=3c’,thepwilla:=-—:——26.

%=5+3,thenwilla:=16.
2z ‘ ' .
90. If’é-—2=6+4,th§nmﬂz‘=18.

890 If

91. Ifa-.-—l—’=c,thenwillx= .
2 a—c

92, If52—16=2x 4.6, then will c = 7.
93. If40——-6:v-—16—l20—l4a: then will z == 12.

941f 3+4_10 then will z = 4.
95. If - +8—20———-—,thenwi]la:=23}.

9. If J§z+ 5 = 7, then will z = 6.
Eul. Alg. 27
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. » | 4
varg o then will 2 = @ 4/§.
6—3a
98. If3az + é—-3_bw—a,then will @ = =—— rypmary
9. Ifyldrz=2+ V:,then will 2 = 4.

v97-'1f$+Va’+I’=

2a
100. If y 4+ y/a® 537 =@ _I_y,)i,thenwxlly_,}ayﬁ.
1 2
101. I fy+ +3i—"'—._—_16—3ii;—,zhenwmy=13.

102. If vz, + VE?": =

LI
Vit ===, thenwill z = 7.
103. Ifya = Vb‘ +;,,-,thenwdla:—Jb — o

o oo b
104- Ifw = Vai + x Jb’ + Ig‘—a, then Wllll‘—-4—a — .

128 216 ™

105, n3z—4= 6,thenw1ll:v._12
42 35

106. 1f 2% — 22 hen will 2 = 8.
45 51 .

107. If2x+3= 5, then will z =6.
.-—- —

108. It 2 3_‘2_’ 4 hen will 2 — 6.

109. If 615 2 — T z* = 48 z, then will 2 = 9.

SECTION IV.—CHAPTER 3.

110. To find a number, to which, if there be added a half, a
third, end & fourth of itself, the sum will be 50. Ans. 24.
111. A person being asked what his age was, replied, that } of
his age multiplied by v of his age gwes aproduct equal to his age.
What was his age ? ‘ ‘Ans. 16.
112. The sum of 660/, was raised for a particular purpose by
four persons, A, B, C, and D; B advanced twite as much as A ;
C as much as A and B together; and D as much as B and C.
What did each contribute? Ans. 601, 120/., 180!, and 300l
118. To find that number whose 1} part exceedsits } part by 12.
A dns. 144,



l

|

Questions for Practice. 211

. 114. What sum of money is that, whose } part, } part, and ¢
part added together, amount to 94 pounds ? - Ans. 1201,
115. In a mixture of copper, tin, and lead, one half of the whole
— 161b. was copper; } of the whole — 13b. tin; and } of the
whole - 4/b. lead. What quantity of each was there in the com-
position ? _Ans. 1281b. of copper, 8415, of tin, and 760b. of lead.
116. What number is that, whose } ‘part exceeds its by 72?2
Ans. 540.
117. To find two numbers in the proportion of ® to 1, sothat if
4 be added to each, the two sums shall be in the proportion of 3 to 2.
. Ans. 8 and 4.
118. There are two numbers-such that } of the greater added to
$of the less is 13, and if # of the less be taken from % of the
greater, the remainder is nothing. 'What are the numbers ?.
Ans. 18 and 12.
119. In the composition of a certain quantity of gunpowder § of .
the whole plus 10 was nitre ; } of the whole minus 4} was sulphur,
and the charcoal was # of the nitre — 2. How many pounds of
gunpowder were there ? Ans. 69.
120. A person has a lease for 99 years ; and being asked how
much of it was already expired, answered, that two thirds of the
time past was equal to four fifths of the time to come. Required
the time past. Ans. 54 years,
121. It is required to divide the number 48 into two such parts,

-that the one part may be three times as much above 20 as the other

wants of 20. Ans. 32 and 16.
122. A person rents 25 acres of land at 7 pounds 12 shillings
per annum ; this land consisting of two sorts, he rents the better
sort at 8 shillings per acre, and the worse at 5. Required the
number of acres of the better sort. Ans. 9.
123. A certain cistern, which would be filled in 12 minutes by
two pipes running into it, would be filled in 20 minutes by one
alone. Required, in what time it would be filled by the other

alone. . Ans. 30 minutes.
124. Required two numbers, whose sum may be s, and their
bs
proportion, as a to b. Ans + Trpand 5 akb

125. A privateer running at the rate of 10 miles an hour, dis-
covers a ship 18 miles off making way at the rate of 8 miles an
hour; it is demanded how many miles the ship can run before she
will be overtaken? Ans. T2,
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126. A gentleman distributing money among some poor people,
found he wanted 10s. to be able to give 5s. to each ; therefore he
gives 4s. only, and finds that he has 5s. left. Required the number
of shillings and of poor people.

Ans. 15 poor people, and 65 shnllmgs

127. There are two numbers whose sum is the sixth part of
their product, and the greater is to the less as 3 to 2. Required
those numbers. Ans. 15 and 10.

N. B. This question may be solved likewise by means of one
unknown letter.

128. To find three numbers, such that the first, with half the
other two, the second with one third of the other two, and the third
with one fourth of the other two, may be equal to 34.

Ans. 26, 22, and 10.

129. To find a number consisting of three places, whose digits
are in arithmetical progression ; if this number be divided by the
sum of its digits, the quotient will be 48 ; and if from the number
be subtracted 198, the digits will be inverted. Ans. 432.

130. To find three numbers such, that } the first, } of the sec-
ond, and # of the third, shall be equal to 62; % of the first, } of
the second, and } of the third, equal to 47 ; and } of the first, 4 of
the second, and } of the third, equal to 38. Ans. 24, 60, 120.

131. To find three numbers such that the first with } of the sum
of the second and third shall be 120, the second with $ of the dif-
ference of the third and first shall be 70, and # of the sum of the"
three numbers shall be 95. Ans. 50, 63, 75.

132. What is that fraction which will become equal to 4, if an
unit be added to the numerator ; but on the contrary, if an unit be
added to the denominator, it will be equal to }? Ans. .

133. The dimensions of a certain rectangular floor are such, that
if it had been 2 feet broader, and 3 feet longer, it would have been
64 square feet larger; but if it had been 3 feet-broader and 2 feet
longer, it would then have been 68 square feet larger. +Required
the length and breadth of the floor.

Ans. Length 14 feet, and breadth 10 feet.

134. A person found that upon beginning the study of his pro-
fession 4 of his life hitherto had passed before he comnienced his
education, under a private teacher, and the same time at a public
school, and four years at the university. What was his age ?

x Ans. 21 years.
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~ 135. To find a number such that whether it be divided into two
or three equal parts the continued product of the parts shall be
equal to the same quantity. ' Ans. 63.
136. There is a certain number consisting of two digits. The
sum of these digits is 5, and if 9 be added to the number itself the
digits will beinverted. What is the number ? Ans. 23.
137. What number is that, to which if I add 20 and from £ of
this sum I subtract 12, the remainder shall be 10?2  Ans. 13.

Quadratic Equations.
SECTION IV.—CHAPTER 5.

138. To find that number to which 20 being added, and from
which 10 being subtracted, the square of the sum, added to twice
the square of the remainder, shall be 17475. Ans. 75,

139. What two numbers are those wbich are to one another in
the ratio of 3 to 5, and whose squares, added together, make 1666 ?

Ans. 21 and 35.

140. The sum 2 a,and the sum of the squares 2 b, of two num-
bers being given ; to find the numbers.

Ans. a — /b —d*and a + /b —ab.

141. To divide the number 100 into two such parts, that the
sum of their square roots may be 14. Ans. 64 and 36.

142. To find three such numbers, that the sum of the first and
second multiplied into the third, may be -equal to 63 ; and the sum
of the second and third, multiplied into the first equal to 28; also,
that the sum of the first and third, multiplied into the second, may
be equal to 55. Ans. 2,5, 9.

143. What two numbers are those, whose sum is to the greater
as 11 to 7 ; the difference of their squares being 132?

Ans. 14 and 8.






